The present disclosure relates to containers for discharging an aerosol product contained therein and more particular to a device, a system, and a method for discharging an aerosol product from a container.
Aerosol spray containers have been used as convenient packages for an ever increasing range of products including hair spray, paints, insecticides, and shaving cream.
As shown in prior art
The activation device 20 is a device that releases the mixed liquid product 14 and propellant 12 from the aerosol container 10. Prior art
The aerosol container 10 is filled with the product to be sprayed and the propellant which may be a compressed gas such as butane or Freon. Typically, the gas is partly liquefied by the pressure in the container, with a layer of free gas above the liquid. Shaking of the aerosol container mixes the liquid product and the propellent.
The dip tube 16 is a hollow tube which extends from the activation device to the bottom of the container, allowing the product under pressure to be pushed out through the activation valve when the actuation valve is activated by the actuator.
Shaking of the aerosol container 10 mixes the liquid product and the propellent.
As shown in
The activation device provided with an aerosol container is typically an integral component of the aerosol container. The aerosol container and activation device provide an integrated aerosol delivery solution. However, product remaining in the actuator component of an activation device after use may dry up and clog the channel and orifice of the actuator component which may negatively affect the performance of the aerosol delivery solution in future applications. For this reason, the actuator component is often configured to be removable from the activation device. The actuator once removed may be readily cleaned such as by placement into a container with a solvent. After cleaning, the actuator may be placed back onto the valve stem of the activation device to allow the aerosol delivery solution to be further used.
A big problem with conventional aerosol delivery solutions is the loss or misplacement of an actuator. When an actuator is lost or misplaced, the aerosol delivery solution may no longer be useable since the activation device is missing the actuator component used to activate the activation device and release aerosol from the aerosol container. If the aerosol delivery system is no longer useable, the aerosol container may be discarded. This may result in product remaining in the aerosol container going to waste. It may also increase the number of aerosol containers populating the ecosystem since if an aerosol container is discarded, it is usually replaced.
Even if the actuator is not lost or misplaced, the actuator tends to be a small component. This may make cleaning of the component harder. Its small size may also makes the component harder to replace on the valve stem of the activation device.
There is a need for an actuator that is so configured as to be less likely to be lost or misplaced and is easier to handle and service. These aspects may contribute to a longer life for aerosol containers, more product used from containers, fewer aerosol containers populating the ecosystem since with longer use of aerosol containers fewer replacement containers would be needed, and an actuator that is of a size and shape that may be easier to remove, clean, and replace. This disclosure addresses these needs.
In one aspect, disclosed is an actuator for engagement with an activation device for controlling delivery of an aerosol from an aerosol container. The actuator may include a plunger and a housing.
The plunger may include a front side including a curved front surface and a protruding member, opposing sides including opposing surfaces, a back surface including a back surface, a top side including a downwardly tapered top surface, and a bottom surface. A channel extends through the plunger from a front side of the plunger through the protruding member to the bottom side of the plunger. The channel defines a ventral opening extending along the front side of the plunger and a dorsal opening extending along the bottom side of the plunger.
The housing may be configured for attachment to an aerosol container. The housing may include an upper sidewall and a lower sidewall. The upper sidewall extends along a top portion of the housing. A bore extends through the upper sidewall from the top to the bottom side of the upper sidewall along an inside surface of the upper sidewall. A top side wall extends along the top side of the upper sidewall from a front side of the upper sidewall to partially cover and form a partial opening of the bore along the top side of the upper sidewall. A stop ledge extends along a bottom side of the upper sidewall. A ventral opening extends along a front side of the upper sidewall, and a sliced opening formed along a back side of the upper sidewall.
The lower sidewall extends along a bottom portion of the housing. The lower sidewall may taper inwardly along a top side of the outer sidewall where the lower sidewall joins the upper sidewall. The lower sidewall defines a bore extending from the top to the bottom side of the lower sidewall. A releasable holding mechanism extends along the bore. The bore opens along the top side of the lower sidewall into the opening of the bore of the upper sidewall. The bore is configured for receiving an aerosol container. The releasable holding mechanism is configured to securely hold the housing to an aerosol container during delivery of aerosol from an aerosol container and to release an aerosol container after delivery of aerosol from an aerosol container.
