Actuator cap for a spray device

Information

  • Patent Grant
  • 8590743
  • Patent Number
    8,590,743
  • Date Filed
    Thursday, May 10, 2007
    17 years ago
  • Date Issued
    Tuesday, November 26, 2013
    11 years ago
Abstract
An overcap for a dispenser includes a housing mountable on a container. The container includes a tilt-activated valve stem with a discharge end. The discharge end of the valve stem is adapted to be in fluid communication with a discharge orifice of the housing. A drive unit is disposed within the housing, wherein the drive unit includes a solenoid, a bi-metallic actuator, a piezo-linear motor, or an electro-responsive wire, which is adapted to impart transverse motion to the valve stem to open a valve of the container.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

Not applicable


REFERENCE REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not applicable


SEQUENTIAL LISTING

Not applicable


BACKGROUND OF THE INVENTION

1. Field of the Background


The present disclosure relates generally to discharging a fluid from a spray device, and more particularly, to an apparatus for discharging a fluid from a pressurized aerosol container.


2. Description of the Background of the Invention


A discharge device for an aerosol container typically includes an actuator mechanism for engaging a nozzle of the aerosol container. Conventional actuator mechanisms include motor driven linkages that apply downward pressure to depress the nozzle and open a valve within the container. Typically, these actuator mechanisms are unwieldy and are not readily adaptable to be used in a stand-alone manner and a hand-held manner. Further, many of these actuator mechanisms exhibit a great deal of power consumption.


One example of a conventional actuator for an aerosol container includes a base and a plate extending vertically therefrom. A bracket extends transversely from the plate and is adapted to support the container. A solenoid is mounted to the bracket over a top end of the container. A U-shaped bracket is affixed to a shaft of the solenoid and is movable between first and second positions. When the solenoid is energized the U-shaped bracket is forced downwardly into the second position to engage with and depress a valve stem of the container, thereby opening a valve within the container and causing the emission of fluid therefrom.


In another example, a device for automatically spraying a fluid from an aerosol container includes a valve unit mounted on a top end of the container. The valve unit includes an interiorly disposed valve and a vertically depressible valve rod for opening the valve. A floating valve is disposed within the device and is attached to the vertically depressible valve rod. A bi-metal member is disposed within the device and is adapted to snappingly change its shape dependent on the level of heat provided to same. During an in use condition, the bi-metal member forces the floating valve downwardly to open the valve and allow the discharge of fluid from the container.


In yet another example, a spray dispenser utilizes a bi-metallic member to vertically actuate a plunger or valve stem to release an aerosolized fluid from within a container.


Further, a different example includes an overcap having an actuator mechanism with a vertically actuable plunger mounted thereon. The overcap is mounted onto a top end of an aerosol container, wherein the container includes a valve element extending outwardly therefrom. The valve element is vertically depressible between a first closed position and a second open position. During use, a signal is received by the actuator mechanism to cause a solenoid to drive the plunger downwardly and vertically depress the valve stem, thereby causing the emission of fluid through an outlet of the valve element.


In still another example, a flexible nozzle for filling containers with a fluid includes a nozzle with four flaps. A marmen wire is integrated into each of the four flaps. The marmen wire is made from a transformable material such as nitinol or a piezoelectric material. Upon the application and removal of heat or electricity to the marmen wire, same transforms alternatively between a contracted and an extended position to regulate the flow of fluid during a container filling process.


SUMMARY OF THE INVENTION

According to one embodiment of the present invention, an overcap for a dispenser includes a housing mountable on a container. The container includes a tilt-activated valve stem with a discharge end. The discharge end of the valve stem is adapted to be in fluid communication with a discharge orifice of the housing. A drive unit is disposed within the housing, wherein the drive unit includes a bi-metallic actuator, a piezo-linear motor, or an electro-responsive wire, which is adapted to impart transverse motion to the valve stem to open a valve of the container.


According to another embodiment of the present invention, an overcap for a dispenser includes a housing adapted to be mounted on a container having a tilt activated valve stem. The housing includes a discharge orifice. A dispensing member is adapted to be disposed on a portion of the valve stem, wherein a conduit of the dispensing member is in fluid communication with a discharge end of the valve stem and the discharge orifice of the housing. A drive unit is disposed within the housing, wherein the drive unit includes a solenoid adapted to impart transverse motion to the dispensing member.


According to a different embodiment of the present invention, an actuator for a dispenser includes a container having a tilt-activated valve stem with a discharge orifice. A dispensing member is disposed on a portion of the valve stem, wherein a conduit of the dispensing member is in fluid communication with the discharge orifice of the valve stem. A drive unit is provided having means for engaging the dispensing member to place the tilt-activated valve stem in an operable position.


Other aspects and advantages of the present invention will become apparent upon consideration of the following detailed description.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an isometric view of one embodiment of an actuator overcap;



FIG. 2 is a front elevational view of the overcap of FIG. 1;



FIG. 3 is a rear elevational view of the overcap of FIG. 1;



FIG. 4 is a right side elevational view of the overcap of FIG. 1;



FIG. 5 is a left side elevational view of the overcap of FIG. 1;



FIG. 6 is a top plan view of the overcap of FIG. 1;



FIG. 7 is an isometric view of the overcap of FIG. 1 mounted on a fluid container;



FIG. 8 is an exploded isometric view of the overcap of FIG. 1 showing a removable cap and a bracket;



FIG. 9 is an enlarged elevational view partly in section taken along the lines 9-9 of FIG.7 with a portion of a bracket removed for purposes of clarity;



FIG. 10 is an isometric view of the overcap of FIG. 1 with a portion of a housing removed;



FIG. 11 is a different isometric view of the overcap of FIG. 10;



FIG. 12 is a top plan view of the overcap of FIG. 10;



FIG. 13 is a front elevational view of the overcap of FIG. 10;



FIG. 14 is a rear elevational view of the overcap of FIG. 10;



FIG. 15 is a right side elevational view of the overcap of FIG. 10;



FIG. 16 is a left side elevational view of the overcap of FIG. 10;



FIG. 17 is another embodiment of an overcap similar to the one depicted in FIG. 1, which includes an A.C. power connector;



FIGS. 18A and 18B illustrate pre-actuation and post actuation positions, respectively, of a solenoid within the overcap of FIGS. 1-16, with a bracket removed from the overcap for purposes of clarity;



FIG. 19 is a timing diagram illustrating the operation of the overcap of FIGS. 1-16 according to a first operational sequence;



FIG. 20 illustrates different orientations that a solenoid may be positioned in within the overcap of FIGS. 1-16;



FIG. 21 illustrates another embodiment of an overcap similar to the overcap of FIG. 20 except that the solenoid has been replaced by a bimetallic actuator;



FIG. 22 illustrates still another embodiment of an overcap similar to the overcap of FIG. 20 except that the solenoid has been replaced by a piezo-linear motor;



FIG. 23 is an isometric view of a different embodiment of an overcap that utilizes an electro-responsive wire;



FIG. 24 is a plan view of the overcap of FIG. 23 with a portion of the overcap previously shown in dashed lines removed;



FIG. 25 is an isometric view of another embodiment of a device showing a frame, a fluid container, and a solenoid;



FIG. 26 is a front elevational view of the device of FIG. 25;



FIG. 27 is a right side elevational view of the device of FIG. 25; and



FIG. 28 is a top plan view of the device of FIG. 25.





