Devices for automatically tightening an article of footwear have been previously proposed. Liu, in U.S. Pat. No. 6,691,433, titled "Automatic tightening shoe", provides a first fastener mounted on a shoe's upper portion, and a second fastener connected to a closure member and capable of removable engagement with the first fastener to retain the closure member at a tightened state. Liu teaches a drive unit mounted in the heel portion of the sole. The drive unit includes a housing, a spool rotatably mounted in the housing, a pair of pull strings and a motor unit. Each string has a first end connected to the spool and a second end corresponding to a string hole in the second fastener. The motor unit is coupled to the spool. Liu teaches that the motor unit is operable to drive rotation of the spool in the housing to wind the pull strings on the spool for pulling the second fastener towards the first fastener. Liu also teaches a guide tube unit that the pull strings can extend through.
In the drawings, which are not necessarily drawn to scale, like numerals may describe similar components in different views. Like numerals having different letter suffixes may represent different instances of similar components. The drawings illustrate generally, by way of example, but not by way of limitation, various embodiments discussed in the present document.
The headings provided herein are merely for convenience and do not necessarily affect the scope or meaning of the terms used.
The concept of self-tightening shoe laces was first widely popularized by the fictitious power-laced Nike® sneakers worn by Marty McFly in the movie Back to the Future II, which was released back in 1989. While Nike® has since released at least one version of power-laced sneakers similar in appearance to the movie prop version from Back to the Future II, the internal mechanical systems and surrounding footwear platform employed in these early versions do not necessarily lend themselves to mass production or daily use. Additionally, previous designs for motorized lacing systems comparatively suffered from problems such as high cost of manufacture, complexity, assembly challenges, lack of serviceability, and weak or fragile mechanical mechanisms, to highlight just a few of the many issues. The present inventors have developed a modular footwear platform to accommodate motorized and non-motorized lacing engines that solves some or all of the problems discussed above, among others. The components discussed below provide various benefits including, but not limited to: serviceable components, interchangeable automated lacing engines, robust mechanical design, reliable operation, streamlined assembly processes, and retail-level customization. Various other benefits of the components described below will be evident to persons of skill in the relevant arts.
The motorized lacing engine discussed below was developed from the ground up to provide a robust, serviceable, and inter-changeable component of an automated lacing footwear platform. The lacing engine includes unique design elements that enable retail-level final assembly into a modular footwear platform. The lacing engine design allows for the majority of the footwear assembly process to leverage known assembly technologies, with unique adaptions to standard assembly processes still being able to leverage current assembly resources.
In an example, the modular automated lacing footwear platform includes a mid-sole plate secured to the mid-sole for receiving a lacing engine. The design of the mid-sole plate allows a lacing engine to be dropped into the footwear platform as late as at a point of purchase. The mid-sole plate, and other aspects of the modular automated footwear platform, allow for different types of lacing engines to be used interchangeably. For example, the motorized lacing engine discussed below could be changed out for a human-powered lacing engine. Alternatively, a fully-automatic motorized lacing engine with foot presence sensing or other optional features could be accommodated within the standard mid-sole plate.
The automated footwear platform discussed herein can include an actuator apparatus, such as an outsole actuator interface to provide tightening control to the end user as well as visual feedback through LED lighting projected through translucent protective outsole materials. The actuator can provide tactile and visual feedback to the user to indicate status of the lacing engine or other automated footwear platform components.
This initial overview is intended to introduce the subject matter of the present patent application. It is not intended to provide an exclusive or exhaustive explanation of the various inventions disclosed in the following more detailed description.
The following discusses various components of the automated footwear platform including a motorized lacing engine, a mid-sole plate, and various other components of the platform. While much of this disclosure focuses on a motorized lacing engine, many of the mechanical aspects of the discussed designs are applicable to a human-powered lacing engine or other motorized lacing engines with additional or fewer capabilities. Accordingly, the term "automated" as used in "automated footwear platform" is not intended to only cover a system that operates without user input. Rather, the term "automated footwear platform" includes various electrically powered and human-power, automatically activated and human activated mechanisms for tightening a lacing or retention system of the footwear.