The partial opening of the bore along the top side of the upper sidewall and the sliced opening formed along a back side of the upper sidewall allows the plunger to fit through to the inside of the upper sidewall.
The ventral opening of the upper sidewall allows the protruding member of the plunger to extend therethrough.
The inside surface of the bottom opening of the plunger is configured to receive and be supported by a stem of an actuation valve of an aerosol container against the top side wall of the upper housing.
On application of a force against the actuator, the actuator is configured to push a stem of the activation valve down to release aerosol from an aerosol can through the dorsal opening, the channel and the ventral opening of the plunger. The downward movement of the actuator under the influence of the applied force is stopped by the step ledge of the upper housing. On relaxation of a force applied to the actuator, the actuator is configured to cause the stem of the activation valve to return to its normal position to stop release of aerosol from an aerosol container.
In another aspect, disclosed is an aerosol delivery system, the aerosol delivery includes the disclosed actuator in combination with an activation valve in combination with an aerosol container.
The method for delivering an aerosol from an aerosol container using the disclosed actuator of this disclosure includes (1) taking an actuator configured for engagement with an activation valve for controlling delivery of an aerosol from an aerosol container; (2) placing the plunger of the actuator through the partial opening of the bore along the top side of the upper sidewall and the sliced opening formed along a back side of the upper sidewall to allow the plunger to fit through to the inside of the upper sidewall to the inside of the upper sidewall; (3) placing the inside surface of the bottom opening of the plunger of the actuator onto a stem of an activation valve of an aerosol container to support the plunger against the top side wall of the upper housing; and (4) applying force to cause the downward movement of the actuator.
The foregoing summary is illustrative only and is not intended to be in any way limiting. In addition to the illustrative aspects, embodiments, and features described above, further aspects, embodiments, and features will become apparent by reference to the drawings and the following detailed description.
In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented herein. It will be readily understood that the aspects of the present disclosure, as generally described herein, and illustrated in the figures, can be arranged, substituted, combined, separated, and designed in a wide variety of different configurations, all of which are explicitly contemplated herein.
Broadly speaking, disclosed is an aerosol actuator, the combination of the aerosol actuator with an activation valve for an aerosol container in a delivery system, and a method for delivering aerosol using the aerosol actuator of this disclosure. The disclosed actuator includes a plunger and a housing and is configured for engagement with an actuation valve for controlling delivery of an aerosol from an aerosol container. A channel extends through the plunger from a front side of the plunger to a bottom side of the plunger. The channel defines a ventral opening extending along a front side of the plunger and a dorsal opening extending along a bottom side of the plunger. The inside surface of the dorsal opening of the plunger is configured to receive and be supported by a stem of an actuation valve of an aerosol container against the top side wall of the upper housing. The housing includes an upper sidewall and a lower sidewall. A partial opening of a bore along a top side of the upper sidewall and a sliced opening formed along a back side of the upper sidewall allows the plunger to fit through to the inside of the upper sidewall. The lower sidewall defines a bore extending from a top to a bottom side of the lower sidewall. A releasable holding mechanism extends along the bore which opens along the top side of the lower sidewall into the opening of the bore of the upper sidewall. The bore is configured for receiving an aerosol container and the releasable holding mechanism is configured to securely hold the housing to an aerosol container during delivery of aerosol from an aerosol container and to release an aerosol container after delivery of aerosol from an aerosol container.
As used herein the term “activation device” means the activation device 20 of the kind illustratively depicted in
As used herein the term “actuator” means the actuator 110 of this disclosure as described in detail below which is designed and configured to replace the actuator 22 depicted in the prior art described in connection with
The actuator 110 of this disclosure is illustratively depicted in
More specifically,
As shown in the
The ventral opening 122 extending along a front side of the plunger 110 may be fitted to include an orifice valve insert of a particular size and shape to deliver the desired aerosol concentration, spray pattern and particle size. The particle orifice valve that may be fitted into the ventral opening 122 is a matter of design choice.