DETAILED DESCRIPTION OF THE DRAWINGS


FIGS. 1-6 depict an actuator overcap 10 having a generally cylindrical housing 20. The housing 20 includes a base portion 22 and a removable cap 24. The base portion 22 comprises a cylindrical section 26 adapted to be retained on an upper end 28 of a conventional aerosol container 30, which is shown in FIG. 7 and will be described in further detail below. A post 32 extends upwardly from a top end 34 of the cylindrical section 26. The post 32 includes a curved distal end 36 with an oval pushbutton 38 on an outer wall thereof. The pushbutton 38 is further provided with a concave depression 40. A cylindrical rod 42 (see FIG. 8) is provided on an inner wall 44 of the post 32 generally opposite the pushbutton 38.


The removable cap 24 includes a cylindrical bottom portion 46, which has a diameter substantially equal to that of the top end 34 of the cylindrical section 26. A sidewall 48 extends between the bottom portion 46 of the cap 24 and a top portion 50 thereof. The sidewall 48 tapers outwardly about a longitudinal axis 52 of the cap 24 so that a cross-sectional diameter of the cap 24 adjacent the bottom portion 46 is smaller than a cross-sectional diameter of the cap 24 adjacent the top portion 50. The uniform tapering of the cap 24 is truncated by a stepped portion 54. The stepped portion 54 includes first and second tapered surfaces 56, 58, respectively, that extend inwardly toward the longitudinal axis 52 of the cap 24. The first and second tapered surfaces 56, 58 include first ends 60a, 60b, respectively, disposed on opposing sides of a groove 62 adjacent the bottom portion 46 of the cap 24. The tapered surfaces 56, 58, curve upwardly from the first ends 60a, 60b toward a portion 64 of the cap 24 opposite the groove 62 and adjacent the top portion 50.


An upper surface 66 of the removable cap 24 is convex and is bounded by a circular peripheral edge 68. An elliptical shaped discharge orifice 70 is centrally disposed within the upper surface 66. A frusto-conical wall 72 depends downwardly into an interior of the cap 24 about a periphery of the discharge orifice 70. A curved groove 74 is disposed between the discharge orifice 70 and the peripheral edge 68. The groove 74 includes a flat bottom 76 with a rectangular notch 78 disposed therein. An aperture 80 is also provided between the groove 74 and the peripheral edge 68. A light transmissive rod 82 is held within the aperture 80 by an interference fit.


As shown in FIGS. 8-16, the base portion 22 includes a platform 90 that is disposed on the top end 34 of the cylindrical section 26. The platform 90 is sized to frictionally engage with the bottom portion 46 of the removable cap 24 when the cap 24 is attached to the base portion 22. FIG. 9 illustrates that the platform 90 comprises an inwardly stepped portion, which includes a sidewall 94 and a top portion 96. The sidewall 94 includes a circumferential notch 98 adapted to fittingly receive an annular portion 100 on an inner wall 102 of the cap 24 adjacent the bottom portion 46 thereof. Further, additional retention support is provided by the groove 62, which is sized to fittingly receive the post 32 when the cap 24 is placed on the base portion 22. During the placement of the cap 24 on the section 26, the user aligns the groove 62 with the post 32 and slides the cap 24 downwardly until same contacts the top end 34 of the base portion 22 and forms an interference fit with the platform 90. A bottom end 104 of the base portion 22 is also shaped to fit on the upper end 28 of the aerosol container 30. In another embodiment of the overcap 10, the cap 24 and the base portion 22 form an integral unit that is attached to the top of the container 30 by an interference fit. Indeed, regardless of whether the housing 20 comprises one or more components, the housing 20 may be retained on the container 30 in any manner known by those skilled in the art. For example, the overcap retention structures described in U.S. Pat. Nos. 4,133,448, 5,027,982, and 5,649,645, which are herein incorporated by reference in their entirety, may be used in connection with any of the embodiments described herein. Further, any of the aesthetic aspects of the overcap 10 described herein may be modified in any manner known by one skilled in the art, e,g, the stepped portion 54 could be removed or the housing 20 could be provided with a different shape.


The overcap 10 discharges fluid from the container 30 upon the occurrence of a particular condition. The condition could be the manual actuation of the overcap 10 or the automatic actuation of the overcap 10 in response to an electrical signal from a timer or a sensor. The fluid discharged may be a fragrance or insecticide disposed within a carrier liquid, a deodorizing liquid, or the like. The fluid may also comprise other actives, such as sanitizers, air fresheners, odor eliminators, mold or mildew inhibitors, insect repellents, and/or the like, and/or that have aromatherapeutic properties. The fluid alternatively comprises any fluid known to those skilled in the art that can be dispensed from a container. The overcap 10 is therefore adapted to dispense any number of different fluid formulations.


The container 30 may be an aerosol container of any size and volume known to those skilled in the art. However, the container 30 preferably comprises a body 140 (see FIG. 17) with a mounting cup 142 crimped to the upper end 28 thereof. The mounting cup 142 is generally cylindrical in shape and includes an outer wall 144 that extends circumferentially therearound. A pedestal 146 extends upwardly from a central portion of a base 148 of the mounting cap 142. A valve assembly within the container 30 includes a valve stem 172 extending upwardly from the pedestal 146. The valve stem 172 is of the tilt-activated type similar to the one described in U.S. Pat. No. 4,068,782, which is herein incorporated by reference in its entirety. When a distal end of the valve stem 172 is tilted away from the longitudinal axis 52 of the container 30 to a sufficient degree, i.e., into an operable position, the valve assembly is opened and the contents of the container 30 are discharged through a discharge orifice or end (not shown) in the valve stem 172. The contents of the container 30 may be discharged in a continuous or metered dose. Further, the discharging of the contents of the container 30 may be effected in any number of ways, e.g., a discharge may comprise a partial metered dose or multiple consecutive discharges.


It is particularly advantageous to use a tilt-activated valve stem in connection with the present embodiments as opposed to a vertically activated valve stem. One advantage in using a tilt-activated valve stem is that a smaller force is required to place the valve stem in an operable position as compared to vertically activated valve stems. Smaller activation forces translate into decreased power consumption by the particular drive mechanism used, which will allow for simpler, smaller, and/or less costly drive mechanisms. Further, decreased power consumption will allow for longer power source life times. These and other advantages will be readily apparent to one skilled in the art upon reading the present disclosure.


As noted above, the housing 20 is adapted to be retained on the upper end 28 of the container 30. FIG. 9 shows that the present embodiment includes recesses 180, 182 around an inner circumference 184 of the base portion 22. The recesses 180, 182 are defined by surfaces 186a, 186b that form an interference fit with the mounting cup 142 and a neck, respectively, of the container 30 when the base portion 22 is operably attached to the container 30.


Turning to FIGS. 10-16, a bracket 200 is shown extending upwardly from the platform 90. The bracket 200 includes a first wall 202 and a second wall 204 that is parallel to and spaced apart from the first wall 202 to define a channel 206. A first plate 208 is disposed between the first and second walls 202, 204 at a distal end 210 of the channel 206. A rib 216 is provided on an outer surface 218 of the first wall 202 for the support of a printed circuit board 230 having a control circuit disposed thereon. The second wall 204 is provided with first and second frame members 234, 236 on opposing sides thereof. The first and second frame members 234, 236 are adapted to retain a D.C. power source 238 comprising a set of three AA batteries therein. The power source 238 of the present embodiment is shown schematically to illustrate the interchangeability of the batteries with other power sources. In some embodiments, the AA batteries can be replaced by a rechargeable Nickel-Cadmium battery pack having an electrical lead 242 that can be used to connect the battery pack to an A.C. power outlet 244, such as seen in FIG. 17. In another embodiment, the D.C. power source 238 may be entirely replaced by an A.C. power adapter having an appropriate power transformer and A.C./D.C. converter as known to those of skill in the art.


