This invention relates, in general, to an actuator and sensor assembly and, more particularly, to a non-contacting linear position sensor coupled to an actuator.
Position sensing is used to electronically monitor the position or movement of a mechanical component. The position sensor is coupled to an actuator and is adapted to produce an electrical signal that varies as the position of the component in question varies. Actuator and sensor assemblies are included in many products. For example, actuator and sensor assemblies allow the status of various automotive components to be monitored and controlled electronically.
A position sensor needs to be accurate, in that it must give an appropriate electrical signal based upon the position measured. If inaccurate, a position sensor may hinder the proper evaluation and control of the position of the component being monitored.
Typically, it is also a requirement that a position sensor be adequately precise in its measurement. However, the precision needed in measuring a position will obviously vary depending upon the particular circumstances of use. For some purposes, only a rough indication of position is necessary; for instance, an indication of whether a valve is mostly open or mostly closed. In other applications, more precise indication of position may be needed.
A position sensor should also be sufficiently durable for the environment in which it is placed. For example, a position sensor used on an automotive valve may experience almost constant movement while the automobile is in operation. Such a position sensor should be constructed of mechanical and electrical components adequate to allow the sensor to remain sufficiently accurate and precise during its projected lifetime, despite considerable mechanical vibrations and thermal extremes and gradients.
In the past, position sensors were typically of the “contact” variety. A contacting position sensor requires physical contact to produce the electrical signal. Contacting position sensors typically consist of potentiometers that produce electrical signals which vary as a function of the component's position. Contacting position sensors are generally accurate and precise. Unfortunately, the wear due to contact during movement has limited their durability. Also, the friction resulting from the contact can degrade the operation of the component. Further, water intrusion into a potentiometric sensor can disable the sensor.
One advancement in sensor technology has been the development of non-contacting position sensors. A non-contacting position sensor (“NPS”) does not require physical contact between the signal generator and the sensing element. Instead, an NPS utilizes one or more magnets to generate magnetic fields that vary as a function of position, and devices to detect varying magnetic fields to measure the position of the component to be monitored. Often, a Hall Effect device is used to produce an electrical signal that is dependent upon the magnitude, polarity, or direction of the magnetic flux incident upon the device. The Hall Effect device may be physically attached to the component to be monitored and thus moves relative to the stationary magnet(s) as the component moves. Conversely, the Hall Effect device may be stationary with the magnet(s) affixed directly or indirectly to the component to be monitored. In either case, the position of the component to be monitored can be determined by the electrical signal produced by the Hall Effect device.
Although currently available actuator and NPS assemblies have proven satisfactory, there continues to be a need for improved, lower cost actuator and NPS assemblies.
The present invention is directed to an actuator and sensor assembly comprising a sensor housing including an interior wall defining a pocket accessible through an opening in the sensor housing, a sensor substrate located in the pocket through the opening in the sensor housing, the sensor substrate having a sensor and defining a plurality of conductive through-holes, a hose retention assembly including a nozzle extending from the sensor housing and a sleeve surrounding and spaced from the nozzle, a hose coupled to and surrounding the nozzle and the sleeve surrounding and abutting against the hose for retaining the hose on the nozzle, a connector assembly associated with the sensor housing and located opposite and generally normal to the pocket and the substrate and including a plurality of compliant terminal pins extending into the pocket and the plurality of through-holes in the sensor substrate respectively, an actuator housing coupled to the sensor housing and together defining an interior cavity and an actuator housing aperture in communication with the interior cavity, the actuator housing including an interior collar, a gimbal including a head located in the collar and a flexible neck extending through the actuator housing aperture in the actuator housing and terminating in a shoulder that retains the gimbal in the collar of the actuator housing, an O-ring surrounding the head of the gimbal and in sealing abutting relationship with the interior surface of the collar of the actuator housing, a magnet carrier located and movable in the interior cavity and including, a magnet adapted to generate a magnetic field and the sensor adapted to sense a change in the magnetic field in response to the movement of the carrier and the magnet in the interior cavity relative to the sensor, and an actuator shaft including a first end extending through the aperture in the actuator housing and the gimbal and coupled to the magnet carrier.