As shown in the
As shown in
The upper sidewall 160 extends along a top portion of the housing component 150. A bore 165 extends through the upper sidewall 160 from the top to the bottom side of the upper sidewall 160 along an inside surface 166 of the upper sidewall 160. A top side wall 168 extends along the top side of the upper sidewall 160 from a front side 170 of the upper sidewall 160 to partially cover and form a partial opening 169 of the bore along the top side of the upper sidewall. A stop ledge 173 extends along a bottom side of the upper sidewall. A ventral opening 175 (the opening is depicted from the front surface of the upper sidewall overlaying the cross-sectional view otherwise shown) extends along a front side of the upper sidewall, and a diagonal sliced opening 167 formed along a back side of the upper sidewall.
The stop ledge 173 of the upper sidewall 160 is illustratively an annular ring that substantially circumscribes the bottom side of the upper sidewall 160. Alternatively, the stop ledge 173 of the upper sidewall 160 may be a plurality of stop ledges encircling the lower or higher sides of the upper sidewall 160.
A lower sidewall 180 extends along a bottom portion of the housing 150. The lower sidewall 180 defines a bore 185 and a releasable holding mechanism 190. The bore 185 extends through the lower sidewall 180 from the top to the bottom side of the lower sidewall 180 along an inside surface 186 of the lower sidewall. The releasable holding mechanism 190 extends along an inside surface 186 of the lower sidewall 180 along the bore. The bore opens along a top side 171 of the lower sidewall into the opening 162 of the bore of the upper sidewall. The bore 185 is configured for receiving an aerosol container (see aerosol container 3010 in
The releasable holding mechanism 190 extending along an inside surface 186 of the lower sidewall 180 along the bore 185 comprises a plurality of finger members 191. The plurality of finger members 191 extend away from a lower portion 192 of the inside surface 186 of the lower sidewall 180 into the bore 185 of the lower sidewall 180 in the direction of the top of the lower sidewall 180. Alternatively, the plurality of finger members 191 may extend away from above a lower portion of the inside surface of the lower sidewall into the bore of the lower sidewall. In another embodiment, the plurality of finger members extend in the direction of the bottom of the lower sidewall.
The partial opening 169 of the bore along the top side of the upper sidewall 160 and the sliced opening 167 formed along a back side of the upper sidewall 160 allows the plunger 110 to fit through to the inside of the upper sidewall 160.
The ventral opening 175 of the upper sidewall 160 allows the protruding member 119 of the plunger to extend therethrough.
As shown in
The inside surface of the dorsal opening 126 of the plunger 110 is configured to receive and be supported by a prior art stem 23 of a prior art activation valve 21 of an aerosol container (see aerosol container 3010 in
As shown in the
On application of a force against the plunger 110 of the actuator 105, the actuator 105 is configured to push the prior art stem 23 (see aerosol container 3010 in
The downward movement of the actuator 110 under the influence of the applied force is stopped by the step ledge 173 of the upper housing 160. On relaxation of a force applied to the actuator 105, the plunger 110 of the actuator 105 is configured to cause the stem (see aerosol container 3010 in
The actuator 110 of this disclosure is designed and configured to replace the actuator 22 depicted in the prior art described in connection with
Among the benefits of the actuator 22 of our disclosure is this. Unlike conventional actuators which are typically customized for an integrated activation device for an aerosol container, the actuator of this disclosure is friendlier to the hand and generally agnostic to customization making it readily useable with a wide range of activation devices. The size of the actuator makes it harder to lose or misplace and easier to service. These aspects may contribute to a longer life for aerosol containers, a reduction in discarded product from unusable containers, a reduction in discarded materials from discarded aerosol containers, fewer aerosol containers populating the ecosystem since fewer replacements needed, and a component of a size that is easier to remove, clean, and replace.