The control circuit allows for the electrical actuation of a drive mechanism or a drive unit 260 to cause the discharge of fluid from the container 30. FIGS. 18A and 18B depict a switch 262 disposed on the printed circuit board 230. The switch 262 is operably aligned with the pushbutton 38 such that the manual depression of the pushbutton 38 causes the actuation of the switch 262. Further, a user selectable switch assembly 264 is disposed adjacent a top portion of the printed circuit board 230. The user selectable switch assembly 264 includes a finger 266 extending upwardly therefrom. The finger 266 may be used to select different operating modes for the circuit (as discussed in greater detail below). The finger 266 fits within the notch 78 when the cap 24 is engaged with the base portion 22 such that a user can operatively interact with the finger 266. A light emitting diode (LED) 268 disposed on the printed circuit board 230 is positioned proximate the light transmissive rod 82 of the cap 24.


As illustrated in FIGS. 8, 9, 11, 15, 16, 18A, and 18B, a drive unit 260 in the form of a solenoid 270 is disposed within the channel 206. In the present embodiment, the solenoid 270 is a Ledex® C Frame, Size C5, D.C. operated solenoid sold by Saia-Burgess Inc., of Vandalia, Ohio. However, other solenoids known to one of ordinary skill in the art may be employed without deviating from the principles described herein. For instance, the solenoid 270 could be a solenoid manufactured by Tri-Tech, LLC, of Mishawaka, Ind., such as the Series 1551 Solenoid Actuator. The solenoid 270 includes a mounting brace 274 that is attached to the first wall 202 by screws (not shown). An armature 278 extends downwardly from the solenoid 270 toward the platform 90. In the present embodiment, the armature 278 is substantially parallel to the valve stem 172 and the longitudinal axis 52 of the container 30. The armature 278 includes slots 280a, 280b at a distal end 282 thereof.


With particular reference to FIGS. 9, 12, 15, and 16, a dispensing member 290 is shown. In the present embodiment, the dispensing member 290 comprises a cylindrical member having top and bottom ends 294, 296 respectively. With reference to FIG. 9, when the housing 20 is placed on the container 30, the distal end of the valve stem 172 is seated within a circular opening (not shown) adjacent the bottom end 296 of the dispensing member 290. A bore 300 extends from the opening and through the top end 294 of the dispensing member 290, as may be seen in FIG. 12. In other embodiments, the dispensing member 290 comprises a non-cylindrical shape and/or includes varying cross-sectional dimensions throughout an entire or partial length of the member 290, e.g., a discharge end of the bore 300 may be narrower than other portions of the bore 300 or may be angled with respect to other portions of the bore 300. Further, all or part of the bore 300 extending the length of the dispensing member 290 may be cylindrical or any other shape, e.g., a discharge end of the bore 300 adjacent the top end 295 of the dispensing member 290 may be square. The top end 294 of the dispensing member 290 is disposed adjacent to and/or within the frusto-conical wall 72 depending from the discharge orifice 70. The dispensing member 290 is appropriately centered to align the top end 294 of the member 290 with the discharge orifice 70. FIGS. 10, 12, and 15 show that the dispensing member 290 also includes an arm 302 extending transversely therefrom. A helical spring 304 is secured within the channel 206 by an interference fit between the first plate 208 and a distal end 306 of the arm 302. FIGS. 9, 11, 12, and 16 depict a second arm or bell crank 308, which similarly extends transversely from the dispensing member 290.


With reference to FIGS. 9 and 16, a distal end 310 of the bell crank 308 includes two members 312a, 312b that define a groove 314. A connector 318 extends between the distal end 310 of the bell crank 308 and the distal end 282 of the armature 278. The connector 318 of the present embodiment comprises a rectangular plastic portion, however, it is anticipated that other shapes and materials may be used. The connector 318 includes holes on first and second ends 324, 326, respectively, thereof. A first pin 328 is inserted into the connector 318 adjacent the first end 324 thereof and the slots 280a, 280b of the armature 278. Similarly, a second pin 330 is inserted into the connector 318 adjacent the second end 326 thereof and holes within the bell crank 308. Therefore, the connector 318 mechanically connects the armature 278 to the bell crank 308.


Prior to opening the valve assembly and releasing the contents of the container 30, the armature 278, the connector 318, and the bell crank 308 are positioned in a pre-actuation position 332, such as shown in FIG. 18A. Preferably, when the overcap 10 is positioned in the pre-actuation position 332, the distal end of the valve stem 172 is parallel to the longitudinal axis 52 of the container 30. Alternatively, the dispensing member 290 and the valve stem 172 may be laterally displaced a distance insufficient to open the valve assembly. When the armature 278, the connector 318, and the bell crank 308 are transitioned to an actuation position 334, such as shown in FIG. 18B, the dispensing member 290 and the valve stem 172 are tilted a sufficient distance away from the longitudinal axis 52 of the container 30 to fully open the valve assembly. Alternatively, the valve stem 172 may be displaced into a partially open position when in the actuation position 334.


Turning to FIG. 18B, the actuation of the solenoid 270 with respect to the present embodiment will now be described with greater particularity. Upon the receipt of an actuation signal, the solenoid 270 is energized to magnetically drive the armature 278 downwardly along a path substantially parallel to the longitudinal axis 52 of the container 30. The linear motion of the armature 278 is translated into the rotational displacement of the bell crank 308 by the connector 318, which acts as a mechanical linkage therebetween. The rotational displacement of the bell crank 308 causes the dispensing member 290 to rotate about the longitudinal axis 52. Similarly, the rotation of the dispensing member 290 causes the bottom end 296 thereof to engage with and rotationally displace the valve stem 172 by applying a force transverse to the longitudinal axis 52, thereby forcing the valve stem 172 into the actuation position 334. Upon deactivation of the solenoid 270, the armature 278 is forced upwardly into the solenoid 270, thereby allowing the connector 318 and the bell crank 308 to return to the pre-actuation position 332 described above. Without any transverse forces acting upon the valve stem 172 to hold same in an open state, the valve stem 172 returns to a closed position substantially parallel to the longitudinal axis 52 of the container 30 and prevents fluid discharge. The return of the valve stem 172 to the closed position may be effected by one or more of the spring 304, forces exerted by the mechanically linked armature 278, and forces exerted by the valve assembly in the container 30.


It is anticipated that the solenoid 270 will be driven for an appropriate duration and/or appropriately displaced to fully or partially open the valve stem 172. Specific distances traveled by and/or the lengths of any of the elements, e.g., the armature 278, the connector 318, and the bell crank 308, may be modified in a manner known to those skilled in the art to adjust the mechanical relationship between the elements and to effect a partial or complete tilting of the valve stem 172. Preferably, although not necessarily, the armature 278 is held in the discharge position for a predetermined length of time (“spraying period”). The duration of the spraying period is typically equal to about 170 milliseconds. Indeed, if desired, the armature 278 could be held in the discharge position until all of the container contents are exhausted. Further, the armature 278 may be displaced multiple times in response to the occurrence of a single actuation signal to provide for multiple sequential discharges. Multiple sequential discharges may be beneficial when a single discharge from a continuously discharging container is undesirable or when intermittent discharge is desired.