In one embodiment, the actuator and sensor assembly further comprises a flexible diaphragm located in the interior cavity, the magnet carrier being seated on the flexible diaphragm, a spring located in the interior cavity against the magnet carrier and biasing the magnet carrier in a first position, and a source of pressurization coupled to one of the sensor housing or the actuator housing and in fluid flow communication with the interior cavity for adjusting the pressure in the interior cavity and causing the movement of the flexible diaphragm and the magnet carrier.
In one embodiment, a plurality of clips on one of the sensor housing or the actuator housing couple the sensor housing and the actuator housing together.
In one embodiment, a plug seals the opening defined in the sensor housing and a spacer located in the pocket between the substrate and the plug for exerting a compressive force against the substrate and preventing vibration of the substrate.
In one embodiment, the plurality of terminal pins extend through the interior wall of the pocket and into the pocket.
In one embodiment, the connector assembly further comprises a holder for the plurality of terminal pins, the holder being retained in a through-hole defined in the interior wall of the pocket.
In one embodiment, the neck of the gimbal is comprised of a plurality of spaced apart ribs adapted for flexing movement towards and away from each other during coupling of the gimbal to the collar of the actuator housing.
The present invention is also directed to a sensor assembly comprising a sensor housing including an interior wall defining a pocket accessible through an opening defined in the sensor housing, a substrate located in the interior pocket through the opening in the sensor housing and defining a plurality of conductive through-holes, a sensor on the substrate, a connector assembly unitary with the sensor housing and positioned in a relationship opposite and generally normal to the pocket and the substrate, the connector assembly including a plurality of compliant terminal pins extending into the plurality of conductive through-holes in the substrate and in a relationship generally normal to the substrate, and a magnet located in the sensor housing in a relationship spaced from the pocket of the sensor housing and the sensor, the magnet generating a magnetic field and the sensor adapted to sense a change in the magnitude and direction of the magnetic field in response to the movement of the magnet relative to the sensor.
In one embodiment, the connector assembly includes a holder for the plurality of terminal pins, the holder being retained in the interior wall of the pocket.
The present invention is further directed to an actuator assembly comprising an actuator housing defining an interior cavity and an interior wall defining an aperture in communication with the interior cavity, the actuator housing including an interior collar, a gimbal including a head located in the collar and a flexible neck extending through the aperture in the actuator housing and terminating in a shoulder that retains the gimbal in the collar of the actuator housing, an O-ring surrounding the head of the gimbal and in sealing abutting relationship with the interior surface of the collar of the actuator housing, and
an actuator shaft including a first end extending through the aperture in the actuator housing and the gimbal and coupled to the magnet carrier.
In one embodiment, the flexible neck is comprised of a plurality of flexible ribs each including a shoulder having an exterior angled surface, the ribs being adapted for flexing movement towards and away from each other when the gimbal is secured to the collar of the actuator housing.
In one embodiment, an actuator shaft extends through the gimbal.
Other advantages and features of the present invention will be more readily apparent from the following detailed description of the preferred embodiment of the invention, the accompanying drawings, and the appended claims.
In the accompanying drawings that form part of the specification, and in which like numerals are employed to designate like parts throughout the same:
An actuator and linear position sensor assembly 200 it accordance with the present invention is shown in
Actuator and sensor assembly 200 initially comprises an upper or top sensor housing or cover member 22 and a separate lower or bottom actuator housing member 210 which are coupled and clipped together and define an interior housing or enclosure or chamber for a plurality of elements including a combination piston/magnet carrier assembly 100 and a spring 150 as described in more detail below.
Sensor housing or cover member 22 which, in the embodiment shown is made from a suitable injection molded plastic and is generally dome-shaped, includes a horizontal top well or roof 27 and a unitary downwardly and vertically extending circumferential exterior skirt wall 23. The roof 27 and the skirt wall 23 together define an interior sensor housing cavity or chamber 26 (
Referring to
The hose retention and coupling assembly 400 comprises a nozzle 402 defining an interior port or passage 433 (
The hose retention and coupling device or assembly 400 also includes a retention and protection sleeve or shroud or collar 404 surrounding and spaced from the nozzle 402. The sleeve 404 terminates in a plurality of spaced-apart and circumferentially extending flexible hose retention fingers or tabs 406.