The actuator 110 of our disclosure may be configured for use with an aerosol selected from the group consisting of paint, a detergent, a hairspray, a double phase aerosol, a single phase aerosol, a dual purpose air freshener/disinfectant, an odor remover/eliminator, a bathroom and tile cleaner, a disinfectant spray, a dusting aid, a general purpose cleaners, a general purpose degreaser, a glass cleaner spray, a metal polish/cleanser spray, an oven or grill cleaner, a sanitizer, a toilet/urinal care product, a wood cleaner, a motor vehicle wash, a rubber/vinyl protectant, an anti-static product, an anti-static product, a carpet & upholstery cleaner, a fabric protectant, a fabric refresher, a spot remover, a crawling bug insecticide, a flying bug insecticide, an insect repellant, a lawn or garden insecticide, a laundry prewash, a spot remover, an engine degreaser, an anti-seize lubricant, a cutting or tapping oil, a gear lubricant, a chain lubricant, a wire lubricant, a rubber and vinyl protectant, a rust preventative or rust control lubricant, a graffiti remover, a paint thinner, a shaving cream, a shaving gel, a footwear care product, a leather care product, and a furniture maintenance product.
The actuator 110 of our disclosure may be made from plastic or any other suitable material. The actuator is preferably a plastic (PET for example). Illustrative plastic may be PET (polyethylene terephthalate), or PEN (polyethylene naphtha late) or other plastics.
The method for delivering an aerosol from an aerosol container using the disclosed actuator 105 of this disclosure fully described above and includes (1) taking 3310 an actuator configured for engagement with an activation valve for controlling delivery of an aerosol from an aerosol container; (2) placing 3320 the plunger of the actuator through the partial opening of the bore along the top side of the upper sidewall and the sliced opening formed along a back side of the upper sidewall to allow the plunger to fit through to the inside of the upper sidewall to the inside of the upper sidewall; (3) placing 3330 the inside surface of the bottom opening of the plunger of the actuator onto a stem of an activation valve of an aerosol container to support the plunger against the top side wall of the upper housing; and (4) applying 3340 force to cause the downward movement of the actuator.
There is thus disclosed an actuator for engagement with an activation valve for controlling delivery of an aerosol from an aerosol container. The actuator includes a plunger and a housing.
The plunger includes a front side including a curved front surface and a protruding member, opposing sides including opposing surfaces, a back surface including a back surface, and a bottom side including a bottom surface. A channel extends through the plunger from the front side of the plunger through the protruding member to the bottom side of the plunger. The channel defines a ventral opening extending along the front side of the plunger and a dorsal opening extending along the bottom side of the plunger.
The housing is configured for attachment to an aerosol container. The housing includes an upper sidewall and a lower sidewall.
The upper sidewall extend along a top portion of the housing. A bore extends through the upper sidewall from the top to the bottom side of the upper sidewall along an inside surface of the upper sidewall. A top side wall extends along the top side of the upper sidewall from a front side of the upper sidewall to partially cover and form a partial opening of the bore along the top side of the upper sidewall. A stop ledge extends along a bottom side of the upper sidewall. A ventral opening extends along a front side of the upper sidewall, and a diagonal sliced opening formed along a back side of the upper sidewall.
A lower sidewall extends along a bottom portion of the housing. The lower sidewall defines a bore and a releasable holding mechanism. The bore extends through the lower sidewall from the top to the bottom side of the lower sidewall along an inside surface of the lower sidewall. The releasable holding mechanism extends an inside surface of the lower sidewall along the bore. The bore opens along the top side of the lower sidewall into the opening of the bore of the upper sidewall. The bore is configured for receiving an aerosol container. The releasable holding mechanism is configured to securely hold the housing to an aerosol container during delivery of aerosol from an aerosol container and to release an aerosol container after delivery of aerosol from an aerosol container.
The partial opening of the bore along a top side of the upper sidewall and the sliced opening formed along a back side of the upper sidewall allows the plunger to fit through to the inside of the upper sidewall.
The ventral opening of the upper sidewall allows the protruding member of the plunger to extend therethrough.