FIG. 19 depicts a timing diagram of the present embodiment that illustrates the operation of the overcap 10 during an in use condition. Initially, the overcap 10 is energized by moving the finger 266 from an “OFF” position to one of four operating modes 350, 352, 354, 356, (see FIGS. 18A and 18B) whereupon the overcap 10 enters a startup delay period. Each of the four operating modes 350, 352, 354, 356 corresponds to a predetermined sleep period between consecutive spraying periods. For example, the first operating mode 350 can correspond to a five minute sleep period, the second operating mode 352 can correspond to a seven and a half minute sleep period, the third operating mode 354 can correspond to a fifteen minute sleep period, and the fourth operating mode 356 can correspond to a thirty minute sleep period. For the present example, we shall assume the first operating mode 350 has been chosen. Upon completion of the startup delay period, the solenoid 270 is directed to discharge fluid from the overcap 10 during a first spraying period. The startup delay period is preferably about three seconds long, and the spraying period is typically about 170 milliseconds long. Upon completion of the first spraying period, the overcap 10 enters a first sleep period that lasts 5 minutes. Upon expiration of the first sleep period the solenoid 270 is actuated to discharge fluid during a second spraying period. Thereafter, the overcap 10 enters a second sleep period that lasts for 5 minutes. In the present example, the second sleep period is interrupted by the manual actuation of the overcap 10, whereupon fluid is dispensed during a third spraying period. Automatic operation thereafter continues with alternating sleep and spraying periods. At any time during a sleep period, the user can manually actuate the overcap 10 for a selectable or fixed period of time by depressing the pushbutton 38. Upon termination of the manual spraying operation, the overcap 10 completes the pending sleep period. Thereafter, a spraying operation is undertaken.


In another embodiment, the switch assembly 264 may be replaced and/or supplemented by a photocell motion sensor. Other motion detectors known to those of skill in the art may also be utilized e.g., a passive infrared or pyro-electric motion sensor, an infrared reflective motion sensor, an ultrasonic motion sensor, or a radar or microwave radio motion sensor. The photocell collects ambient light and allows the control circuit to detect any changes in the intensity thereof. Filtering of the photocell output is undertaken by the control circuit. If the control circuit determines that a threshold light condition has been reached, e.g., a predetermined level of change in light intensity, the control circuit develops a signal to activate the solenoid 270. For example, if the overcap 10 is placed in a lit bathroom, a person walking past the sensor may block a sufficient amount of ambient light from reaching the sensor to cause the control circuit to activate the solenoid 270 and discharge a fluid.


It is also envisioned that the switch assembly 264 may be replaced or supplemented with a vibration sensor, an odor sensor, a heat sensor, or any other sensor known to those skilled in the art. Alternatively, more than one sensor may be provided in the overcap in lieu of the switch assembly 264 or in combination with same. It is anticipated that one skilled in the art may provide any type of sensor either alone or in combination with the switch assembly 264 and/or other sensors to meet the needs of a user. In one particular embodiment, the switch assembly 264 and a sensor are provided in the same overcap. In such an embodiment, a user may choose to use the timer-based switch assembly 264 to automatically operate the drive unit 260 of overcap 10, or the user may choose to use the sensor to detect a given event prior to activating the overcap 10. Alternatively, the overcap 10 may operate in a timer and sensor based mode of operation concurrently.


The LED 268 illuminates the light transmissive rod 82 when the overcap 10 is in an operative state. The LED 268 blinks intermittently once every fifteen seconds during the sleep period. Depending on the selected operating mode, the blinking frequency of the LED 268 begins to increase as a spraying period becomes imminent. The more frequent illumination of the LED 268 serves as a visual indication that the overcap 10 is about to discharge fluid contents into the atmosphere.


It is envisioned that the drive unit 260 can be disposed in different operable orientations without departing from the principles described herein. As shown in FIG. 20, the drive unit 260 may be disposed in a first position 390 so that a central axis 392 of the drive unit 260 is perpendicular to the longitudinal axis 52 of the container 30. In another embodiment, the axis 392 of the drive unit 260 is disposed in a second position 394 at a 45 degree angle relative to the longitudinal axis 52 of the container 30. Indeed, the drive unit 260 may be positioned in any number of orientations, wherein the axis 392 of the drive unit 260 is parallel to, perpendicular to, or at any other angle relative to the longitudinal axis 52 of the container 30. It will be apparent to those skilled in the art how the bell crank 308 and/or the connector 318 can be adjusted to remain in operable communication with the dispensing member 290 and the drive unit 260.


It is also contemplated that other linkage and mechanical systems may be used to impart rotational movement and transverse forces to the valve stem 172. For example, FIG. 20 illustrates an embodiment having the drive unit 260 disposed at a 45 degree angle relative to the longitudinal axis of the container 30. A linkage system 400 includes first, second, and third arms 402, 404, 406, respectively. The first arm 402 is attached to an armature 408 of the solenoid 270 by a pin 410. The second arm 404 is attached to the first and third arms 402, 406, by pins 412 and 414, respectively. The third arm 406 is also integrally attached to a portion of the dispensing member 290. When the solenoid 270 is activated, the linear motion of the armature 408 forces the first arm 402 to move downwardly and laterally toward the dispensing member 290. The third arm 406, which is mechanically linked to the first arm 402 by the second arm 404, is rotationally displaced about the longitudinal axis 52. The rotational displacement of the third arm 406 in the present embodiment causes the dispensing member 290 to tilt away from the solenoid 270 in a direction opposite to the embodiments disclosed above. However, similar to the previous embodiments, the rotation of the dispensing member 290 causes the bottom end 296 thereof to engage with and rotationally displace the valve stem 172. The rotational displacement of the valve stem 172 includes transverse force components that act upon the valve stem 172 to tilt same and open the valve assembly within the container 30 to discharge fluid therefrom. It is envisioned that the drive unit 260 may be angled to any degree with respect to the valve stem 172, and/or the longitudinal axis 52 of the container 30. Further, it is also envisioned that the linkage system 400 of the present embodiment may be modified to fit within any of the overcaps shown herein, e.g., by reducing the size of one or more of the arms 402-406.



FIG. 20 depicts yet another embodiment in which the drive unit 260 is disposed transverse to the longitudinal axis 52 of the container 30. During an actuation sequence, the armature 408 is directed along a path having a directional component perpendicular to the longitudinal axis 52 of the container 30 so that in an extended position the armature 408 will impact the dispensing member 290. Application of such a transverse force on the dispensing member 290 will cause same to rotate about the longitudinal axis 52 and for the valve stem 172 to be placed in an open position, thereby allowing discharge of the contents of the container 30. In a different embodiment, the dispensing member 290 is removed altogether and the armature 408 is adapted to directly impact the valve stem 172 during an actuation sequence. In another embodiment, a linkage system (not shown) is provided between a distal end of the armature 408 and a portion of the dispensing member 290.


In another embodiment depicted in FIG. 21, the solenoid of the drive unit 260 is replaced with a bi-metallic actuator 460. The bi-metallic actuator 460 includes a bi-metallic element 462, which contracts and expands in a predeterminable manner when provided with heat. Conventional bi-metallic elements comprise at least two strips of metals, which exhibit different thermal expansion properties. By joining two such strips of metal together, e.g., by brazing, welding, or rivets, a bi-metallic actuator will undergo a predeterminable physical transformation upon the application of a known level of heat. The bimetallic actuator 460 may include a self contained heat source responsive to an electrical signal from a timer or a sensor. For example, the control circuitry previously described herein may be adapted to activate a heater in response to the expiration of a specified time interval. One skilled in the art will realize that many different types of heaters may be used with the embodiments described herein, e.g., an electric resistance heater, such as a metal oxide resistor, may be used with the bimetallic actuator 460.


In the present embodiment, when a known level of heat is provided to the bi-metallic actuator 460, a distal end 464 of the bimetallic element 462 bends in a direction substantially transverse to the longitudinal axis 52 of the container 30 and a longitudinal axis 466 of the actuator 460. For example, in the present embodiment the bimetallic element 462 is secured to the bell crank 308 by a pin 468. When the bimetallic element 462 bends upon the application of heat, the distal end 464 of the element 462 bends in a transverse direction toward the circuit board 230. The bending of the bi-metallic element 462 causes the rotational displacement of the bell crank 308 and the dispensing member 290 toward the control circuit 230. Rotation of the dispensing member 290 will cause the discharge of fluid from the container 30 in a similar manner as discussed above. When the supply of heat is terminated or a cooling operation is undertaken, the bimetallic element 462 curves back to a pre-actuation position similar to that shown in FIG. 21. It is intended that the bi-metallic actuator 460 be used in conjunction with any of the methodologies and structures disclosed herein. Further, the bimetallic actuator 460 may be similarly placed in any number of positions within the overcap 10, e.g., FIG. 21 depicts the bimetallic actuator 460 disposed in a manner parallel to and perpendicular to the longitudinal axis 52.