The hose 500 is secured to the hose retention and coupling device or assembly 400, i.e., the end 502 of the hose 500 is slid over and coupled to the end of the nozzle 402. Still more specifically, the hose 500 is coupled to the nozzle 402 in a relationship with the end 502 of the hose 500, and more specifically the interior surface of the end 502 of the hose 500, surrounding and abutted against the exterior circumferential surface of the nozzle 402 and the interior circumferential surface of the sleeve 404 surrounding and abutted against the exterior circumferential surface of the hose 500. Thus, in the embodiment shown, the hose 500 is sandwiched between the nozzle 402 and the sleeve 404.
The retention tabs or fingers 406 are adapted for flexing into the exterior surface of the hose 500 to securely retain the hose 500 on the nozzle 402. The sleeve or shroud 404 also advantageously provides and defines a cover that protects the nozzle 402 from external objects and damage during transit and also during operation.
A circumferential recess or groove 34 (
A dome 29 projects unitarily upwardly and outwardly form the exterior surface of the roof 27 and defines an interior hollow dome shaped cavity 28 (
Referring specifically to
In the embodiment shown, the vertical interior wall 36 and vertical interior pocket 40 defined by the vertical interior wall 36 extend in the same direction as the central longitudinal vertical axis L of the assembly 200 and, in the embodiment shown, are both positioned in an off-setting, spaced-apart, and generally parallel relationship relative to the longitudinal vertical central axis L of the assembly 200.
A plurality of generally L-shaped flexible elongate clips or fingers 42 (
A connector assembly 50 (
Connector assembly 50 includes a body 51 and a shroud 52 that extends unitarily from the body 51. The body 51 is unitary with the wall 36 of the pocket 40 and the wall 36 separates the pocket 40 from the interior of the connector assembly 50. The shroud 52 defines an open interior 53 (
Connector assembly 60 includes a compliant in holder or retainer 83 (
The retainer 83 is retained in the interior of the connector assembly 50 and the shroud 52 and more specifically is retained in the body 51 of the connector assembly 50 and wall 36 and still more specifically is retained in a through-hole defined by an interior circumferential wall 51a defined in the body 51 and wall 36 that separates the connector assembly 50 from the pocket 40.
In the embodiment shown, the retainer 83 includes an exterior surface 83a that includes a plurality of steps or shoulders and the interior wall 51a includes a plurality of steps or shoulders adapted to mate or mesh with the plurality of steps or shoulders on the exterior surface 83a of the retainer 83 so as to provide for a secure and accurate alignment and positioning of the retainer 83 in the connector assembly 50 and more specifically to provide for an accurate alignment of the pins 84 relative to and with the through-holes 80a defined in the substrate 80 during assembly.
Each of the pins 84 defines respective opposed distal ends 85 and 86 (
The compliant design of the pins 84 eliminates the need for wire bonding or soldering of the terminal pins 84 to the through-holes 80a of the substrate 80. Additionally, the design shown with the connector assembly 50 and the terminal pins 84 located directly opposite and generally normal to the wall 36, the pocket 40, and the substrate 80 allows the pins 84 to be pushed directly normally inwardly through the connector assembly 50, the wall 36, the pocket 40, and into the respective through-holes 80a in the substrate 80 during the manufacturing and assembly of the assembly 200.
Substrate 80 can be a conventional printed circuit board formed from FR4 or the like material. The substrate 80 extends vertically through the pocket 40 in an offset, spaced, and parallel relationship relative to the central longitudinal vertical axis L of the assembly 200. In the embodiment shown, the substrate 80 defines a plurality of (namely three) through-holes 80a (
During the assembly process and as shown in
Thereafter, a separate press-fit cover or top or plug 87 is inserted over and seals the opening 41. The plug 87 could also be adapted for ultrasonic welding to the opening 41 of the housing member 22. A spacer 88 (
Additionally, or in lieu of, the plug 87 and spacer 88, a curable epoxy or the like material can be dispensed into the pocket 40 through the opening 41 to a level covering the top of the substrate 80 for further securing the substrate 80 in the pocket 40 against vibration. A low pressure over mold operation could also be used in lieu of epoxy.
A sensor 82 (
Other electronic components, generally designated with the numeral 80b in
The actuator assembly 200 also comprises a lower or bottom actuator housing member 210 (
Referring to
A collar 223 protrudes generally normally unitarily upwardly from a center portion of the interior surface of the floor 214 of the housing member 210. Wall 223 surrounds and is spaced from the central aperture 222 defined in the floor 214 of the housing member 210.