The inside surface of the dorsal opening of the plunger is configured to receive and be supported by prior art stem of a prior art activation valve of an aerosol container against the top side wall of the upper housing,
On application of a force against the actuator, the plunger of the actuator is configured to push a stem of the activation valve down to release aerosol from an aerosol can through the dorsal opening, the channel and the ventral opening of the plunger.
The downward movement of the actuator under the influence of the applied force is stopped by the step ledge of the upper housing. On relaxation of a force applied to the actuator, the actuator is configured to cause the stem of the activation device to return to its normal position to stop release of aerosol from an aerosol can.
In another aspect, the ventral opening extending along a front side of the plunger includes an orifice valve.
In another aspect, the side of the plunger includes a downwardly tapered top surface.
In another aspect, the stop ledge of the upper sidewall is an annular ring that substantially circumscribes the bottom side of the upper sidewall
In another aspect, the stop ledge of the upper sidewall is a plurality of stop ledges encircling the upper sidewall.
In another aspect, a diagonally extending surface extending along a bottom portion of the inner sidewall adjoins a diagonally extending surface extending along a top portion of the upper sidewall to form a smooth transition along the outer surface of the housing between the upper sidewall and the lower sidewall.
In another aspect, the releasable holding mechanism extending an inside surface of the lower sidewall along the bore comprises a plurality of finger members, the plurality of finger members extending away from a lower portion of the inside surface of the lower sidewall into the bore of the lower sidewall in the direction of the top of the lower housing.
In another aspect, the actuator is configured for use with an aerosol selected from the group consisting of paint, a detergent, a hairspray, a double phase aerosol, a single phase aerosol, a dual purpose air freshener/disinfectant, an odor remover/eliminator, a bathroom and tile cleaner, a disinfectant spray, a dusting aid, a general purpose cleaners, a general purpose degreaser, a glass cleaner spray, a metal polish/cleanser spray, an oven or grill cleaner, a sanitizer, a toilet/urinal care product, a wood cleaner, a motor vehicle wash, a rubber/vinyl protectant, an anti-static product, an anti-static product, a carpet & upholstery cleaner, a fabric protectant, a fabric refresher, a spot remover, a crawling bug insecticide, a flying bug insecticide, an insect repellant, a lawn or garden insecticide, a laundry prewash, a spot remover, an engine degreaser, an anti-seize lubricant, a cutting or tapping oil, a gear lubricant, a chain lubricant, a wire lubricant, a rubber and vinyl protectant, a rust preventative or rust control lubricant, a graffiti remover, a paint thinner, a shaving cream, a shaving gel, a footwear care product, a leather care product, and a furniture maintenance product.
In another aspect, an aerosol delivery system includes an actuator for engagement with an activation valve for controlling delivery of an aerosol from an aerosol container. The system includes an actuator, an activation device, and an aerosol container.
The actuator includes a plunger and a housing.
The plunger includes a front side including a curved front surface and a protruding member, opposing sides including opposing surfaces, a back surface including a back surface, and a bottom side including a bottom surface. A channel extends through the plunger from the front side of the plunger through the protruding member to the bottom side of the plunger. The channel defines a ventral opening extending along a front side of the plunger and a dorsal opening extending along the bottom side of the plunger.
The housing is configured for attachment to an aerosol container. The housing includes an upper sidewall extending along a top portion of the housing. A bore extends through the upper sidewall from the top to the bottom side of the upper sidewall along an inside surface of the upper sidewall. A top side wall extends along the top side of the upper sidewall from a front side of the upper sidewall to partially cover and form a partial opening of the bore along the top side of the upper sidewall. A stop ledge extends along a bottom side of the upper sidewall. A ventral opening extends along a front side of the upper sidewall, and a diagonal sliced opening formed along a back side of the upper sidewall.
A lower sidewall extends along a bottom portion of the housing. The lower sidewall defines a bore and a releasable holding mechanism. The bore extends through the lower sidewall from the top to the bottom side of the lower sidewall along an inside surface of the lower sidewall. The releasable holding mechanism extends an inside surface of the lower sidewall along the bore. The bore opens along the top side of the lower sidewall into the opening of the bore of the upper sidewall. The bore is configured for receiving an aerosol container. The releasable holding mechanism is configured to securely hold the housing to an aerosol container during delivery of aerosol from an aerosol container and to release an aerosol container after delivery of aerosol from an aerosol container.