In another embodiment illustrated in FIG. 22, the solenoid of the drive unit 260 is replaced with a piezo-linear motor 470. The piezo-linear motor 470 includes a piezoelectric element 472, which contracts and expands linearly in a predeterminable manner when provided with a specific level of electricity. Conventional piezoelectric actuators are manufactured by stacking a plurality of piezoelectric plates or disks, wherein the stack of plates or disks expands linearly in a direction parallel to an axis of the stack. The piezo-linear motor 470 of the present embodiment may comprise a motor similar to the one manufactured by Physik Instrumente GmbH & Co., of Karlruhe, Germany. It is also anticipated that other piezoelectric devices known to those skilled in the art may be used with the embodiments disclosed herein, e.g., a piezoelectric tube actuator may be used with the embodiments disclosed herein.


In the present embodiment, when a known voltage is applied to the piezoelectric element 472, same linearly expands in a direction parallel to a longitudinal axis 474 of the piezo-linear motor 470. A distal end of the piezoelectric element 472 is attached to the bell crank 308 by a pin 476. Expansion of the piezoelectric element 472 causes same to impact the bell crank 308 and cause rotational displacement of the dispensing member 290 in a similar manner as described above in connection with the other embodiments. Deenergization of the piezo-linear motor 470 allows the piezoelectric element 472 to contract and for the dispensing member 290 and the valve stem 172 to return to a non-actuation position, such as shown in FIG. 22. It is intended that the piezo-linear motor 470 be used in conjunction with any of the methodologies and structures disclosed herein. Further, the piezo-linear motor 470 may be similarly placed in any number of positions within the overcap 10, e.g., FIG. 22 shows the piezo-linear motor 470 being parallel to the longitudinal axis 52, perpendicular to the axis 52, and at a 45 degree angle relative to the axis 52.


In yet another embodiment, which is depicted in FIGS. 23 and 24, the drive unit 260 is replaced by an electro-responsive wire 480, e.g., a shape memory alloy (SMA). In the present embodiment, the SMA is a nickel-titanium alloy, which is sold under the brand name Muscle Wire® by Mondo-tronics, Inc., of San Rafael, Calif. The electro-responsive wire 480 contracts and expands in a predictable manner when supplied with a known level of heat. When the electro-responsive wire 480 is connected to an electrical power source, the resistance of the wire 480 generates the heating that is required to deform the wire 480.


In the present embodiment, wire mounts 482a and 482b are provided on an inner surface 484 of a cap 486. The cap 486 includes a bottom end 488 that is adapted to retain the cap 486 on the upper end 28 of the container 30. The electro-responsive wire 480 includes a first end 490, which is wrapped around the wire mount 482a and a second end 492 that is wrapped around the wire mount 482b. However, in other embodiments the electro-responsive wire 480 is affixed mechanically or through other means to the wire mounts 482a, 482b. In a pre-actuation position, the electro-responsive wire 480 is spaced apart from the valve stem 172 or is in contact with the valve stem 172 to a degree insufficient to open the valve assembly of the container 30. Upon receipt of an activation signal, the electro-responsive wire 480 contracts and imparts a transverse motion to the valve stem 172 sufficient to fully or partially open the valve assembly. It is anticipated that in other embodiments the wire mounts 482a, 482b may be spaced closer to or farther from the valve stem 172 on the surface 486. Further, it is also contemplated that the wire mounts 482a, 482b may be spaced closer to one another about an outer periphery of the surface 486, which in some embodiments will increase the transverse displacement of the valve stem 172. In a different embodiment, the electro-responsive wire 480 contacts a dispensing member (not shown) that is in fluid communication with the valve stem 172 instead of contacting the valve stem 172 directly, e.g., a member similar to the dispensing member 290 discussed above. Deenergerzation of the electro-responsive wire 480 causes same to expand back to a pre-actuation position, thereby allowing the valve stem 172 to return to a pre-actuation position. The contraction and expansion sequence of the electro-responsive wire 480 may be controlled by a circuit in a similar fashion to any of the operational methodologies discussed above. Further, structural components of the present embodiment such as the shape of the cap 486, the placement of a discharge orifice 494, or how the cap 486 is retained on the container 30, may be modified in light of the embodiments described herein. Likewise, it is anticipated that any of the embodiments described herein may be modified to include the inner surface 484 or any other structure disclosed herein with respect to the present embodiment.


In another embodiment depicted in FIGS. 25-28, the container 30 is placed within a device 500 having a frame 550. The frame 550 includes a base portion 552 and a tapered cylindrical wall 554. A recess 556 is provided within the base portion 552, which is adapted to receive the container 30 therein. A column 558 is integral with and extends upwardly from the base portion 552. The column 558 extends beyond a greatest longitudinal extent of the container 30. An overhang portion 560 extends perpendicularly from the column 558 at a top end 562 thereof and is suspended above a portion of the base portion 552. A solenoid 564 with an armature 566, which may be similar to the solenoid 270 described above, is mounted within an opening 568 provided in the overhang portion 560. A finger 570 extends from the column 558 and is clamped onto the neck of the container 30 to hold same substantially parallel to the column 558. The armature 566 extends downwardly toward the container 30 and is provided with a hole 572 in a distal end 574 thereof. The armature 566 is substantially parallel to the valve stem 172 extending upwardly from the container 30. A member 576, which may be similar to the dispensing member 290 discussed above, is in fluid communication with the valve stem 172 and extends upwardly toward the armature 566. The member 576 also includes an arm 578 extending substantially transversely therefrom. A rigid U-shaped wire 580 includes first and second legs 582, 584, wherein the first leg 582 is retained within the hole 572 of the armature 566 and the second leg 584 is retained within an opening 588 in the arm 578.


During an operational sequence, which may include any of the operational sequences or methodologies described herein, a control circuit (not shown) within the frame 550 generates an electrical signal in response to an elapsed timer, or sensor input, or manual actuation. The signal initiates movement of the armature 566 along a path substantially parallel to the longitudinal axis 52 of the container 30. The U-shaped wire 580, which operates in a similar manner as the connector 318 described above, causes the linear motion of the armature 566 to translate into a rotational displacement of the arm 578 and the member 576. The rotational displacement of the member 576 causes transverse forces to act upon the valve stem 172. As discussed above, the application of sufficient transverse forces to the valve stem 172 causes the valve assembly of the container 30 to open and discharge fluid into the atmosphere.


Any of the embodiments described herein may be modified to include any of the structures or methodologies disclosed in connection with different embodiments. Further, the present disclosure is not limited to aerosol containers of the type specifically shown. Still further, the overcaps of any of the embodiments disclosed herein may be modified to work with any type of aerosol container.


Industrial Applicability

Numerous modifications to the present invention will be apparent to those skilled in the art in view of the foregoing description. Accordingly, this description is to be construed as illustrative only and is presented for the purpose of enabling those skilled in the art to make and use the invention and to teach the best mode of carrying out same. The exclusive rights to all modifications which come within the scope of the appended claims are reserved.