The collar 223 defines an interior pocket or cavity or receptacle 225 for a gimbal 226. Referring to
More specifically, and referring to
The gimbal 226 is adapted to be snap titled into and sec cured to the actuator housing member 210. Specifically, and referring to
The gimbal 226 is then extended or pushed further downwardly or inwardly into the collar 223 which causes the shoulder 226e to clear the base wall aperture 222 which in turn causes the neck 226d and more specifically the ribs 226f to flex back outwardly from each other into the position as shown in
Thus, in the embodiment shown, the head 226a of the gimbal 226 has a diameter greater than the diameter of the opening 222, the neck 226d has a diameter less than the diameter of both the head 226a and the opening 222 so as to allow the neck 226d to be fitted through the opening 222, and the shoulder 226e has a diameter greater than the diameter of the opening 222 with the shaft 273 extending through the gimbal 226 to retain and lock the gimbal 226 on the collar 223.
The floor 214 of the housing member 210 additionally defines a plurality of hollow peripheral heads 230 (
Actuator assembly 200 further comprises a plurality of threaded mounting screws or bolts 234 which are insert molded into the respective heads 230 defined in the floor 214 of the housing member 210. Specifically, each of the screws 234 includes a head 234a which is insert molded into the respective head 230 in the floor 214 of the housing member 210 and a ring or flange 234b which surrounds the head 234b and extends into abutting relationship with the interior surface of the collar 230a formed in the floor 214 of the housing member 210.
Each of the screws 234 further includes a distal leg 234c adapted to extend through the respective openings of a supporting bracket (not shown) which is fastened to a vehicle engine or engine component such as, for example, a vehicle engine turbocharger.
The respective housing members 22 and 210 are snap-fitted or clipped together as shown in
Actuator and linear position sensor assembly 200 further comprises a flexible robber plunger or diaphragm 240 (
The collar or flange or bead 243 of the diaphragm 240 is wedged and secured between the top exterior surface of the flange 218 of the housing member 210 and the terminal exterior end surface of the wall 23 of the housing member 22 in the coupled and snapped together relationship of the respective housing members 22 and 210 shown in
Actuator and linear position sensor assembly 200 still further comprises a piston washer 336 defining a central aperture 337 (
Actuator and linear position sensor assembly 200 still further comprises an elongated rod or actuator shaft 270 including opposed ends 272 and 273 (
A combination piston and magnet carrier assembly 100, which may be made from a suitable injection molded plastic, is also located in the interior of the assembly 200 and, more specifically, in the cavities 26 and 212 of the respective housing members 22 and 210 as described in more detail below.
Piston/magnet carrier assembly 100 includes a cup 100a with a horizontal base or floor 102 and a circumferential vertical side wall 110 which extends unitarily generally normally upwardly from the peripheral circumferential edge of the base 102.
Piston/magnet carrier assembly 100 also includes a hollow tube or receptacle 120 (
The tube or wall 120 is closed at the top and defines an opening 120a at the bottom that is defined by a central opening in the base 102 of the cup 100a of the piston/magnet carrier assembly 100. The tube or wall 120 defines a base 120b (
An elongated magnet 140 is inserted and press fitted into the interior of the tube 120 of the piston/magnet carrier assembly 100 through the opening 120a in the bottom of the tube 120 during the assembly and manufacturing operation.
The magnet 140 is a permanent magnet that is polarized to define a north pole and a south pole. Magnet 140 can, in one embodiment, be made from any one of several different magnetic materials such as, but not limited to, ferrite or samarium cobalt or neodymium-iron-boron. Magnet 140 can be cylindrical in shape as shown or may be of any other desired shape or configuration such as, for example, square and thus it is also further understood that the tube 120 may also be shaped and configured to accept or house any other differently shaped or configured magnet such as, for example, a square shaped tube to accept or house a square shaped magnet.
The shaft 270 is secured to the cup 100a of the piston/magnet carrier assembly 100 via a crimp plate 133 (
The crimp plate 133 includes a plurality of spaced-apart peripheral crimp fingers 133b that extend through the one or more apertures 102a that are defined in the floor 102 of the cup 100a of the piston/magnet carrier assembly 100 and which are crimped and wrapped around the base 120a of the tube 120a for securing the plate 133 to the cup 100a and thus securing the shaft 270 to the cup 100a of the piston/magnet carrier assembly 100.
