The present invention generally relates to actuation assemblies and more particularly relates to an actuation system for use in the control system of a vehicle, such as an exoatmospheric kill vehicle.
Missile defense systems have been under development by the world's leading military powers since the latter part of the 20th century. One category of such defense systems is designed to target and intercept strategic missiles, such as intercontinental ballistic missiles (ICBMs), often in exoatmospheric environments (i.e., very high altitudes).
One method for disabling such an object involves ramming a payload into it without making use of any explosive devices (i.e., using only the force of impact). These payloads are sometimes referred to as “exoatmospheric kill vehicles (EKVs)” or “kinetic kill vehicles (KKVs)” and are typically deployed by ground-based missile systems. Once deployed, EKVs may utilize on-board sensors and electrical systems, in combination with multiple sets of thrusters, to both stabilize the kill vehicle and to alter the trajectory thereof. Due to the high speeds at which the EKV and the target are traveling (e.g., several miles per second), maintaining precise control of the vehicle is essential.
Accordingly, it is desirable to provide an improved actuation assembly that may be used, for example, in the control system of an EKV (or other maneuverable kill vehicle). Furthermore, other desirable features and characteristics of the present invention will become apparent from the subsequent detailed description of the invention and the appended claims, taken in conjunction with the accompanying drawings and this background of the invention.
An actuation assembly is provided. The actuation assembly includes a casing, a plurality of linear actuators coupled to the casing, each of the linear actuators having first and second components and being configured to move the second component thereof relative to the first component thereof along a respective first axis, and a plurality of translational member sets, each being coupled to the second component of a respective one of the linear actuators and the casing and being configured such that when the second component of the respective linear actuator moves along the respective first axis, a selected portion of the translational member set moves substantially along a respective second axis.
A control system for a maneuverable kill vehicle is provided. The control system includes a pressurized fluid source configured to provide a pressurized fluid, a plurality of valves in fluid communication with the pressurized fluid source, and an actuation assembly. The actuation assembly includes a casing, a plurality of linear actuators coupled to the casing and symmetrically arranged about a central axis, each of the linear actuators having first and second components and being configured to move the second component thereof relative to the first component thereof along a respective first axis, and a plurality of translational member sets, each being coupled to the second component of a respective one of the linear actuators and the casing and being configured such that when the second component of the respective linear actuator moves along the respective first axis, a selected portion of the translational member set moves substantially along a respective second axis. Each second axis is substantially orthogonal to the respective first axis. The selected portion of each of the plurality of translational member sets is coupled to a respective one of the plurality of valves such that the movement of the selected portion of the valve causes an adjustment in a flow rate of the pressurized fluid through the valve.
A maneuverable kill vehicle is provided. The maneuverable kill vehicle includes a frame, a pressurized fluid source connected to the frame configured to provide a pressurized fluid, a plurality of valves in fluid communication with the pressurized fluid source, an actuation assembly, and a controller in operable communication with the actuation assembly. The actuation assembly includes a plurality of linear actuators coupled to the frame, each of the linear actuators having first and second components and being configured to move the second component thereof relative to the first component thereof along a respective first axis and a plurality of translational member sets, each being coupled to the second component of a respective one of the linear actuators and the frame and being configured such that when the second component of the respective linear actuator moves along the respective first axis, a selected portion of the translational member set moves substantially along a respective second axis. An angle between the respective first axis and the respective second axis being at least 45 degrees. The selected portion of each of the plurality of translational member sets is coupled to a respective one of the plurality of valves such that the movement of the selected portion of the valve causes an adjustment in a flow rate of the pressurized fluid through the valve. The controller is configured to selectively cause the second components of the linear actuators to move relative to the first components of the linear actuators.
The present invention will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements, and
The following detailed description is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, and brief summary or the following detailed description. It should also be noted that
The pressurized fluid system (or supply or source) 18 is located near a central portion of the body 12 and is configured to provide a pressurized fluid to the divert and ACS thruster systems 20 and 22. In one embodiment, the pressurized fluid system 18 includes a solid propellant gas generator (e.g., a solid rocket fuel or propellant engine). In another embodiment, the fluid system includes a container of an inert, pressurized gas, such as nitrogen. Although shown in
Referring to
Referring now to
Although perhaps not drawn to scale, it should be understood that in at least one embodiment, the divert thruster valves 32 are “pintle valves,” as is commonly understood. As such, in the depicted embodiment, the valve member 40 is in the shape of a “pintle” (e.g., a pin or needle) and has a tapered shaped such that when in the first position, at least a tip of the valve member 40 extends through the outlet port 44 as shown in
Referring now to
The balls screws 72 each include an inner component 78 and an outer component 80. The inner component 78 is connected to the motor shaft 76 of a respective rotary motor 70. The outer component 80 is rotatably connected to the inner component 78 via a series of threaded formations (not shown) and includes a tab 82 extending from one side thereof. As shown in
Still referring to
The first member 86 includes a first engagement formation 94 at an inner end thereof. In the depicted embodiment, the first engagement formation 94 is a slot with a length 96 and a width 98. The length 96 may be measured in a direction substantially perpendicular to the translational axis (or substantially parallel to axes 77 and 84), and the width 98 may be measured in a direction substantially parallel to the translational axis 92 (or substantially perpendicular to axes 77 and 84). As shown, the length 96 of the slot 94 is greater than the width 98 of the slot 94.
