The present invention relates to actuation control systems, such as flight control surface actuation systems, to actuators, and to actuator motors and, more particularly, to a redundant motor for use therewith.
Aircraft typically include a plurality of flight control surfaces that, when controllably positioned, guide the movement of the aircraft from one destination to another. The number and type of flight control surfaces included in an aircraft may vary, but typically include both primary flight control surfaces and secondary flight control surfaces. The primary flight control surfaces are those that are used to control aircraft movement in the pitch, yaw, and roll axes, and the secondary flight control surfaces are those that are used to influence the lift or drag (or both) of the aircraft. Although some aircraft may include additional control surfaces, the primary flight control surfaces typically include a pair of elevators, a rudder, and a pair of ailerons, and the secondary flight control surfaces typically include a plurality of flaps, slats, and spoilers.
The positions of the aircraft flight control surfaces are typically controlled using a flight control surface actuation system. The flight control surface actuation system, in response to position commands that originate from either the flight crew or an aircraft autopilot, moves the aircraft flight control surfaces to the commanded positions. In most instances, this movement is effected via actuators that are coupled to the flight control surfaces. Though unlikely, it is postulated that a flight control surface actuator could become inoperable. Thus, some flight control surface actuation systems are implemented with a plurality of actuators coupled to a single flight control surface. In addition, or alternatively, the actuators may be implemented with redundant power drive units, such as two or more individual motors.
Although the flight control surface actuators that include two or more individual motors to provide redundancy are generally safe, reliable, and robust, these systems do suffer certain drawbacks. Namely, these actuators can be relatively complex, can involve the use of numerous parts, and can be relatively heavy.
Hence, there is a need for a flight control surface actuator that is less complex and/or uses less parts and/or is lighter than systems that use central drive units to drive the aircraft flap and slat actuators. The present invention addresses one or more of these needs.
The present invention provides a multi-redundant motor that may be used to implement a relatively small, lightweight redundant actuator assembly package.
In one embodiment, and by way of example only, a redundant brushless DC motor includes N-number of stators and M-number of rotors. Each stator has a plurality of independent stator coils disposed thereon, and N is an integer greater than two. Each permanent magnet rotor is disposed between, and spaced axially apart from, two of the stators, and has a plurality of magnetic dipoles disposed thereon. M is an integer equal to (N−1).
In another exemplary embodiment, a redundant actuator assembly includes an actuator configured to receive a rotational drive force the redundant brushless DC motor and is operable, upon receipt thereof, to move.
In yet another exemplary embodiment, a flight control surface actuation system includes a flight control surface actuator control circuit, a plurality of flight control surface actuators, and a plurality of redundant brushless DC motors. The flight control surface actuator control circuit is configured to supply DC excitation signals to the redundant brushless DC motors. Each flight control surface actuator coupled to receive a drive force from one of the redundant brushless DC motor and is operable, upon receipt thereof, to move a flight control surface to a position.
Other independent features and advantages of the preferred motor, actuator assembly, and flight control surface actuation system will become apparent from the following detailed description, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
The following detailed description of the invention is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. Furthermore, there is no intention to be bound by any theory presented in the preceding background of the invention or the following detailed description of the invention. In this regard, before proceeding with the detailed description, it is to be appreciated that the described embodiment is not limited to use in conjunction with a specific vehicle or system. Thus, although the description is explicitly directed toward an embodiment that is implemented in an aircraft flight surface control system, it should be appreciated that it can be implemented in other vehicles and other actuation system designs, including those known now or hereafter in the art.
Turning first to
The secondary control surfaces 108-114, which are all disposed on the first and second aircraft wings 101-1, 101-2, influence the lift and drag of the aircraft 100. For example, during aircraft take-off and landing operations, when increased lift is desirable, the flaps 108 and slats 112 may be moved from retracted positions to extended positions. In the extended position, the flaps 108 increase both lift and drag, and enable the aircraft 100 to descend more steeply for a given airspeed, and also enable the aircraft 100 get airborne over a shorter distance. The slats 112, in the extended position, increase lift, and are typically used in conjunction with the flaps 108. The spoilers 114, on the other hand, reduce lift and when moved from retracted positions to extended positions, which is typically done during aircraft landing operations, may be used as air brakes to assist in slowing the aircraft 100.
The flight control surfaces 102-114 are moved to deployed positions via a flight control surface actuation system 120. The flight control surface actuation system 120 includes one or more actuator control units 121, a plurality of primary flight control surface actuators, which include elevator actuators 122, rudder actuators 124, and aileron actuators 126, and a plurality of secondary control surface actuators, which include flap actuators 128, slat actuators 132, and spoiler actuators 134. It will be appreciated that the number of actuator control units 121 may vary. However, in the depicted embodiment, the flight control surface actuation system 120 includes two multi-channel actuator control units 121 (121-1, 121-2).