In an example, the footwear article or the motorized lacing system 1 includes or is configured to interface with one or more sensors that can monitor or determine a foot presence characteristic. Based on information from one or more foot presence sensors, the footwear including the motorized lacing system 1 can be configured to perform various functions. For example, a foot presence sensor can be configured to provide binary information about whether a foot is present or not present in the footwear. If a binary signal from the foot presence sensor indicates that a foot is present, then the motorized lacing system 1 can be activated, such as to automatically tighten or relax (i.e., loosen) a footwear lacing cable. In an example, the footwear article includes a processor circuit that can receive or interpret signals from a foot presence sensor. The processor circuit can optionally be embedded in or with the lacing engine 10, such as in a sole of the footwear article.
Examples of the lacing engine 10 are described in detail in reference to
In an example, the lacing engine 10 is held together by one or more screws, such as the case screw 108. The case screw 108 is positioned near the primary drive mechanisms to enhance structural integrity of the lacing engine 10. The case screw 108 also functions to assist the assembly process, such as holding the case together for ultra-sonic welding of exterior seams.
In this example, the lacing engine 10 includes a lace channel 110 to receive a lace or lace cable once assembled into the automated footwear platform. The lace channel 110 can include a lace channel wall 112. The lace channel wall 112 can include chamfered edges to provide a smooth guiding surface for a lace cable to run in during operation. Part of the smooth guiding surface of the lace channel 110 can include a channel transition 114, which is a widened portion of the lace channel 110 leading into the spool recess 115. The spool recess 115 transitions from the channel transition 114 into generally circular sections that conform closely to the profile of the spool 130. The spool recess 115 assists in retaining the spooled lace cable, as well as in retaining position of the spool 130. However, other aspects of the design provide primary retention of the spool 130. In this example, the spool 130 is shaped similarly to half of a yo-yo with a lace grove 132 running through a flat top surface and a spool shaft 133 (not shown in
The lateral side of the lacing engine 10 includes button openings 120 that enable buttons 121 for activation of the mechanism to extend through the housing structure 100. The buttons 121 provide an external interface for activation of switches 122, illustrated in additional figures discussed below. In some examples, the housing structure 100 includes button membrane seal 124 to provide protection from dirt and water. In this example, the button membrane seal 124 is up to a few mils (thousandth of an inch) thick clear plastic (or similar material) adhered from a superior surface of the housing structure 100 over a corner and down a lateral side. In another example, the button membrane seal 124 is a 2 mil thick vinyl adhesive backed membrane covering the buttons 121 and button openings 120.
In this example, the bottom section 104 includes features such as wireless charger access 105, joint 106, and grease isolation wall 109. Also illustrated, but not specifically identified, is the case screw base for receiving case screw 108 as well as various features within the grease isolation wall 109 for holding portions of a drive mechanism. The grease isolation wall 109 is designed to retain grease or similar compounds surrounding the drive mechanism away from the electrical components of the lacing engine 10 including the gear motor and enclosed gear box. In this example, the worm gear 150 and worm drive 140 are contained within the grease isolation wall 109, while other drive components such as gear box 144 and gear motor 145 are outside the grease isolation wall 109. Positioning of the various components can be understood through a comparison of
In this example, major drive components of the lacing engine 10 include worm drive 140, worm gear 150, gear motor 145 and gear box 144. The worm gear 150 is designed to inhibit back driving of worm drive 140 and gear motor 145, which means the major input forces coming in from the lacing cable via the spool 130 are resolved on the comparatively large worm gear and worm drive teeth. This arrangement protects the gear box 144 from needing to include gears of sufficient strength to withstand both the dynamic loading from active use of the footwear platform or tightening loading from tightening the lacing system. The worm drive 140 includes additional features to assist in protecting the more fragile portions of the drive system, such as the worm drive key 142. In this example, the worm drive key 142 is a radial slot in the motor end of the worm drive 140 that interfaces with a pin through the drive shaft coming out of the gear box 144. This arrangement prevents the worm drive 140 from imparting any axial forces on the gear box 144 or gear motor 145 by allowing the worm drive 140 to move freely in an axial direction (away from the gear box 144) transferring those axial loads onto bushing 141 and the housing structure 100.
