The present invention relates to hydraulic actuation apparatuses and more especially to remotely actuating hydraulic actuation apparatuses that can be used in a toilet or the like to perform work based upon a sensed condition preferably without the use of electricity.
Hydraulic actuation apparatuses which actuate and perform predetermined work based upon predetermined conditions are well known. An actuation apparatus is disclosed in U.S. patent application Ser. No. 14/630,378 which is incorporated herein in its entirety. However, such apparatuses typically require electronic sensors or actuators, or function to terminate actuation based on a predetermined water level.
The present invention is an actuation apparatus that includes a pressurized fluid source such as a pressurized water source, a hydraulic valve, a fluid level sensor, and an actuator. The hydraulic valve preferably defines a diaphragm valve, the fluid level sensor preferably defines a water level sensor in the form of a float valve, and the actuator preferably defines a hydraulic linear cylinder actuator (actuator) or the like. The apparatus is adapted such that when the water level sensor senses water at above a predetermined level by means of the float of the float valve “floating” or rising to a predetermined level based on a corresponding increase in a water level, the diaphragm valve “turns on” or repositions such that water is allowed to flow from the pressurized water source to the actuator and the actuator actuates. The apparatus is further adapted such that when the water level sensor senses water below a predetermined level by means of the float of the float valve “floating” or lowering to a predetermined level based on a corresponding decrease in a water level, the diaphragm valve “turns off” or repositions such that water is prevented from flowing from the pressurized water source to the actuator and the actuator actuates returns to a default position. An exemplary application of the apparatus is the incorporation of the apparatus in a toilet having an auxiliary discharge path such as that disclosed in U.S. provisional application 61/947,117 which is expressly incorporated herein in its entirety by reference.
In order that the advantages of the invention will be readily understood, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments that are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings, in which:
Reference throughout this specification to “one embodiment,” “an embodiment,” or similar language means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment,” “in an embodiment,” and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment.
Furthermore, the described features, structures, or characteristics of the invention may be combined in any suitable manner in one or more embodiments. In the following description, numerous specific details are included to provide a thorough understanding of embodiments of the invention. One skilled in the relevant art will recognize, however, that the invention can be practiced without one or more of the specific details, or with other methods, components, materials, and so forth. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of the invention.
In order to facilitate the understanding of the present invention in reviewing the drawings accompanying the specification, a feature list is provided below. It is noted that like features are like numbered throughout all of the figures.
Referring now to the drawings and in particular to
In a first embodiment in practice, actuation apparatus 10 is adapted such that when water supply valve 14 is opened, pressurized water 12 is supplied to float valve 20 via diaphragm valve 18. In a nominal or default position when the float of float valve 20 is below a predetermined level, float valve 20 remains closed. However, when water rises above a predetermined level causing the float of float valve 20 to rise above a predetermined level, float valve 20 opens and remains open while the float of float valve 20 remains above a predetermined level. Opening of float valve 20 causes pressurized water 12 to flow to diaphragm valve 18, which in turn causes pressurized water 12 to flow from diaphragm valve 18 to actuator 22. Pressurized water 12 flowing to actuator 22 causes actuator 22 to actuate and perform work. Upon closing of float valve 20, pressurized water 12 ceases to flow from float valve 20 to diaphragm valve 18 and from diaphragm valve 18 to actuator 22, and actuator 22 returns to a nominal or unactuated position.
Referring now to the drawings and in particular to
In a second embodiment in practice, actuation apparatus 30 is adapted such that when water supply valve 34 is opened, pressurized water 32 is supplied to float valve 40 via diaphragm valve 38. In a nominal or default position when the float of float valve 40 is below a predetermined level, float valve 40 remains closed. However, when water rises above a predetermined level causing the float of float valve 40 to rise above a predetermined level, float valve 40 opens and remains open while the float of float valve 40 remains above a predetermined level. Opening of float valve 40 causes pressurized water 32 to flow from diaphragm valve 38 to actuator 42 and a minimal amount of water 32 to flow to water dump port 44. Pressurized water 32 flowing to actuator 42 causes actuator 42 to actuate and perform work. Upon closing of float valve 40, pressurized water 32 ceases to flow from diaphragm valve 38 to actuator 42, and actuator 42 returns to a nominal or unactuated position, and water ceases to flow to water dump port 44.
Referring now to the drawings and in particular to
In an exemplary application of the actuation apparatus shown in
The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
This U.S. nonprovisional utility patent application claims the benefit under 35 USC § 119(e) of U.S. provisional application No. 62/111,711 filed Feb. 4, 2015 which is expressly incorporated herein in its entirety by this reference.
Number | Name | Date | Kind |
---|---|---|---|
4709427 | Laverty | Dec 1987 | A |
4891864 | Laverty, Jr. | Jan 1990 | A |
4974264 | Brian | Dec 1990 | A |
5768719 | Harvey | Jun 1998 | A |
20050132483 | Butsch | Jun 2005 | A1 |
20060096017 | Yamasaki et al. | May 2006 | A1 |
20080141447 | Bowcutt | Jun 2008 | A1 |
20150247311 | Alcorn | Sep 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
62111711 | Feb 2015 | US |