The flight control surface actuation system 120 may be implemented using various numbers and types of flight control surface actuators 122-134. In addition, the number and type of flight control surface actuators 122-134 per flight control surface 102-114 may be varied. In the depicted embodiment, however, the system 120 is implemented such that two primary flight control surface actuators 122-126 are coupled to each primary flight control surface 102-16, and two secondary control surface actuators 128-134 are coupled to each secondary control surface 108-114. Moreover, each of the primary surface actuators 122-126, each of the flap actuators 128, and each of the spoiler actuators 134 are preferably a linear-type actuator, such as, for example, a ballscrew actuator, and each of the slat actuators 132 are preferably a rotary-type actuator. It will be appreciated that this number and type of flight control surface actuators 122-134 are merely exemplary of a particular embodiment, and that other numbers and types of actuators 122-134 could also be used.
The flight control surface actuation system 120 additionally includes a plurality of control surface position sensors 125. The control surface position sensors 125 sense the positions of the flight control surfaces 102-114 and supply control surface position feedback signals representative thereof. It will be appreciated that the control surface position sensors 125 may be implemented using any one of numerous types of sensors including, for example, linear variable differential transformers (LVDTs), rotary variable differential transformers (RVDTs), Hall effect sensors, resolvers, or potentiometers, just to name a few. In the depicted embodiment, a pair of control surface position sensors 125 is coupled to each of the flight control surfaces 102-114. It will be appreciated, however, that this is merely exemplary of a particular embodiment and that more or less than two position sensors 125 could be coupled to each flight control surface 102-114. Moreover, in other embodiments, the flight control surface actuation system 120 could be implemented without some, or all, of the control surface position sensors 125.
The system 120 and actuator control units 121-1, 121-2 may be implemented according to any one of numerous operational configurations. For example, the system 120 could be configured such that one of the control units 121-1 (121-2) is an active control unit, while the other control unit 121-2 (121-1) is in an inactive (or standby) mode. Alternatively, the system 120 could be configured such that both control units 121-1, 121-2 are active and controlling all, or selected ones, of the flight control surface actuator assemblies 122-134. No matter the specific configuration, each control unit 121-1, 121-2, when active, receives flight control surface position commands from one or more non-illustrated external systems, such as one or more flight control computers or pilot controls. In response to the flight control surface position commands, the active control units 121-1, 121-2 supply excitation signals to the appropriate flight control surface actuator assemblies 122-134.
The flight control surface actuators 122-134 are each driven by a redundant brushless DC axial motor (not illustrated in
The redundant brushless DC axial motors 200 each include a plurality of stators 202 and a plurality of permanent magnet rotors 204 disposed within a motor housing 206. The permanent magnet rotors 204 are each disposed between, and spaced axially apart from, two of the stators 202, and are mounted on a shaft 208. The shaft 208 extends through each of the stators 202 and is rotationally mounted, via a plurality of bearing assemblies 210, within the motor housing 206. It will be appreciated that the number of stators 202 and permanent magnet rotors 204 that are used to implement the redundant motor 200 may vary. For example, in the embodiment depicted in
No matter the specific number of stators 202 and permanent magnet rotors 204 that are included in the motor 200, it is seen in
The stator coils 216 are disposed between each pair of support structures 212, 214. The stator coils 216 that make up each of the individual stators 202 are wound and electrically coupled together to form a three-phase stator 202. In a particular preferred embodiment, the stator coils 216 that make up each of the individual stators 202 are electrically coupled in a wye configuration. It will be appreciated that the particular configuration of the stator coils 216 that make up each stator 202 may vary depending, for example, on the number of rotor poles. In the embodiment depicted in
The permanent magnet rotors 204 each include a main body 222 and a plurality of magnetic dipoles 224. The main body 222 may be variously configured but in the embodiment depicted in
The plurality of magnetic dipoles 224 is preferably implemented by coupling a plurality of permanent magnets to each main body 222. It will be appreciated that the number of magnets 224 that are used may vary, but in the embodiment shown in
With the above-described motor 200 configuration, the stator coils 216 on each of the individual stators 202 may be selectively energized, using known brushless DC motor commutation techniques, to generate a rotating magnetic field. The rotor 204 (or rotors) that is (or are) adjacent the energized stator 202 will in turn rotate, and supply a rotational drive force, via the shaft 208, to the actuator 122-134 to which the motor 200 is coupled. As shown in
No matter the particular commutation technique that is employed, in a preferred embodiment, the motor control circuit 121 is configured to energize the coils 216 on only one of the stators 202 at a time. It will be appreciated, however, that the motor control circuit 121 could be configured to energize the coils 216 on more than one stator 202 at a time. It will additionally be appreciated that if a stator 202 that is disposed between two rotors 204, for example stator 202-2 in
The motor 200 described herein is a multi-redundant motor 200. The motor includes independent and segregated stator coils 216 and magnets 224. Preferably, the stator coils 216 are independently commutated, providing full electrical redundancy. The motor 200 that may be housed in single housing 206 and readily coupled to an actuator, providing a relatively small, lightweight redundant actuator assembly package, as compared to presently known redundant actuator assembly packages, which may include two or more individual motors.
While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt to a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.