Thereafter, and still during the assembly process, the piston/magnet carrier assembly 100 with the diaphragm 240 and the shaft 270 coupled thereto is mounted in the interior of the cavity 212 of the housing member 210 into the relationship as shown in
The extension of the end 272 of the actuator rod 270 through the interior of the gimbal 226 also prevents the inward flexing of the gimbal neck 226d and gimbal ribs 226f which in turn prevents the gimbal 226 from sliding out of the collar 223 and thus the rod 270 also acts as a pin that locks the gimbal 226 on the collar 223.
In the embodiment shown, an elastomeric spacer 300 is located in the tube 120 of the magnet carrier 100 and is wedged between the top of the head 275 of the shaft 270 and the bottom of the magnet 140 to allow the control of the position of the magnet 140 in the tube 120.
Also, in the position of
The assembly 200 still further comprises a helical metal coil spring 150 which is also located in the interior of the assembly 200 and, more specifically, is located and mounted in the region of the interior cavity 26 bounded by the interior surface of the roof 27 of the housing member 22 at one end and the base 102 of the piston/magnet carrier assembly 100 at the other end. Coil spring 150 has opposed end coils 152 and 154. End 152 is seated in and against the groove 34 defined in the interior surface of the roof 27 of the housing member 22 and the end 154 is seated against the top surface of the base 102 of cup 100a of the piston/magnet carrier assembly 100. Spring 150 surrounds and is spaced from the tube 120. Spring 150 also surrounds and is spaced from the wall 36 and the sensor pocket 40. Thus, in the embodiment shown, the pocket 40 is located between the magnet carrier tube 120 and the spring 150 and further the spring 160 surrounds both the tube 120 and the pocket 40.
The spring 150 biases and keeps the piston/magnet carrier assembly 100 in a first fully retracted position as shown in
Although not shown or described in great detail herein, it is understood that the hose or tubing 500 is connected to a source of vacuum such as an engine intake manifold or vacuum tank (not shown). An increase in the vacuum in the tube 500 causes a decrease in the air pressure in the interior of the assembly 200 and causes the piston/magnet assembly 100 to move linearly upwardly from its first position as shown in
A decrease in the vacuum in the tube 500 and thus an increase in the air pressure in the interior of the assembly 200 and, more specifically, the interior cavities 26 and 212 defined by the respective housing members 22 and 210, causes the piston/magnet carrier assembly 100 to move linearly downwardly in the chamber or cavity 212 back to its biased retracted first position of
Piston/magnet carrier assembly 100 thus is capable of moving linearly and angularly in the interior of the assembly 200 with respect to the Hall Effect sensor 82 which is located inside the pocket 40 in a generally opposed, adjacent, and isolated relationship relative to the magnet 140. The sensor 82 is spaced, separated, and isolated from the magnet 140 by the pocket wall 36. The magnetic field produced by the magnet 140 passes through the wall 36 where the magnitude and/or direction of the magnetic field is sensed by the sensor 82. As the magnet 140 moves linearly and angularly in the interior of the assembly 200 relative to the sensor 82, the north and south poles change position relative to the sensor 82 thus creating a change in the magnitude and/or direction of the magnetic field. The changes in the direction and/or magnitude of the magnetic field can be sensed about two axes by the sensor 82.
Sensor 82 produces an electrical signal that changes in response to the position of the magnet 140 and thereby also a change in the position of the shaft 270. The electrical signal produced by the sensor 82 is indicative of the position of the magnet 140 and the piston/magnet carrier assembly 100. As the magnitude or strength of the magnetic field generated by the magnet 140 vanes with the linear movement of the shaft 270, the electrical output signal produced by sensor 82 changes accordingly, allowing the position of the shaft 270 and thus the object coupled thereto to be determined.
As shown in
More specifically, and referring to
Stated yet another way, the sensor 82 is positioned a fixed transverse distance from the longitudinal axis L of the assembly 200 and a variable transverse distance from the magnet 140 depending upon the angle of the magnet 140 relative to the longitudinal axis L of the assembly 200. Thus, the transverse spacing and distance between the sensor 82 and the magnet 140 in a direction transverse to the longitudinal axis L of the assembly 200 is variable in response to the second angular movement of the magnet 140.