Claims
  • 1. An overcap for a dispenser, comprising: a housing mountable on a container, wherein the container includes a tilt-activated valve stem with a discharge end, and wherein the discharge end of the valve stem is configured to be in fluid communication with a discharge orifice of the housing; anda drive unit disposed within and supported by the housing, wherein the drive unit includes a solenoid having an armature, wherein the armature is configured to move along a path substantially parallel to a longitudinal axis of the housing, and wherein movement of the armature imparts transverse motion to the valve stem to open a valve of the container for a predetermined spraying period that is determined by the selection of an automatic operation mode associated with the overcap and is followed by a predetermined period where the solenoid is de-energized, and wherein the armature, or any movable structure associated therewith, for imparting motion to the valve stem is unrestricted by the housing.
  • 2. The overcap of claim 1, wherein the housing is mounted on the container.
  • 3. The overcap of claim 1, wherein the housing is removably mounted to an end of the container.
  • 4. The overcap of claim 1, wherein a longitudinal axis of the drive unit is disposed parallel to a longitudinal axis of a container.
  • 5. The overcap of claim 1, wherein the transverse motion is imparted in response to the receipt of an electronic signal.
  • 6. The overcap of claim 5, wherein the electronic signal is generated by a sensor.
  • 7. The overcap of claim 5, wherein the electronic signal is generated by a timing circuit.
  • 8. The overcap of claim 5, wherein the electronic signal is generated by the depression of a manual pushbutton.
  • 9. An actuator for a dispenser, comprising; a container having a tilt-activated valve stem with a discharge orifice;a dispensing member disposed on a portion of the valve stem, wherein a conduit of the dispensing member is in fluid communication with the discharge orifice of the valve stem and with a discharge orifice of a housing; anda drive unit supported by the housing and having means for engaging the dispensing member to place the tilt-activated valve stem in an operable position for a predetermined spraying period, wherein the dispenser includes more than one automatic operating mode, and wherein a longitudinal axis of the drive unit is disposed parallel to a longitudinal axis of the container, and wherein the drive unit means for engaging the dispensing member is unrestricted by the housing.
  • 10. The actuator of claim 9, wherein the spraying period comprises multiple sequential discharges.
  • 11. The actuator of claim 9, wherein placement of the tilt-activated valve stem in an operable position causes a continuous dose of fluid to be discharged from the container.
  • 12. The actuator of claim 9, wherein the dispensing member and the drive unit are disposed within a substantially cylindrical overcap attached to the container.
  • 13. An overcap for a dispenser, comprising: a housing configured to be mounted on a container having a tilt-activated valve stem, wherein the housing includes a discharge orifice;a dispensing member configured to be disposed on a portion of the valve stem, wherein a conduit of the dispensing member is in fluid communication with a discharge end of the valve stem and the discharge orifice of the housing; anda drive unit disposed within and supported by the housing, wherein the drive unit includes a solenoid having an armature configured to impart transverse motion to the dispensing member for a predetermined time period followed by a predetermined sleep period where the solenoid is de-energized, and wherein the armature is configured to move along a path substantially parallel to a longitudinal axis of the housing, and wherein the armature, or any movable structure associated therewith, for imparting motion to the dispensing member is unrestricted by the housing.
  • 14. The overcap of claim 13 further including a container having a tilt-activated valve stem.
  • 15. The overcap of claim 14, wherein the longitudinal axis of the housing is parallel to a longitudinal axis of the container.
  • 16. The overcap of claim 13, wherein a distal end of the armature includes a slot, and wherein a first pin extends through the slot and a first hole of a connector.
  • 17. The overcap of claim 16, wherein the dispensing member includes a bell crank extending therefrom, and wherein a second pin extends through a hole in the bell crank and a second hole of the connector.
  • 18. The overcap of claim 17, wherein actuation of the solenoid causes the connector to rotationally displace the bell crank, thereby causing the rotational displacement of the dispensing member.
  • 19. A method for dispensing, comprising: providing a housing mounted on a container having a tilt-activated valve stem with a dispensing member thereon and a drive unit disposed within and supported by the housing, wherein the drive unit includes a solenoid with an armature;generating an electrical signal in response to one of a timer, sensor, or manual actuation;moving the armature along a path substantially parallel to the longitudinal axis of the container to displace the dispensing member for a predetermined time, and wherein the armature, or any movable structure associated therewith, for displacing the dispensing member is unrestricted by the housing;discharging fluid through a discharge orifice into the atmosphere external to the housing; andentering a sleep period where the solenoid is de-energized.
US Referenced Citations (283)
Number Name Date Kind
1767738 Brown Jun 1930 A
2608319 Petry Aug 1952 A
2613108 Kraus Oct 1952 A
2928573 Edelstein Mar 1960 A
3018056 Montgomery Jan 1962 A
3079048 Wolfson et al. Feb 1963 A
3115277 Montague, Jr. Dec 1963 A
3127060 Vosbikian et al. Mar 1964 A
3165238 Wiley Jan 1965 A