The partial opening of the bore along the top side of the upper sidewall and the sliced opening formed along a back side of the upper sidewall allows the plunger to fit through to the inside of the upper sidewall.
The ventral opening of the upper sidewall allows the protruding member of the plunger to extend therethrough.
The inside surface of the dorsal opening of the plunger is configured to receive and be supported by a prior art stem of a prior art activation valve of an aerosol container against the top side wall of the upper housing,
On application of a force against the actuator, the plunger of the actuator is configured to push a stem of the activation device down to release aerosol from an aerosol can through the dorsal opening, the channel and the ventral opening of the plunger.
The downward movement of the actuator under the influence of the applied force is stopped by the step ledge of the upper housing. On relaxation of a force applied to the actuator, the actuator is configured to cause the stem of the activation device to return to its normal position to stop release of aerosol from an aerosol can.
In another aspect, the ventral opening extends along the front side of the plunger includes an orifice valve insert.
In another aspect, a top side of the plunger includes a downwardly tapered top surface.
In another aspect, the stop ledge of the upper sidewall is an annular ring that substantially circumscribes the bottom side of the upper sidewall
In another aspect, the stop ledge of the upper sidewall is a plurality of stop ledges encircling the upper sidewall.
In another aspect, a diagonally extending surface extending along a bottom portion of the inner sidewall adjoins a diagonally extending surface extending along a top portion of the upper sidewall to form a smooth transition along the outer surface of the housing between the upper sidewall and the lower sidewall.
In another aspect, the releasable holding mechanism extending an inside surface of the lower sidewall along the bore comprises a plurality of finger members, the plurality of finger members extending away from a lower portion of the inside surface of the lower sidewall into the bore of the lower sidewall in the direction of the top of the lower housing.
In another aspect, the actuator is configured for use with an aerosol selected from the group consisting of paint, a detergent, a hairspray, a double phase aerosol, a single phase aerosol, a dual purpose air freshener/disinfectant, an odor remover/eliminator, a bathroom and tile cleaner, a disinfectant spray, a dusting aid, a general purpose cleaners, a general purpose degreaser, a glass cleaner spray, a metal polish/cleanser spray, an oven or grill cleaner, a sanitizer, a toilet/urinal care product, a wood cleaner, a motor vehicle wash, a rubber/vinyl protectant, an anti-static product, an anti-static product, a carpet & upholstery cleaner, a fabric protectant, a fabric refresher, a spot remover, a crawling bug insecticide, a flying bug insecticide, an insect repellant, a lawn or garden insecticide, a laundry prewash, a spot remover, an engine degreaser, an anti-seize lubricant, a cutting or tapping oil, a gear lubricant, a chain lubricant, a wire lubricant, a rubber and vinyl protectant, a rust preventative or rust control lubricant, a graffiti remover, a paint thinner, a shaving cream, a shaving gel, a footwear care product, a leather care product, and a furniture maintenance product.
In another aspect, a method for delivering an aerosol from an aerosol container is disclosed. The method includes (1) taking an actuator for an activation device for controlling delivery of an aerosol from an aerosol container.
The plunger includes a front side including a curved front surface, opposing sides including opposing surfaces, a back surface including a back surface, and a bottom side including a bottom surface. A channel extends through the plunger from the front side of the plunger to the bottom side of the plunger. The channel defines a ventral opening extending along the front side of the plunger and a dorsal opening extending along the bottom side of the plunger.
The housing is configured for attachment to an aerosol container. The housing includes an upper sidewall extending along a top portion of the housing. A bore extends through the upper sidewall from the top to the bottom side of the upper sidewall along an inside surface of the upper sidewall. A top side wall extends along the top side of the upper sidewall from a front side of the upper sidewall to partially cover and form a partial opening of the bore along the top side of the upper sidewall. A stop ledge extends along a bottom side of the upper sidewall. A ventral opening extends along a front side of the upper sidewall, and a diagonal sliced opening formed along a back side of the upper sidewall.