As illustrated by the cross-section of lacing engine 10, the spool 130 includes a spool shaft 133 that couples with worm gear 150 after running through an O-ring 138. In this example, the spool shaft 133 is coupled to the worm gear via keyed connection pin 134. In some examples, the keyed connection pin 134 only extends from the spool shaft 133 in one axial direction, and is contacted by a key on the worm gear in such a way as to allow for an almost complete revolution of the worm gear 150 before the keyed connection pin 134 is contacted when the direction of worm gear 150 is reversed. A clutch system could also be implemented to couple the spool 130 to the worm gear 150. In such an example, the clutch mechanism could be deactivated to allow the spool 130 to run free upon de-lacing (loosening). In the example of the keyed connection pin 134 only extending is one axial direction from the spool shaft 133, the spool is allowed to move freely upon initial activation of a de-lacing process, while the worm gear 150 is driven backward. Allowing the spool 130 to move freely during the initial portion of a de-lacing process assists in preventing tangles in the lace 131 as it provides time for the user to begin loosening the footwear, which in turn will tension the lace 131 in the loosening direction prior to being driven by the worm gear 150.
In this example, the arms of the actuator 30, posterior arm 330 and anterior arm 334, include flanges to prevent over activation of switches 122 providing a measure of safety against impacts against the side of the footwear platform. The large central arm 332 is also designed to carry impact loads against the side of the lacing engine 10, instead of allowing transmission of these loads against the buttons 121.
The medial lace guide 420 and lateral lace guide 421 assist in guiding lace cable into the lace engine pocket 410 and over lacing engine 10 (when present). The medial/lateral lace guides 420, 421 can include chamfered edges and inferiorly slated ramps to assist in guiding the lace cable into the desired position over the lacing engine 10. In this example, the medial/lateral lace guides 420, 421 include openings in the sides of the mid-sole plate 40 that are many times wider than the typical lacing cable diameter, in other examples the openings for the medial/lateral lace guides 420, 421 may only be a couple times wider than the lacing cable diameter.
In this example, the mid-sole plate 40 includes a sculpted or contoured anterior flange 440 that extends much further on the medial side of the mid-sole plate 40. The example anterior flange 440 is designed to provide additional support under the arch of the footwear platform. However, in other examples the anterior flange 440 may be less pronounced in on the medial side. In this example, the posterior flange 450 also includes a particular contour with extended portions on both the medial and lateral sides. The illustrated posterior flange 450 shape provides enhanced lateral stability for the lacing engine 10.
As illustrated in
As illustrated in
The actuator embodiment illustrated in
In an example, the processor circuit controls one or more aspects of the drive mechanism. For example, the processor circuit can be configured to receive information from the buttons and/or from the foot presence sensor and/or from the battery and/or from the drive mechanism and/or from the encoder, and can be further configured to issue commands to the drive mechanism, such as to tighten or loosen the footwear, or to obtain or record sensor information, among other functions.
The present inventors have recognized, among other things, a need for an improved modular lacing engine for automated and semi-automated tightening of shoe laces. This document describes, among other things, the mechanical design of an actuator assembly for controlling an automated modular lacing engine within a footwear platform. The following examples provide a non-limiting examples of the actuator and footwear assembly discussed herein.
Example 1 describes subject matter including an actuator to control a lacing engine within an automated footwear platform. The actuator can comprise a posterior arm, an anterior arm, a central arm, and a bridge structure. In this example, the posterior arm can include a first switch end to activate a first switch on the lacing engine. The anterior arm can include a second switch end to activate a second switch on the lacing engine. The central arm can include a light pipe to channel light from one or more LEDs within the lacing engine. The bridge structure can connect the posterior arm, the anterior arm and the central arm.
In Example 2, the subject matter of Example 1 can optionally include the bridge structure distributing light channeled by the light pipe from at least the posterior arm to the anterior arm.
In Example 3, the subject matter of any one of Examples 1 and 2 can optionally include the bridge structure including anterior and posterior flanges extending beyond respective connection points of the anterior arm and the posterior arm.