The second member 88 has a substantially “L” shape and is rotatably coupled to the casing 56 via a fixed pin 100 such that the second member 88 may rotate relative to the casing 56 about a pin axis 102. The second member 88 includes a first moveable pin (or second engagement formation) 104 at a first end thereof and a second moveable pin 106 at a second end thereof. It should be noted that the terms “fixed” and “moveable” may refer simply to the movability of the respective pins relative to the casing 56. The first moveable pin 104 is positioned a distance 108 from the fixed pin 100 and is inserted through the slot 94 on the first member 86. As is evident in
The third member 90 has an elongate shape and interconnects the second member 88 and the tab 82 of the outer member 80 of the respective ball screw 72. Specifically, the third member 90 is rotatably coupled to the second member 88 via the second moveable pin 106 and rotatably coupled to the respective tab 82 via a ball screw pin 109.
Referring again to
Referring again to
Although not specifically shown, the navigation system 26 includes multiple gyroscopes and accelerometers configured to detect changes in angular orientation and acceleration, respectively, in three dimensions. The navigation system 26 also includes one of more receivers for receiving data (e.g., commands and positional data) from various sources, such as ground-based and satellite-based transmitters.
The electronic control system (or controller) 28 may be in the form of a computer, or computing system, having a memory (i.e., computer-readable medium) for storing a set of instructions (i.e., software) and a processing system, including various circuitry and/or integrated circuits, such as field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), discrete logic, microprocessors, microcontrollers, and digital signal processors (DSPs), connected to the memory for executing the instructions, as is commonly understood in the art. The instructions stored within the control system 28 may include the methods and processes for controlling the vehicle 10 as described below. Although not shown, the electronic control system 28 includes a power supply, which may be any one of various types of variable direct current (DC) power supplies. The electronic control system 28 (and/or the power supply) is electrically connected to, or in operable communication with, the rotary motors 70, the ACS thruster actuators, the sensor array 24, and the navigation system 26.
Although not shown, the vehicle 10 may also include a propulsion thruster and associated valve at the aft end thereof, which is in fluid communication with the pressurized fluid supply 18.
In operation, the vehicle 10 may be deployed into an exoatmospheric environment by a suitable delivery system (e.g., a rocket). Once deployed, the vehicle 10 receives data and commands through the navigation system 26, which the electronic control system 28 uses to selectively activate the divert and ACS thruster systems 20 and 22. In response to slight, undesired variations in the trajectory of the vehicle 10 (e.g., as detected by the gyroscopes and accelerometers in the navigation system 26), the electronic control system 28 may selectively activate the ACS thruster assemblies 110 to stabilize the vehicle 10 (e.g., stop the vehicle 10 from tumbling and/or spinning, as well as orientate it such that it is pointed towards the desired target).
The trajectory of the vehicle 10 may be adjusted using the divert thruster assemblies 30, which as configured with the pressurized fluid source cause relatively large forces to be exerted on the body 12 of the vehicle 10.
Referring to
Of particular interest in
Referring now to
One advantage of the control system described above is that because of the arrangement of the rotary motors (i.e., symmetrically arranged about and parallel to a central axis), the amount of radial space occupied by the actuation assembly is minimized. Another advantage is that because of the manner in which the first and second members of the translational linkage sets are interconnected, the divert valves can be controlled with a substantially linear motion without straining the first member. Additionally, because the dimensions of the engagement formations in the direction parallel to the linear motion are substantially the same, the linear motion, and thus the valves. may be precisely controlled.
While at least one exemplary embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing the exemplary embodiment or exemplary embodiments. It should be understood that various changes can be made in the function and arrangement of elements without departing from the scope of the invention as set forth in the appended claims and the legal equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
3999381 | Liedel | Dec 1976 | A |
4038673 | Schroder | Jul 1977 | A |
4482107 | Metz | Nov 1984 | A |
4751970 | Hecker et al. | Jun 1988 | A |
4956992 | Undin | Sep 1990 | A |
5074492 | Morgand | Dec 1991 | A |
5158246 | Anderson, Jr. | Oct 1992 | A |
5456425 | Morris et al. | Oct 1995 | A |
5533331 | Campbell et al. | Jul 1996 | A |
5709125 | Nakazawa et al. | Jan 1998 | A |
5755401 | Frey et al. | May 1998 | A |
5845528 | Wollermann | Dec 1998 | A |
6289669 | Smirra | Sep 2001 | B1 |
6510786 | Harsch | Jan 2003 | B1 |
6802488 | Patterson | Oct 2004 | B1 |
6895991 | Woessner | May 2005 | B2 |
7102113 | Fujita et al. | Sep 2006 | B2 |
7287725 | Chasman et al. | Oct 2007 | B2 |
20060021526 | Martin et al. | Feb 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20120181372 A1 | Jul 2012 | US |