A lower sidewall extends along a bottom portion of the housing. The lower sidewall defines a bore and a releasable holding mechanism. The bore extends through the lower sidewall from the top to the bottom side of the lower sidewall along an inside surface of the lower sidewall. The releasable holding mechanism extends an inside surface of the lower sidewall along the bore. The bore opens along the top side of the lower sidewall into the opening of the bore of the upper sidewall. The bore is configured for receiving an aerosol container. The releasable holding mechanism is configured to securely hold the housing to an aerosol container during delivery of aerosol from an aerosol container and to release an aerosol container after delivery of aerosol from an aerosol container.
The partial opening of the bore along the top side of the upper sidewall and the sliced opening formed along a back side of the upper sidewall allows the plunger to fit through to the inside of the upper sidewall.
The inside surface of the dorsal opening of the plunger is configured to receive and be supported by a stem of an actuator of an aerosol container against the top side wall of the upper housing.
In the method, (2) the plunger is placed through the partial opening of the bore along the top side of the upper sidewall and the sliced opening formed along a back side of the upper sidewall allows the plunger to fit through to the inside of the upper sidewall to the inside of the upper sidewall with the protruding member of the plunger extending through the ventral opening of the upper sidewall. (3) The inside surface of the bottom opening of the plunger is placed to receive and be supported by a prior art stem of a prior art activation valve of an aerosol container against the top side wall of the upper housing. (4) Force is applied to the plunger to cause the downward movement of the actuator.
In another aspect the method includes the step of stopping the downward movement of the actuator by the step ledge of the upper housing.
In another aspect the method includes the step of relaxing the force applied to the actuator, to cause the stem of the activation valve to return to its normal position to stop release of aerosol from an aerosol can.
Unlike conventional actuators which are typically customized for an integrated activation device for an aerosol container, the actuator of this disclosure is friendlier to the hand and generally agnostic to customization making it readily useable with a wide range of activation devices. The size of the actuator makes it harder to lose or misplace and easier to service. These aspects may contribute to a longer life for aerosol containers, a reduction in discarded product from unusable containers, a reduction in discarded materials from discarded aerosol containers, fewer aerosol containers populating the ecosystem since fewer replacements needed, and a component of a size that is easier to remove, clean, and replace.
While the disclosure has been described in conjunction with specific embodiments, it is evident that numerous alternatives, modifications, and variations will be apparent to those skilled in the art within the spirit and scope of the disclosure described above.
The present disclosure claims the benefit of and priority to U.S. Prov. Appl. 63/010,993, filed Apr. 16, 2020, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2733842 | Abplanalp | Feb 1956 | A |
3134518 | Sagarin et al. | May 1964 | A |
3227321 | Sagarin | Jan 1966 | A |
3278093 | Lehmann | Oct 1966 | A |
3519173 | Sagarin | Jul 1970 | A |
3540624 | Green | Nov 1970 | A |
3669321 | Susuki et al. | Jun 1972 | A |
3991916 | Del Bon | Nov 1976 | A |
7854356 | Eberhardt | Dec 2010 | B2 |
8403184 | Eberhardt et al. | Mar 2013 | B2 |
8967435 | Nyambi et al. | Mar 2015 | B2 |
9981799 | Andersen | May 2018 | B2 |
20070164056 | Eberhardt et al. | Jul 2007 | A1 |
20100044401 | Eberhardt et al. | Feb 2010 | A1 |
20170233171 | Christianson | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
0669268 | Aug 1995 | EP |
08143074 | Jun 1996 | JP |
0196210 | Dec 2001 | WO |
2015125654 | Aug 2015 | WO |
Number | Date | Country | |
---|---|---|---|
20210323754 A1 | Oct 2021 | US |
Number | Date | Country | |
---|---|---|---|
63010993 | Apr 2020 | US |