BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an air gun and more specifically, to an actuating mechanism for air gun that has a simple structure that is easy to install and that saves much the manufacturing cost of the air gun.
2. Description of the Related Art
Various toy air guns have been disclosed and have appeared on the market. An air gun uses an actuating mechanism to control the output of a compressed gas to force out the bullet. FIGS. 1 and 2 show a toy air gun according to the prior art. According to this design, the actuating mechanism a′ of the air gun comprises a holding down plate 10, a spacer plate 20, a right-side clamping plate 30, a driven block 40, a left-side clamping plate 50, a limiter plate 60, a hammer 70, an upper pivot 80, and a lower pivot 90. The holding down plate 10 has a bearing block 101 at the top side. The actuating mechanism a′ is mounted in a holder frame e′ near the rear side. The holder frame e′ is mounted inside the gun body b′ of the air gun, keeping the actuating mechanism a′ shielded by a slide c′ of the air gun. The upper pivot 80 is inserted through the holding down plate 10, the spacer plate 20, the right-side clamping plate 30, the driven block 40, the left-side clamping plate 50 and the limiter plate 60, having the two distal ends respectively fastened to the two opposite sidewalls of the holder frame e′. The lower pivot 90 is transversely fastened to the holder frame e′ below the upper pivot 80. The hammer 70 is pivotally mounted in the rear side of the holder frame e′, and turnable outwardly backwards to the outside of the air gun. Further, a pivot pin 401 is inserted through a torsional spring 402, an actuating block 403, the driven block 40 and a vertical rod 404. This structure of actuating mechanism a′ is complicated.
When the slide c′ is pulled to the rear side of the air gun, the a bearing block 101 of the holding down plate 10 and the limiter plate 60 are forced downwards, and the hammer 70 is forced to move the bell 701 thereof backwardly downwards and stopped by the vertical rod 404 in the hammering (triggering) position. When the user triggered the air gun, the vertical rod 404 is turned forwards and disengaged from the hammer 70, and the hammer 70 is returned to its former position.
The aforesaid actuating mechanism is complicated, resulting in a high manufacturing cost. Therefore, it is desirable to provide an actuating mechanism for air gun, which has a simple structure and is easy to install.
SUMMARY OF THE INVENTION
The present invention has been accomplished under the circumstances in view. It is the main object of the present invention to provide an actuating mechanism for air gun, which has a simple structure and is easy to install. It is another object of the present invention to provide an actuating mechanism for air gun, which greatly saves the manufacturing cost of the air gun.
To achieve these and other objects of the present invention, the actuating mechanism is installed in a mount inside the gun body of an air gun and covered by a slide. The actuating mechanism comprises a first pivot transversely mounted in the mount near a front side of the mount; a second pivot transversely mounted in the mount and spaced behind the first pivot at a distance; a hook member pivotally mounted on the second pivot inside the mount, the hook member having a hooked portion; a movable block pivotally mounted on the second pivot, the movable block having at least one through hole for the passing of the first pivot, a first stop edge and a second stop edge selectively forced into engagement with the first pivot, and a rear butt; a spring member stopped between the movable block and the second pivot; and a hammer pivoted to a rear side of the mount.
When the user moves the slide to a rear side of the gun body, the rear butt of the movable block is forced downwards by the slide, the movable block is moved to compress the spring member and to force the first stop edge into engagement with the second pivot, and the hook member is forced to turn the hammer backwardly downwards to a hammering position; when the user triggered the air gun, the hammer is disengaged from the hook member to strike the rear butt of the movable block, and the movable block is returned by the spring member to shift the first stop edge away from the first pivot and the second stop edge into engagement with the first pivot.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is an exploded view of an air gun according to the prior art.
FIG. 2 is an assembly plain view of the air gun according to the prior art.
FIG. 3 is an exploded view of an air gun according to the present invention.
FIG. 4 is an assembly plain view of the air gun according to the present invention.
FIG. 4A is an enlarged view of a part of FIG. 4.
FIG. 5 is a schematic plain view of the present invention, showing the slide of the air gun shifted to the rear side.
FIG. 5A is an enlarged view of a part of FIG. 5.
FIG. 6 corresponds to FIG. 5A, showing the hammer turned backwards.