3180532 Michel Apr 1965 A
3185356 Venus, Jr. May 1965 A
3199732 Strachan Aug 1965 A
3228609 Edelstein et al. Jan 1966 A
3240389 Genua Mar 1966 A
3269602 Weber, III Aug 1966 A
3273610 Frost Sep 1966 A
3289886 Goldsholl et al. Dec 1966 A
3305134 Carmichael et al. Feb 1967 A
3326418 Kropp Jun 1967 A
3329314 Kolodziej Jul 1967 A
3357604 Barker Dec 1967 A
3368717 Weber, III Feb 1968 A
3398864 Kolodziej Aug 1968 A
3411670 Mangel Nov 1968 A
3419189 Iketani Dec 1968 A
3420445 Inzerill Jan 1969 A
3434633 Green Mar 1969 A
3455485 Crownover Jul 1969 A
3477613 Mangel Nov 1969 A
3497108 Mason Feb 1970 A
3497110 Bombero et al. Feb 1970 A
3506165 Beard Apr 1970 A
3542248 Mangel Nov 1970 A
3543122 Klebanoff et al. Nov 1970 A
3584766 Hart et al. Jun 1971 A
3589562 Buck Jun 1971 A
3589563 Carragan et al. Jun 1971 A
3591058 Johnston Jul 1971 A
3617214 Dolac Nov 1971 A
3620023 Schmid Nov 1971 A
3627176 Sailors Dec 1971 A
3632020 Nixon, Jr. et al. Jan 1972 A
3635379 Angele Jan 1972 A
3643836 Hunt Feb 1972 A
3658209 Freeman et al. Apr 1972 A
3664548 Broderick May 1972 A
3666144 Winder May 1972 A
3677441 Nixon, Jr. et al. Jul 1972 A
3690519 Wassilieff Sep 1972 A
3700144 Smrt Oct 1972 A
3722749 Ishida Mar 1973 A
3726437 Siegel Apr 1973 A
3732509 Florant et al. May 1973 A
3739944 Rogerson Jun 1973 A
3756465 Meshberg Sep 1973 A
3759427 Stanley et al. Sep 1973 A
3794216 Buck Feb 1974 A
3817429 Smrt Jun 1974 A
3821927 Stratman et al. Jul 1974 A
3870274 Broe Mar 1975 A
3871557 Smrt Mar 1975 A
3885712 Libit May 1975 A
3929259 Fegley et al. Dec 1975 A
3952916 Phillips Apr 1976 A
3968905 Pelton Jul 1976 A
3974941 Mettler Aug 1976 A
3980205 Smart Sep 1976 A
4004550 White et al. Jan 1977 A
4006844 Corris Feb 1977 A
4044652 Lewis et al. Aug 1977 A
4063664 Meetze, Jr. Dec 1977 A
4064573 Calderone Dec 1977 A
4068575 Difley et al. Jan 1978 A
4068780 Fegley Jan 1978 A
4077542 Petterson Mar 1978 A
4096974 Haber et al. Jun 1978 A
4184612 Freyre Jan 1980 A
4235373 Clark Nov 1980 A
4238055 Staar Dec 1980 A
4275821 Lanno et al. Jun 1981 A
4396152 Abplanalp Aug 1983 A
4415797 Choustoulakis Nov 1983 A
4483466 Gutierrez Nov 1984 A
4544086 Hill et al. Oct 1985 A
4625342 Gangnath et al. Dec 1986 A
4658985 Madsen et al. Apr 1987 A
4840193 Schiel Jun 1989 A
4877989 Drews et al. Oct 1989 A
4967935 Celest Nov 1990 A
4989755 Shiau Feb 1991 A
4993570 Julian et al. Feb 1991 A
5012961 Madsen et al. May 1991 A
5014881 Andris May 1991 A
5018963 Diederich May 1991 A
5025962 Renfro Jun 1991 A
5029729 Madsen et al. Jul 1991 A
5038972 Muderlak et al. Aug 1991 A
5055822 Campbell et al. Oct 1991 A
5098291 Curtis et al. Mar 1992 A
5134961 Giles et al. Aug 1992 A
5154323 Query et al. Oct 1992 A
5198157 Bechet Mar 1993 A
5221025 Privas Jun 1993 A
5249718 Muderlak Oct 1993 A
5263616 Abplanalp Nov 1993 A
5297988 Nishino et al. Mar 1994 A
5337926 Drobish et al. Aug 1994 A
5337929 van der Heijden Aug 1994 A
5342584 Fritz et al. Aug 1994 A
5353744 Custer Oct 1994 A
5364028 Wozniak Nov 1994 A
5383580 Winder Jan 1995 A
RE34847 Muderlak et al. Feb 1995 E
5392768 Johansson et al. Feb 1995 A
5397028 Jesadanont Mar 1995 A
5445324 Berry et al. Aug 1995 A
5447273 Wozniak Sep 1995 A
5447277 Schlüter et al. Sep 1995 A
5449117 Muderlak et al. Sep 1995 A
5489047 Winder Feb 1996 A
5503303 LaWare et al. Apr 1996 A
5522722 Diederich Jun 1996 A
5531344 Winner Jul 1996 A
5540359 Gobbel Jul 1996 A
5542605 Campau Aug 1996 A
5549228 Brown Aug 1996 A
5560146 Garro Oct 1996 A
5588565 Miller Dec 1996 A
5601235 Booker et al. Feb 1997 A
5622162 Johansson et al. Apr 1997 A
5673825 Chen Oct 1997 A
5676283 Wang Oct 1997 A
5685456 Goldstein Nov 1997 A
5695091 Winings et al. Dec 1997 A
5702036 Ferrara, Jr. Dec 1997 A
5743251 Howell et al. Apr 1998 A
5772074 Dial et al. Jun 1998 A
5787947 Hertsgaard Aug 1998 A
5791524 Demarest Aug 1998 A
5810265 Cornelius et al. Sep 1998 A
5823390 Muderlak et al. Oct 1998 A
5842602 Pierpoint Dec 1998 A
5853129 Spitz Dec 1998 A
5884808 Muderlak et al. Mar 1999 A
5908140 Muderlak et al. Jun 1999 A
5922247 Shoham et al. Jul 1999 A
5924597 Lynn Jul 1999 A
5938076 Ganzeboom Aug 1999 A
5957342 Gallien Sep 1999 A
5964403 Miller et al. Oct 1999 A
6000658 McCall, Jr. Dec 1999 A
6006957 Kunesh Dec 1999 A
6036108 Chen Mar 2000 A
6039212 Singh Mar 2000 A
6089410 Ponton Jul 2000 A
6145712 Benoist Nov 2000 A
6182904 Ulczynski et al. Feb 2001 B1
6216925 Garon Apr 2001 B1
6220293 Rashidi Apr 2001 B1
6237812 Fukada May 2001 B1
6249717 Nicholson et al. Jun 2001 B1
6254065 Ehrensperger et al. Jul 2001 B1
6260739 Hsiao Jul 2001 B1
6267297 Contadini et al. Jul 2001 B1
6276574 Smrt Aug 2001 B1
6293442 Mollayan Sep 2001 B1
6293474 Helf et al. Sep 2001 B1
6321742 Schmidt et al. Nov 2001 B1
6338424 Nakamura et al. Jan 2002 B2
6343714 Tichenor Feb 2002 B1
6364283 Sieber Apr 2002 B1
6394310 Muderlak et al. May 2002 B1
6409093 Ulczynski et al. Jun 2002 B2
6419122 Chown Jul 2002 B1
6454185 Fuchs Sep 2002 B2
6478199 Shanklin et al. Nov 2002 B1
6510561 Hammond et al. Jan 2003 B1
6517009 Yahav Feb 2003 B2
6533141 Petterson et al. Mar 2003 B1
6540155 Yahav Apr 2003 B1
6554203 Hess et al. Apr 2003 B2
6567613 Rymer May 2003 B2
6588627 Petterson et al. Jul 2003 B2
6612464 Petterson et al. Sep 2003 B2
6616363 Guillaume et al. Sep 2003 B1
6619562 Hamaguchi et al. Sep 2003 B2
6644507 Borut et al. Nov 2003 B2
6645307 Fox et al. Nov 2003 B2
6669105 Bryan et al. Dec 2003 B2
6688492 Jaworski et al. Feb 2004 B2
6694536 Haygreen Feb 2004 B1
6701663 Hughel et al. Mar 2004 B1
6708849 Carter et al. Mar 2004 B1
D488548 Lablaine Apr 2004 S
6722529 Ceppaluni et al. Apr 2004 B2
6739479 Contadini et al. May 2004 B2
6769580 Muderlak et al. Aug 2004 B2
6776968 Edwards et al. Aug 2004 B2
6785911 Percher Sep 2004 B1
6790408 Whitby et al. Sep 2004 B2
6832701 Schiller Dec 2004 B2
6837396 Jaworski et al. Jan 2005 B2
6843465 Scott Jan 2005 B1
6877636 Speckhart et al. Apr 2005 B2
6918512 Kondoh Jul 2005 B2
6926002 Scarrott et al. Aug 2005 B2
6926172 Jaworski et al. Aug 2005 B2