In Example 4, the subject matter of any one of Examples 1 to 3 can optionally include the bridge structure, the central arm, the posterior arm, and the anterior arm functioning to enable selective activation of the first switch, the second switch, or both the first switch and the second switch simultaneously.
In Example 5, the subject matter of any one of Examples 1 to 4 can optionally include the posterior arm and the anterior arm each including a stop structure to inhibit over actuation of the first switch and the second switch.
In Example 6, the subject matter of any one of Examples 1 to 5 can optionally include the central arm including a medial end that abuts an exterior surface of the lacing engine.
In Example 7, the subject matter of Example 6 can optionally include at least a portion of the exterior surface of the lacing engine being abutted by the medial end of the central arm and including a translucent portion allowing light from the one or more LEDs to reach the central arm.
In Example 8, the subject matter of any one of Examples 1 to 7 can optionally include the bridge structure including a lateral surface covered by a portion of the outsole of the footwear platform to form an interface for receiving user inputs to actuate the first switch, the second switch, or both the first switch and the second switch.
Example 9 describes subject matter including a button assembly for controlling a lacing engine within an automated footwear platform. In this example, the button assembly can include a bushing and an actuator. The bushing can include an actuator housing surrounded by an outer flange. The actuator housing can include an exterior side and an interior side relative to the footwear platform. The actuator can include a plurality of actuator bodies disposed within the actuator housing. Each actuator body of the plurality of actuator bodies can include a switch interface adapted to interact with a switch on a lacing engine.
In Example 10, the subject matter of Example 9 can optionally include each actuator body of the plurality of actuator bodies having a tear-drop cross sectional shape.
In Example 11, the subject matter of any one of Examples 9 and 10 can optionally include each actuator body of the plurality of actuator bodies having an external interface extending exteriorly from the actuator housing when the actuator body is seated within the actuator housing.
In Example 12, the subject matter of Example 11 can optionally include the external interface including a set of interface ribs extend radially outward from each other to form a Y-shaped structure.
In Example 13, the subject matter of Example 12 can optionally include each rib of the set of interface ribs having a rounded outer exterior edge.
In Example 14, the subject matter of any one of Examples 9 to 13 can optionally include the bushing having an aperture to conduct light from LEDs within the lacing engine.
In Example 15, the subject matter of Example 14 can optionally include the aperture being disposed within a central portion of the actuator housing.
In Example 16, the subject matter of Example 15 can optionally include the plurality of actuator bodies having an anterior actuator body disposed on a first side of the aperture and a posterior actuator body disposed on a second side of the aperture.
In Example 17, the subject matter of Example 16 can optionally include the anterior actuator body being a mirror image of the posterior actuator body.
In Example 18, the subject matter of any one of Examples 9 to 17 can optionally include the actuator housing having a recess lip extending from an interior side of the outer flange to form an actuator recess to hold the plurality of actuator bodies.
In Example 19, the subject matter of Example 18 can optionally include the recess lip having a bushing key extending from an inferior portion of the recess lip, the bushing key providing alignment with a bushing cutout in a mid-sole plate portion of the footwear platform.
In Example 20, the subject matter of Example 18 can optionally include the recess lip having interior retention clips to engage an interior bushing retention ridge on a mid-sole plate portion of the footwear platform.
In Example 21, the subject matter of Example 20 can optionally include a superior edge of the outer flange having exterior retention clips to engage an exterior bushing retention ridge on the mid-sole plate portion of the footwear platform.
Example 22 describes subject matter including a footwear assembly. In this example, the footwear assembly can include an upper portion, a mid-sole portion, and an out-sole portion. The upper portion can be configured to secure a foot within the footwear assembly. The mid-sole portion can be coupled to the upper portion and adapted to receive a mid-sole plate to house a lacing engine. The mid-sole plate can include a cutout to receive a button assembly to control functions of the lacing engine. The out-sole portion can be coupled to at least an inferior portion of the mid-sole portion.
In Example 23, the subject matter of Example 22 can optionally include the button assembly having a bushing and an actuator. In this example, the bushing can be received within the cutout, and the actuator can be disposed within the bushing to provide a moveable interface between the out-sole and one or more switches on the lacing engine.