It is also understood that the gimbal 226, as also shown in
While the invention has been taught with specific reference to the embodiment shown, it is understood that a person of ordinary skill in the art will recognize that changes can be made in form and detail without departing from the spirit and the scope of the invention. The described embodiment is to be considered in all respects only as illustrative and not restrictive.
This application is a continuation-in-part application which claims the benefit of the filing date of co-pending U.S. patent application Ser. No. 14/191,009 filed on Feb. 26, 2014 which is a continuation of U.S. patent application Ser. No. 12/962,773 filed on Dec. 8, 2010 now U.S. Pat. No. 8,664,047 issued on Mar. 4, 2014. This application also claims the benefit of the filing date and disclosure of U.S. Provisional Patent Application Ser. No. 61/903,144 filed on Nov. 12, 2013 which is incorporated herein by reference as are all references cited therein.
Number | Name | Date | Kind |
---|---|---|---|
2134072 | Christensen | Oct 1938 | A |
2355721 | Foutz | Aug 1944 | A |
2478575 | Fitch | Aug 1949 | A |
2738808 | Hartzell et al. | Mar 1956 | A |
2849091 | Newell | Aug 1958 | A |
2939486 | Demay | Jun 1960 | A |
2976686 | Stelzer | Mar 1961 | A |
3082792 | Jenkins et al. | Mar 1963 | A |
3136227 | Williams | Jun 1964 | A |
3397621 | Groves | Aug 1968 | A |
3509795 | Woodward | May 1970 | A |
3575088 | Bauer | Apr 1971 | A |
3648571 | Burgess | Mar 1972 | A |
3859619 | Ishihara et al. | Jan 1975 | A |
3911793 | Izumi | Oct 1975 | A |
4005639 | Welsh | Feb 1977 | A |
4056043 | Sriramamurty et al. | Nov 1977 | A |
4070946 | Sandvik et al. | Jan 1978 | A |
4088977 | Bowman, Jr. et al. | May 1978 | A |
4128044 | Larson et al. | Dec 1978 | A |
4230077 | Ito | Oct 1980 | A |
4237076 | Benjamin et al. | Dec 1980 | A |
4256019 | Braddick | Mar 1981 | A |
4282800 | Young et al. | Aug 1981 | A |
4283679 | Ito et al. | Aug 1981 | A |
4312319 | Brakebill | Jan 1982 | A |
4377070 | Shadbourne | Mar 1983 | A |
4403538 | Rise | Sep 1983 | A |
4437386 | Baumgartner | Mar 1984 | A |
4462359 | Muller | Jul 1984 | A |
4478107 | Buannec | Oct 1984 | A |
4502847 | Pozniak et al. | Mar 1985 | A |
4543790 | Coll et al. | Oct 1985 | A |
4639667 | Andresen | Jan 1987 | A |
4642603 | Martinez, Jr. | Feb 1987 | A |
4649925 | Dow et al. | Mar 1987 | A |
4733214 | Andresen | Mar 1988 | A |
4746772 | Bovee et al. | May 1988 | A |
4756229 | Drakeley | Jul 1988 | A |
4761608 | Franklin et al. | Aug 1988 | A |
4805744 | Pringle | Feb 1989 | A |
4809657 | Sejimo et al. | Mar 1989 | A |
4850263 | Rumsey et al. | Jul 1989 | A |
4857842 | Sturman et al. | Aug 1989 | A |
4915018 | Scott et al. | Apr 1990 | A |
5016523 | Bowyer | May 1991 | A |
5177370 | Meister | Jan 1993 | A |
5226312 | Gautier et al. | Jul 1993 | A |
5226347 | Gautier et al. | Jul 1993 | A |
5270645 | Wheeler et al. | Dec 1993 | A |
5293811 | Delair et al. | Mar 1994 | A |
5487273 | Elpern et al. | Jan 1996 | A |
5518028 | Walker | May 1996 | A |
5557154 | Erhart | Sep 1996 | A |
