The present invention concerns an actuator for a flap of an article of furniture comprising at least one actuating arm mounted pivotably between a closed position and an open position to move the flap, a spring device for acting on the actuating arm and a transmission mechanism for transmitting the force of the spring device to the actuating arm.
In addition, the invention concerns an article of furniture comprising a furniture carcass and a flap which is mounted moveably relative to the furniture carcass and which is mounted moveably by an actuator of the kind to be described.
DE 102 03 269 A1 describes a fitment device for a furniture flap, wherein a pivotably mounted actuating arm is acted upon by a spring device in the form of a gas pressure spring. The actuating arm or the flap connected thereto is held in the closed position by the force of the gas pressure spring with a closing force, so that the flap is held closed and unintentional opening is prevented. After passing through a dead center position, the gas pressure spring exerts an upwardly holding torque on the flap so that the flap is held in place in an open position. A disadvantage there is that, when the flap is opened, a user or an ejection device which is possibly provided has to apply a considerable force in order to overcome the closing force exerted by the gas pressure spring. In addition, that fitment device is adapted to always exert a closing force on the actuating arm in the last region of the closing movement.
The object of the present invention is to provide an actuator of the general kind set forth in the opening part of this specification, while avoiding the above disadvantages.
According to the invention, that is attained by the features of claim 1. Further advantageous configurations of the invention are recited in the appendant claims.
It is therefore provided that there is provided a shifting device, by which the transmission mechanism is displaceable between at least two operating positions, wherein in a first operating position, the spring device acts on the actuating arm in an open position immediately preceding the closed position with a closing force in the direction of the closed position, and wherein in a second operating position, the spring device exerts a force acting in the direction of the open position in the said immediately preceding open position of the actuating arm.
The above-mentioned “immediately preceding open position” of the actuating arm can be within an angle range of between 2° and 8°, starting from its closed position, wherein it is preferably provided that the angle is 5°.
In other words, the transmission mechanism has at least two operating positions which a person can freely select by manual actuation of the shifting device. In a first operating position, the actuating arm is acted upon with a closing force by the spring device in or near the closed position—preferably with an opening angle of the actuating arm of between 0° and 8°—so that therefore the actuating arm or the flap connected thereto is restrained in the closed position.
In a second operating position, in contrast, the actuating arm can be acted upon with an opening force by the spring device in or near the closed position so that the actuating arm or the flap connected thereto either already moves in the direction of the open position, starting from the closed position of the actuating arm, or is moved in the direction of the open position, possibly after overcoming a slight closing force. A user therefore does not have to apply any force, or only an immaterial force, for opening the flap, the opening movement of the actuating arm or the flap being assisted by the spring device. That operating position is advantageous in particular also when an ejection device having a Touch-Latch-functionality is arranged for ejecting the furniture flap from the closed end position, so that this ejection device has to overcome only a slight force from the spring device when opening the flap.
The shifting device provides therefore that one and the same actuator can be used for different operating modes or uses, without a specific actuator being required for that purpose for each use. For example, the actuator can be equally used for standard applications (retracting the flap into the closed end position) and also for Touch-Latch applications (ejecting the flap from the closed end position). The transmission mechanism is displaceable by the shifting device between at least two operating positions in which the actuating arm can be acted upon in or near the closed position (between 0° and 8° angle of opening) with different biasing forces from the spring device. In that respect, it can be provided that:
For that operating position, in which the actuating arm is acted upon with an opening force in or near the closed position, there can be provided a restraining device which holds the actuating arm or the flap connected thereto in the closed position (that is to say in position relative to the furniture carcass) so that unintentional opening of the actuating arm or the flap is therefore prevented.