6926211 Bryan et al. Aug 2005 B2
6938796 Blacker et al. Sep 2005 B2
6971560 Healy et al. Dec 2005 B1
6974091 McLisky Dec 2005 B2
6978947 Jin Dec 2005 B2
D513433 Lemaire Jan 2006 S
6997349 Blacker et al. Feb 2006 B2
7000853 Fugere Feb 2006 B2
7028917 Buthier Apr 2006 B2
7032782 Ciavarella et al. Apr 2006 B1
D520623 Lablaine May 2006 S
7044337 Kou May 2006 B1
7051455 Bedford May 2006 B2
D525693 Butler et al. Jul 2006 S
D527472 Barraclough et al. Aug 2006 S
D532891 Buthier et al. Nov 2006 S
7141125 McKechnie et al. Nov 2006 B2
D536059 King et al. Jan 2007 S
D536082 Pugh Jan 2007 S
7168631 Jones Jan 2007 B2
7182227 Poile et al. Feb 2007 B2
D537914 King et al. Mar 2007 S
D538915 Anderson et al. Mar 2007 S
7192610 Hughes et al. Mar 2007 B2
7195139 Jaworski et al. Mar 2007 B2
D540931 Luo Apr 2007 S
7222760 Tsay May 2007 B1
7223361 Kvietok et al. May 2007 B2
7226034 Stark et al. Jun 2007 B2
7249720 Mathiez Jul 2007 B2
8361543 Nielsen et al. Jan 2013 B2
20020020756 Yahav Feb 2002 A1
20030089734 Eberhardt et al. May 2003 A1
20030132254 Giangreco Jul 2003 A1
20040011885 McLisky Jan 2004 A1
20040028551 Kvietok et al. Feb 2004 A1
20040033171 Kvietok et al. Feb 2004 A1
20040035949 Elkins et al. Feb 2004 A1
20040074935 Chon Apr 2004 A1
20040155056 Yahav Aug 2004 A1
20040219863 Willacy Nov 2004 A1
20050004714 Chen Jan 2005 A1
20050023287 Speckhart et al. Feb 2005 A1
20050139624 Hooks et al. Jun 2005 A1
20050155985 Meyer Jul 2005 A1
20050201944 Kvietok et al. Sep 2005 A1
20050224596 Panopoulos Oct 2005 A1
20050252930 Contadini et al. Nov 2005 A1
20050279853 McLeisch et al. Dec 2005 A1
20060011737 Amenos et al. Jan 2006 A1
20060037532 Eidson Feb 2006 A1
20060060615 McLisky Mar 2006 A1
20060076366 Furner et al. Apr 2006 A1
20060081661 Lasserre et al. Apr 2006 A1
20060083632 Hammond et al. Apr 2006 A1
20060118658 Corkhill et al. Jun 2006 A1
20060124477 Cornelius et al. Jun 2006 A1
20060140901 McKechnie Jun 2006 A1
20060151546 McLisky Jul 2006 A1
20060153733 Sassoon Jul 2006 A1
20060175341 Rodrian Aug 2006 A1
20060175357 Hammond Aug 2006 A1
20060175426 Schramm et al. Aug 2006 A1
20060191955 McLisky Aug 2006 A1
20060196576 Fleming et al. Sep 2006 A1
20060210421 Hammond et al. Sep 2006 A1
20060219740 Bayer Oct 2006 A1
20060229232 Contadini et al. Oct 2006 A1
20060243762 Sassoon Nov 2006 A1
20070012718 Schramm et al. Jan 2007 A1
20070062980 Bates et al. Mar 2007 A1
20070071933 Gavelli et al. Mar 2007 A1
20070087953 McKechnie et al. Apr 2007 A1
20070093558 Harper et al. Apr 2007 A1
20070138326 Hu Jun 2007 A1
20070158359 Rodrian Jul 2007 A1
Foreign Referenced Citations (121)
Number Date Country
656230 Jun 1995 EP
0676133 Oct 1995 EP
0826607 Mar 1998 EP
0826608 Mar 1998 EP
1184083 Mar 2002 EP
1214949 Jun 2002 EP
1316514 Jun 2003 EP
1382399 Jan 2004 EP
1430958 Jun 2004 EP
1522506 Apr 2005 EP
1328757 May 2006 EP
1695720 Aug 2006 EP
1702512 Sep 2006 EP
1702513 Sep 2006 EP
1709980 Oct 2006 EP
1726315 Nov 2006 EP
1497250 Oct 1967 FR
2216810 Aug 1974 FR
1033025 Jun 1966 GB
56037070 Apr 1981 JP
56044060 Apr 1981 JP
56044061 Apr 1981 JP
56044062 Apr 1981 JP
56070865 Jun 1981 JP
57174173 Oct 1982 JP
61232177 Oct 1986 JP
62109760 Jul 1987 JP
01-223904 Sep 1989 JP
03-085169 Apr 1991 JP
03-085170 Apr 1991 JP
10216577 Aug 1998 JP
2001048254 Feb 2001 JP
2002068344 Mar 2002 JP
2002113398 Apr 2002 JP
2003246380 Sep 2003 JP
2003311191 Nov 2003 JP
2004298782 Oct 2004 JP
2005081223 Mar 2005 JP
WO 9115409 Oct 1991 WO
WO 9519304 Jul 1995 WO
WO9529106 Nov 1995 WO
WO 9934266 Jul 1999 WO
WO 0047335 Aug 2000 WO
WO 0064802 Nov 2000 WO
WO 0075046 Dec 2000 WO
WO0075046 Dec 2000 WO
WO 0078467 Dec 2000 WO
WO 0126448 Apr 2001 WO
WO 0240177 May 2002 WO
WO 0240376 May 2002 WO
WO 02072161 Sep 2002 WO
WO 02079679 Oct 2002 WO
WO 02087976 Nov 2002 WO
WO 02094014 Nov 2002 WO
WO03037748 May 2003 WO
WO 03037748 May 2003 WO
WO03037750 May 2003 WO
WO 03037750 May 2003 WO
WO03042068 May 2003 WO
WO 03042068 May 2003 WO
WO03062094 Jul 2003 WO
WO 03062094 Jul 2003 WO
WO 03062095 Jul 2003 WO
WO03062095 Jul 2003 WO
WO 03068412 Aug 2003 WO
WO 03068413 Aug 2003 WO
WO03082709 Oct 2003 WO
WO 03086902 Oct 2003 WO
WO 03086947 Oct 2003 WO
WO 03099682 Dec 2003 WO
WO 03104109 Dec 2003 WO
WO 2004043502 May 2004 WO
WO 2004067963 Aug 2004 WO
WO 2004073875 Sep 2004 WO
WO 2004093927 Nov 2004 WO
WO 2004093928 Nov 2004 WO
WO2005011560 Feb 2005 WO
WO2005014060 Feb 2005 WO
WO 2005018691 Mar 2005 WO
WO 2005023679 Mar 2005 WO
WO2005027630 Mar 2005 WO
WO2005048718 Jun 2005 WO
WO2005070474 Aug 2005 WO
WO 2005072059 Aug 2005 WO
WO 2005072522 Aug 2005 WO
WO2005079583 Sep 2005 WO
WO2005084721 Sep 2005 WO
WO2006005962 Jan 2006 WO
WO 2006012248 Feb 2006 WO
WO2006013321 Feb 2006 WO
WO2006013322 Feb 2006 WO
WO 2006044416 Apr 2006 WO
WO2006051267 May 2006 WO
WO2006054103 May 2006 WO
WO2006056762 Jun 2006 WO
WO2006058433 Jun 2006 WO
WO2006064187 Jun 2006 WO
WO 2006074454 Jul 2006 WO
WO2006087514 Aug 2006 WO
WO2006087515 Aug 2006 WO
WO2006095131 Sep 2006 WO
WO 2006104993 Oct 2006 WO
WO 2006105652 Oct 2006 WO
WO 2006108043 Oct 2006 WO
WO2006134353 Dec 2006 WO
WO2007028954 Mar 2007 WO
WO 2007029044 Mar 2007 WO
WO2007036724 Apr 2007 WO
WO2007045826 Apr 2007 WO
WO2007045827 Apr 2007 WO
WO2007045828 Apr 2007 WO
WO2007045831 Apr 2007 WO
WO2007045832 Apr 2007 WO
WO2007045834 Apr 2007 WO
WO2007045835 Apr 2007 WO
WO2007045859 Apr 2007 WO
WO 2007052016 May 2007 WO
WO 2007064188 Jun 2007 WO
WO 2007064189 Jun 2007 WO
WO 2007064197 Jun 2007 WO
WO 2007064199 Jun 2007 WO
Non-Patent Literature Citations (5)
Entry
PCT/US2008/005889 International Search Report and Written Opinion dated Dec. 10, 2009.
International Search Report and Written Opinion in PCT/US2008/009661 dated Nov. 13, 2008.
International Search Report and Written Opinion in PCT/US2008/009663 dated Dec. 23, 2008.
JP 61232177. Partial English Translation. pp. 1-2.
JP 2003246380. Partial English Translation. pp. 1-8.
Related Publications (1)
Number Date Country
20080277411 A1 Nov 2008 US