In Example 24, the subject matter of Example 23 can optionally include the bushing having an actuator housing surrounded by an outer flange, wherein at least a portion of the outer flange abuts an exterior portion of the mid-sole plate.
In Example 25, the subject matter of Example 24 can optionally include the actuator housing having a recess lip extending from an interior side of the outer flange to form an actuator recess to hold the actuator.
In Example 26, the subject matter of Example 25 can optionally include the recess lip having a bushing key extending from an inferior portion of the recess lip, the bushing key adapted to mate with a corresponding bushing cutout in the cutout in the mid-sole plate.
In Example 27, the subject matter of any one of Examples 25 and 26 can optionally include the recess lip having interior retention clips to engage an interior bushing retention ridge adjacent the cutout in the mid-sole plate.
In Example 28, the subject matter of Example 27 can optionally include a superior edge of the outer flange having exterior retention clips to engage an exterior bushing retention ridge adjacent the cutout in the mid-sole plate.
In Example 29, the subject matter of any one of Examples 24 to 28 can optionally include the actuator having a plurality of actuator bodies disposed within the actuator housing, each actuator body of the plurality of actuator bodies including a switch interface adapted to interact with one of the one or more switches on the lacing engine.
In Example 30, the subject matter of Example 29 can optionally include each actuator body of the plurality of actuator bodies forming a tear-drop cross sectional shape.
In Example 31, the subject matter of any one of Examples 29 and 30 can optionally include each actuator body of the plurality of actuator bodies having an external interface extending exteriorly from the actuator housing when the actuator body is seated within the actuator housing.
In Example 32, the subject matter of Example 31 can optionally include the external interface having a set of interface ribs extend radially outward from each other to form a Y-shaped structure.
In Example 33, the subject matter of Example 32 can optionally include each rib of the set of interface ribs having a rounded outer exterior edge.
In Example 34, the subject matter of any one of Examples 23 to 33 can optionally include the bushing having an aperture to conduct light from LEDs within the lacing engine.
In Example 35, the subject matter of Example 34 can optionally include the aperture being disposed within a central portion of the actuator housing.
In Example 36, the subject matter of any one of Examples 34 and 35 can optionally include the plurality of actuator bodies having an anterior actuator body disposed on a first side of the aperture and a posterior actuator body disposed on a second side of the aperture.
In Example 37, the subject matter of Example 36 can optionally include the anterior actuator body being a mirror image of the posterior actuator body.
Throughout this specification, plural instances may implement components, operations, or structures described as a single instance. Although individual operations of one or more methods are illustrated and described as separate operations, one or more of the individual operations may be performed concurrently, and nothing requires that the operations be performed in the order illustrated. Structures and functionality presented as separate components in example configurations may be implemented as a combined structure or component. Similarly, structures and functionality presented as a single component may be implemented as separate components. These and other variations, modifications, additions, and improvements fall within the scope of the subject matter herein.
Although an overview of the inventive subject matter has been described with reference to specific example embodiments, various modifications and changes may be made to these embodiments without departing from the broader scope of embodiments of the present disclosure. Such embodiments of the inventive subject matter may be referred to herein, individually or collectively, by the term "invention" merely for convenience and without intending to voluntarily limit the scope of this application to any single disclosure or inventive concept if more than one is, in fact, disclosed.
The embodiments illustrated herein are described in sufficient detail to enable those skilled in the art to practice the teachings disclosed. Other embodiments may be used and derived therefrom, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. The disclosure, therefore, is not to be taken in a limiting sense, and the scope of various embodiments includes the full range of equivalents to which the disclosed subject matter is entitled.
As used herein, the term "or" may be construed in either an inclusive or exclusive sense. Moreover, plural instances may be provided for resources, operations, or structures described herein as a single instance. Additionally, boundaries between various resources, operations, modules, engines, and data stores are somewhat arbitrary, and particular operations are illustrated in a context of specific illustrative configurations. Other allocations of functionality are envisioned and may fall within a scope of various embodiments of the present disclosure. In general, structures and functionality presented as separate resources in the example configurations may be implemented as a combined structure or resource. Similarly, structures and functionality presented as a single resource may be implemented as separate resources. These and other variations, modifications, additions, and improvements fall within a scope of embodiments of the present disclosure as represented by the appended claims. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.