5570015 | Takaishi et al. | Oct 1996 | A |
5727447 | Shiraishi | Mar 1998 | A |
5771774 | Stojic | Jun 1998 | A |
5811968 | Nakazawa et al. | Sep 1998 | A |
5955881 | White et al. | Sep 1999 | A |
6018241 | White et al. | Jan 2000 | A |
6057682 | McCurley et al. | May 2000 | A |
6105927 | Zelczer et al. | Aug 2000 | A |
6155048 | Vertanen | Dec 2000 | A |
6164187 | Stojic | Dec 2000 | A |
6175233 | McCurley et al. | Jan 2001 | B1 |
6189435 | Vertanen et al. | Feb 2001 | B1 |
6255941 | Osterman et al. | Jul 2001 | B1 |
6289602 | Chiddister | Sep 2001 | B1 |
6304078 | Jarrard et al. | Oct 2001 | B1 |
6349629 | Plantan et al. | Feb 2002 | B1 |
6352137 | Stegall et al. | Mar 2002 | B1 |
6356811 | Beselt | Mar 2002 | B1 |
6360649 | Plantan | Mar 2002 | B1 |
6369689 | Osmer et al. | Apr 2002 | B1 |
6417768 | Osterman et al. | Jul 2002 | B2 |
6501375 | Weant et al. | Dec 2002 | B1 |
6526866 | Pisoni et al. | Mar 2003 | B2 |
6536329 | Anderson et al. | Mar 2003 | B2 |
6536469 | Dilger et al. | Mar 2003 | B2 |
6564554 | Hercey et al. | May 2003 | B2 |
6633157 | Yamaki et al. | Oct 2003 | B1 |
6662708 | Hosny | Dec 2003 | B2 |
6690158 | Saito et al. | Feb 2004 | B2 |
6748848 | Riley et al. | Jun 2004 | B1 |
6752171 | Kemmler et al. | Jun 2004 | B1 |
6794779 | Ma et al. | Sep 2004 | B2 |
6888451 | Plantan | May 2005 | B1 |
6968742 | Rodenhauser et al. | Nov 2005 | B2 |
6988443 | Morris | Jan 2006 | B2 |
7014016 | Morris et al. | Mar 2006 | B2 |
7044444 | Haubold et al. | May 2006 | B2 |
7053604 | Laumen et al. | May 2006 | B2 |
7116210 | Lawrence et al. | Oct 2006 | B2 |
7194946 | Bacardit | Mar 2007 | B2 |
7199578 | Rohner et al. | Apr 2007 | B2 |
7219691 | Gethmann et al. | May 2007 | B2 |
7340895 | Noelle | Mar 2008 | B2 |
7387080 | Andronic | Jun 2008 | B2 |
7423421 | Reichert | Sep 2008 | B2 |
7439732 | LaPlaca | Oct 2008 | B2 |
7451690 | Schrader et al. | Nov 2008 | B2 |
7454979 | Frank et al. | Nov 2008 | B2 |
7570047 | Stuve et al. | Aug 2009 | B2 |
7762220 | Okanovic et al. | Jul 2010 | B2 |
7823385 | McEwen et al. | Nov 2010 | B2 |
7852067 | Schmid et al. | Dec 2010 | B2 |
7946555 | Ikeda | May 2011 | B2 |
8395374 | Newman et al. | Mar 2013 | B2 |
8400142 | Storrie et al. | Mar 2013 | B2 |
8450999 | Wolschlager et al. | May 2013 | B2 |
8664947 | Storrie et al. | Mar 2014 | B2 |
8803514 | Newman et al. | Aug 2014 | B2 |
20030030958 | Saito et al. | Feb 2003 | A1 |
20040250678 | Bonotto et al. | Dec 2004 | A1 |
20050061144 | Schall | Mar 2005 | A1 |
20050087067 | Vermoesen et al. | Apr 2005 | A1 |
20050264280 | Shoji et al. | Dec 2005 | A1 |
20060176050 | LaPlaca | Aug 2006 | A1 |
20060208724 | Reichert et al. | Sep 2006 | A1 |
20070257219 | Perrin | Nov 2007 | A1 |
20080230328 | Lacroix et al. | Sep 2008 | A1 |
20090139587 | Spliethoff et al. | Jun 2009 | A1 |
20090140730 | Newman et al. | Jun 2009 | A1 |
20090205332 | Baeuerle et al. | Aug 2009 | A1 |
20090206846 | Sanchez et al. | Aug 2009 | A1 |
20100127697 | Storrie et al. | May 2010 | A1 |
20100282008 | Knudsen et al. | Nov 2010 | A1 |
20110079138 | Storrie et al. | Apr 2011 | A1 |
