This disclosure relates to a positive displacement pump, and more particularly to a frac pump with actuation-assisted valves in the fluid end.
Hydraulic fracturing (a.k.a. fracking) is a process to obtain hydrocarbons such as natural gas and petroleum by injecting a fracking fluid or slurry at high pressure into a wellbore to create cracks in deep rock formations. The hydraulic fracturing process employs a variety of different types of equipment at the site of the well, including one or more positive displacement pumps, slurry blender, fracturing fluid tanks, high-pressure flow iron (pipe or conduit), wellhead, valves, charge pumps, and trailers upon which some equipment are carried.
Positive displacement pumps, in particular, are commonly used in oil fields for high pressure hydrocarbon recovery applications, such as injecting the fracking fluid down the wellbore. A positive displacement pump typically has two sections, a power end and a fluid end. The power end includes a crankshaft powered by an engine that drives the plungers. The fluid end of the pump includes cylinders into which the plungers operate to draw fluid into the fluid chamber, via the intake valves, and then forcibly push out at a high pressure, via discharge valves, to a discharge manifold, which is in fluid communication with a well head. Traditionally, the valves operating in the fluid end of a high-pressure positive displacement pump designed for hydraulic fracturing operate without assistance beyond the displacement of fluid by the action of the plunger. These ingress and egress valves open and close as the pressure in the fluid chamber rises and falls with the movement of the plunger. A simple spring on top of each valve provides some resistance to valve lift and helps to control the impact forces caused by the closure of the valve. The valve is guided by either guide legs or a guide stem. A valve stop captures the valve to prevent the valve from interfering with other moving components, such as the plunger, and keeps the valve in place during operation.
The conventional valve in a frac pump opens only sufficiently to equalize the pressure across the valve. This limited movement of the valve causes the volume of fluid passing through the valve to travel at a very high velocity, estimated at greater than 55 feet per second, as the fluid is pushed through a relatively small space between the valve and the valve seat. A result of this high velocity fluid impacting the valve and the valve seat is premature erosion and damage of the valve and valve seat. Therefore, an objective of the actuation-assisted valve described herein is to reduce the fluid velocity as the fluid passes through the ingress or egress ports upon which the valve sits. One design consideration was to omit the spring that is limiting valve lift. When operated without the spring, the valve exhibited excessive impact forces. Another design option was to increase the valve size and thus increase the area of the opening through which the fluid passes. However, a valve design with sufficient size to lower the fluid velocity necessitates an immense load on the top of the oversized valve that requires excessive strength, and therefore material and weight, to support the valve seat.
An alternative option to slow down the fluid velocity by enlarging the valve opening is to lift the valve higher off of the seat. This may be accomplished by assisting the lifting action of the valve by using an actuator. No other frac pumps on the market use an assisted actuated valve to control fluid velocity passing the valve. The use of an actuated valve assembly provides a secondary control over the valve operations that ultimately leads to prolonged life of the valve and valve seat.
Referring to
Referring to
The controller 38 may optionally receive sensor data from one or more sensors that measure or monitor the fluid pressure, fluid speed, plunger displacement, and/or other parameters of pump operations to enable the controller to coordinate the activity of the actuators 34 and 36.
It should be noted that the actuation-assistance can be implemented to reduce fluid velocity in any valve configuration or orientation in a frac pump. For example, the valves may be oriented in a V configuration as shown in
The features of the present invention which are believed to be novel are set forth below with particularity in the appended claims. However, modifications, variations, and changes to the exemplary embodiments of the actuator-assisted valves for a positive displacement pump described above will be apparent to those skilled in the art, and the actuation-assisted valve described herein thus encompasses such modifications, variations, and changes and are not limited to the specific embodiments described herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2021/020357 | 3/1/2021 | WO |
Number | Date | Country | |
---|---|---|---|
62984094 | Mar 2020 | US |