Each of these non-limiting examples can stand on its own, or can be combined in various permutations or combinations with one or more of the other examples.
The above detailed description includes references to the accompanying drawings, which form a part of the detailed description. The drawings show, by way of illustration, specific embodiments in which the invention can be practiced. These embodiments are also referred to herein as "examples." Such examples can include elements in addition to those shown or described. However, the present inventors also contemplate examples in which only those elements shown or described are provided. Moreover, the present inventors also contemplate examples using any combination or permutation of those elements shown or described (or one or more aspects thereof), either with respect to a particular example (or one or more aspects thereof), or with respect to other examples (or one or more aspects thereof) shown or described herein.
In the event of inconsistent usages between this document and any documents so incorporated by reference, the usage in this document controls.
In this document, the terms "a" or "an" are used, as is common in patent documents, to include one or more than one, independent of any other instances or usages of "at least one" or "one or more." In this document, the term "or" is used to refer to a nonexclusive or, such that "A or B" includes "A but not B," "B but not A," and "A and B," unless otherwise indicated. In this document, the terms "including" and "in which" are used as the plain-English equivalents of the respective terms "comprising" and "wherein." Also, in the following claims, the terms "including" and "comprising" are open-ended, that is, a system, device, article, composition, formulation, or process that includes elements in addition to those listed after such a term in a claim are still deemed to fall within the scope of that claim. Moreover, in the following claims, the terms "first," "second," and "third," etc. are used merely as labels, and are not intended to impose numerical requirements on their objects.
Method examples described herein, such as the motor control examples, can be machine or computer-implemented at least in part. Some examples can include a computer-readable medium or machine-readable medium encoded with instructions operable to configure an electronic device to perform methods as described in the above examples. An implementation of such methods can include code, such as microcode, assembly language code, a higher-level language code, or the like. Such code can include computer readable instructions for performing various methods. The code may form portions of computer program products. Further, in an example, the code can be tangibly stored on one or more volatile, non-transitory, or non-volatile tangible computer-readable media, such as during execution or at other times. Examples of these tangible computer-readable media can include, but are not limited to, hard disks, removable magnetic disks, removable optical disks (e.g., compact disks and digital video disks), magnetic cassettes, memory cards or sticks, random access memories (RAMs), read only memories (ROMs), and the like.
The above description is intended to be illustrative, and not restrictive. For example, the above-described examples (or one or more aspects thereof) may be used in combination with each other. Other embodiments can be used, such as by one of ordinary skill in the art upon reviewing the above description. An Abstract, if provided, is included to comply with United States rule 37 C.F.R. §1.72(b), to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. Also, in the above Description, various features may be grouped together to streamline the disclosure. This should not be interpreted as intending that an unclaimed disclosed feature is essential to any claim. Rather, inventive subject matter may lie in less than all features of a particular disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description as examples or embodiments, with each claim standing on its own as a separate embodiment, and it is contemplated that such embodiments can be combined with each other in various combinations or permutations. The scope of the invention should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
This application is a continuation of U.S. Pat. Application Serial No. 16/865,677, filed May 4, 2020, which application is a continuation of U.S. Pat. Application Serial No. 15/456,317, filed Mar. 10, 2017, issued on Jun. 9, 2020 as U.S. Pat. No. 10,674,793, which application claims the benefit of priority of U.S. Provisional Pat. Application Serial No. 62/308,716, filed on Mar. 15, 2016, all of which are incorporated by reference herein in their entireties. The following specification describes various aspects of a motorized lacing system, motorized and non-motorized lacing engines, footwear components related to the lacing engines, automated lacing footwear platforms, and related assembly processes.
Number | Date | Country | |
---|---|---|---|
62308716 | Mar 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16865677 | May 2020 | US |
Child | 17902100 | US | |
Parent | 15456317 | Mar 2017 | US |
Child | 16865677 | US |