20110247484 | Klesbauer et al. | Oct 2011 | A1 |
20110262266 | Rakod et al. | Oct 2011 | A1 |
20110308897 | Wallace et al. | Dec 2011 | A1 |
20130232970 | Mavir et al. | Sep 2013 | A1 |
20130285649 | van der kuij et al. | Oct 2013 | A1 |
20140021808 | Palfenier et al. | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
2635228 | Jun 2007 | CA |
7424147 | Oct 1974 | DE |
29 23 644 | Dec 1979 | DE |
100 59 337 | Jun 2001 | DE |
203 08 810 | Oct 2003 | DE |
10 2005 024 101 | Dec 2005 | DE |
10 2005 013442 | Sep 2006 | DE |
10 2005 029904 | Jan 2007 | DE |
10 2006 021129 | Jun 2007 | DE |
10 2006 021127 | Aug 2007 | DE |
10 2008 030503 | Jan 2009 | DE |
10 2008 011701 | Sep 2009 | DE |
112008003309 | Oct 2010 | DE |
10 2009 032958 | Jan 2011 | DE |
20 2011 003003 | May 2011 | DE |
112009003688 | Oct 2012 | DE |
0096408 | Dec 1983 | EP |
0261537 | Mar 1988 | EP |
0738892 | Oct 1996 | EP |
1182461 | Feb 2002 | EP |
1662232 | May 2006 | EP |
1701015 | Sep 2006 | EP |
1884636 | Feb 2008 | EP |
1972916 | Sep 2008 | EP |
2068061 | Jun 2009 | EP |
2161460 | Mar 2010 | EP |
2208893 | Jul 2010 | EP |
2199565 | Jan 2011 | EP |
1852588 | May 2011 | EP |
1852587 | Jun 2011 | EP |
1852586 | Sep 2011 | EP |
2256050 | Nov 1992 | GB |
2261472 | May 1993 | GB |
2322164 | Aug 1998 | GB |
2468779 | Sep 2010 | GB |
H04-057704 | May 1992 | JP |
05 264326 | Oct 1993 | JP |
H07-294209 | Nov 1995 | JP |
2000193408 | Jul 2000 | JP |
2000258109 | Sep 2000 | JP |
2011505574 | Feb 2011 | JP |
03093769 | Nov 2003 | WO |
2009073170 | Jun 2009 | WO |
2010068241 | Jun 2010 | WO |
Entry |
---|
Melexis (Microelectronic Integrated Systems) MLX90316 Rotary Position Sensor IC Data Sheet Dated Sep. 20, 2005, pp. 1-34, Melexis NV, Ieper, Belgium. |
CTS Corporation, EGR History with Poti Sensors (2011), 7 pages, Elkhart, Indiana. |
WOCO Industrietechnik GmbH, Woco Actuators, www.wocogroup.com (2011), 1 page, Bad Soden-Salmunster, Germany. |
SMK, SMK Actuators, www.smk-systeme.de (2011), 2 pages, Filderstadt, Germany. |
Padmini VNA Mechatronics Pvt. Ltd., Padmini EGR/Secondary AIR Injection, www.padminivna.com (2009), 1 page, Gurgaon, India. |
Padmini VNA Mechatronics Pvt. Ltd., Padmini Actuator, www.padminivna.com (2009), 1 page, Gurgaon, India. |
CTS Automotive Products, product brochure for 586 Series Non-Contacting 2-Piece Linear Position Sensor (2009), 2 pages, Elkhart, Indiana. |
CTS Corporation, CTS 569 Turbo Sensor, Exploded Views and Cross Section Detail (2011), 4 pages, Elkhart, Indiana. |
CTS Automotive Products, product brochure for 569 Series High Temperature Linear Position Sensor (2007), 2 pages, Elkhart, Indiana. |
CTS Automotive Products, product brochure for 537 Series Linear EGR Sensor (2007), 2 pages, Elkhart, Indiana. |
INZI Controls Company, INZI Vacuum Actuators, www.inzicontrols.devu.kr (2007), 3 pages, Kyunggi-do, Korea. |
Number | Date | Country | |
---|---|---|---|
20150130447 A1 | May 2015 | US |
Number | Date | Country | |
---|---|---|---|
61903144 | Nov 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14191009 | Feb 2014 | US |
Child | 14536882 | US |