Further details and advantages of the present invention will be described by means of the embodiment by way of example illustrated in the Figures in which:
a, 3b show side views of the actuator in two different operating positions,
a-4c show a perspective view of the actuator and detail views of the shifting device in two different operating positions,
a, 5b show the shifting device of the actuator in the assembled condition and as an exploded view, and
For that purpose, the restraining device 7 may include at least two parts, wherein a first part is arranged on the furniture carcass 2 and a second part is arranged on the flap 3, wherein those two parts, in the closed position of the flap 3, exert a magnetic attraction force on each other. In that arrangement, the restraining device 7 can have an ejection element which is acted upon by a force storage means and by which the flap 3 is moveable into a open position after unlocking of that force storage means has been effected (in its function as an auxiliary drive). The magnetic holding force of the restraining device 7 can be overcome by the force storage means of the restraining device 7, whereupon the flap 3 is further moveable into an open position by the force of a spring device (
Alternatively or additionally, it is possible for the restraining device 7 to have a housing with a reversing loop provided thereon or a heart-curve, wherein a control pin arranged on the flap 3 is guided displaceably along that reversing loop or heart-curve and can be guided into a releasable locking position. That locking position can be released again by manually exerting a pressing and/or pulling force on the flap 3, whereupon the flap 3 is moveable into an open position by the force of a spring device 9 (
A shifting device 26 is of relevance, having an adjusting screw 27 by which the location of the hinge axis 19—which establishes the axis of rotation between the two levers 18 and 30—is displaceable, whereby the different operating positions of the transmission mechanism 11 can be selected. The motion characteristic of the actuator 4 can be altered by a displacement of the position of the hinge axis 19 relative to the two axis members 17, 20, produced by the shifting device 26, as is also described and shown in the following Figures.
a shows a side view of the actuator 4, the shifting device 26 not being shown for the sake of clarity. The position of the hinge axis 19 corresponds to the first operating position of the transmission mechanism 11, wherein therefore the spring device 9 acts on the actuating arm 6 with a closing force in the closed position and in the specified immediately preceding open position. The motion characteristic of the transmission mechanism 11 is determined by way of the positions of the axis member 17, the hinge axis 19 and the axis member 20. To illustrate the situation, a line of force action 28 is shown as a broken line between the moving axis member 17 and the axis member 20 which is fixed with respect to the housing, in which respect it can be seen from
b in contrast shows that position of the hinge axis 19, that corresponds to the second operating position of the transmission mechanism 11, wherein therefore the spring device 9 exerts a force acting in the direction of the open position on the actuating arm 6 in the above-mentioned immediately preceding open position of the actuating arm 6. The location of the displaceable hinge axis 19 is disposed in the closed position of the actuating arm 6 in comparison with
a shows a perspective view of the actuator 4, wherein the region of the shifting device 26 for setting the various operating positions of the transmission mechanism 11 is shown in a framed view.
c in contrast shows a location, displaced in comparison with
a shows the shifting device 26 operative between the levers 18 and 30 for adjusting the hinge axis 19. In the assembled condition, the lever 18 is connected to the direction-changing lever 12 (
b shows an exploded view of the components shown in
The characteristic curve (B) describes the possibility of a second operating position of the transmission mechanism 11, wherein in the closed position of the actuating arm 6—with α being equal to 0° and with α equal to 5°—an opening force is exerted on the actuating arm 6 by the spring device 9 so that therefore an opening force acts on the actuating arm 6 over the entire opening angle range.
The characteristic curve (C) describes by way of example a modified second operating position of the transmission mechanism 11, wherein in the closed position of the actuating arm 6 (with α equal to 0°) a lower closing force acts on the actuating arm 6—in comparison with the characteristic curve (A) with the first operating position—so that the actuating arm 6 is admittedly held in the closed position but after passing through a dead center point position (for example from an angle of opening of α equal to 5°) it is moved in the direction of the open position by the force of the spring device 9. Opening is already effected at 5°.
The shifting device 26 permits transposition of the respective operating positions in a rest condition of the actuating arm 6. The location of the displaceable hinge axis 19 can also be fixed at two or more predetermined locations or latching positions which correspond to the respective operating positions, wherein it is also possible to implement fine tuning on site by the adjusting screw 26—in dependence on the respective weight of the flap 3—. Adjustment of the spring force acting on the actuating arm 6 for compensation of the weight of the flap is effected by the adjusting device 15 described with reference to
Number | Date | Country | Kind |
---|---|---|---|
123/2012 | Jan 2012 | AT | national |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/AT2012/000284 | Nov 2012 | US |
Child | 14331545 | US |