FIG. 7 is a schematic plain view showing the triggering action of the air gun according to the present invention.
FIG. 7A is an enlarged view of a part of FIG. 7.
FIG. 8 is a schematic drawing showing an alternate form of the hook member according to the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring to FIG. 3, an actuating mechanism “a” is installed in a mount 1 at the rear end side of a gun body “b” and covered by a slide “c” (see FIG. 4). The actuating mechanism “a” comprises a clamping plate 11, a hook member 12, a movable block 13, a torsional spring 14, and a hammer 15. The hook member 12 has a top recess 121 at the top side thereof for accommodating the movable block 13 (see FIG. 3), and a bottom hooked portion 122 at the bottom side thereof. The movable block 13 has at least one through hole 130, and a rear butt 133. The at least one through hole 130 includes a front through hole 131 and a rear through hole 132. According to the embodiment shown in FIG. 3, the front through hole 131 and the rear through hole 132 are in communication with each other, thereby forming a sliding slot. According to the embodiment shown in FIG. 8, the front through hole 131 and the rear through hole 132 are two separated through holes. A front pivot 2 and a rear pivot 3 are respectively inserted through the front through hole 131 and rear through hole 132 of the movable block 13 and fastened to the mount 1 (see also FIG. 4A). The front through hole 132 is an elongated, step-like through hole having a first stop edge 1311 and a second stop edge 1312 behind and above the elevation of the front stop edge 1311. A spring member 1321 is mounted in the rear through hole 132 and stopped between the periphery of the rear pivot 3 and a part of the movable block 13, thereby imparting a backward pressure to the movable block 13. Therefore, the movable block 13 can be moved relative to the front and rear pivots 2 and 3 to let the first stop edge 1311 or second stop edge 1312 be selectively stopped against the front pivot 2. When the rear butt 133 of the movable block 13 received an upward pressure, the movable block 13 is moved to compress the spring member 1321, and the front pivot 2 is stopped at the second stop edge 1312 at this time. When the rear butt 133 of the movable block 13 received a downward pressure, the spring member 1321 returns the movable block 13 to shift the first stop edge 1311 into engagement with the front pivot 2.
The front pivot 2 and the rear pivot 3 are respectively transversely mounted in the gun body “b”. The rear pivot 3 also inserted through the clamping plate 11, the hook member 12, the rear through hole 132 of the movable block 13, and the torsional spring 14 (see FIG. 3). The clamping plate 11 has a protruding block 111. Upon each shooting action of the air gun, the protruding block 111 is forced to move the hook plate 12, causing disengagement of the hooked portion 122 of the hook member 12 from the hammer 15 (see also FIG. 7A). The hammer 15 is pivotally mounted in the rear side of the mount 1, having a bell 151 right behind the slide “c”.
After each shooting action of the air gun, the front pivot 2 is stopped at the second stop edge 1312 of the movable block 13 (see FIG. 4A). When the slide “c” is moved to the rear side for a next shooting (see FIG. 5), the rear butt 133 of the movable block 13 is forced downwards by the bottom protrusion c1 of the slide “c” (see FIG. 5A), thereby causing the movable block 13 to shift the second stop edge 1312 away from the front pivot 2 and the first stop edge 1311 into engagement with the front pivot 2. At this same time, the hammer 15 is turned backwardly downwards, keeping the bell 151 spaced apart from the slide “c” at a distance (see FIGS. 5A and 6). When the air gun is triggered again (see FIG. 7), the clamping plate 11 is forced to move the hook member 12, thereby disengaging the hooked portion 122 from the hammer 15. Immediately upon disengagement of the hooked portion 122 from the hammer 15, the hammer 15 is returned to the former position (because the return function of the hammer 15 is of the know art, no further detailed description in this regard is necessary), causing the bell 151 to strike the movable block 13, and therefore the movable block 13 is turned forwards to shift the second stop edge 1312 into engagement with the front pivot 2 and to further compress the spring member 1321 (see FIGS. 4 and 4A).
Although a particular embodiment of the invention has been described in detail for purposes of illustration, various modifications and enhancements may be made without departing from the spirit and scope of the invention. Accordingly, the invention is not to be limited except as by the appended claims.