The present invention relates to an actuator for ignition operation which is used in such a case that a running test of a vehicle is conducted by a chassis dynamometer and performs ignition operation.
As known, the actuator for ignition operation includes a rotary ignition operation actuator that rotationally operates a rotary ignition (for example, Patent Literature 1) and a press-type ignition operation actuator that pressingly operates a push-type ignition (for example, Patent Literature 2).
As shown in
Further, the press-type ignition operation actuator, not shown, is of such a type as to pressingly operate a press-type (push-type) ignition with an operation button. As the press-type ignition operation actuator, there are known a type that pressingly operates the push-type ignition by converting rotation of a motor as a drive source to linear movement of the operation button through a motion conversion mechanism, and a type to pressingly operate the operation button using an air cylinder.
Patent Literature 1: Japanese Patent Application Unexamined Publication No. 5-157666
Patent Literature 2: Japanese Patent Application Unexamined Publication No. 2004-87140
However, the above-described conventional ignition operation actuator has posed the following problems.
The present invention has been made in order to provide a press-type ignition operation actuator that uses a motor as a drive source and converts rotation of the motor into linear motion of a press button by a motion conversion mechanism so as to pressingly operate a push-type ignition, in which a cam is used in the motion conversion mechanism to thereby simplify the operation section for the ignition. In addition, the present invention has been made in order to use the above-described rotary ignition operation actuator as the press-type ignition operation actuator by sharing the drive section of the rotary ignition operation actuator and the flexible shaft to be rotationally driven by the drive section and replacing the operation section of the rotary ignition operation actuator with the operation section of the press-type ignition operation actuator.
According to a first aspect of the present invention, there is provided an ignition operation actuator including a drive section including a motor and a rotation transmission coupling, a flexible shaft that is rotationally driven by the drive section, and an operation section mounted to a tip end portion of the flexible shaft so as to pressingly operate a push-type ignition of a vehicle,
the operation section including a press button that presses the push-type ignition, a motion conversion mechanism configured to convert rotation of the flexible shaft into a linear motion of the press button, and a holder to which the press button and the motion conversion mechanism are mounted,
the motion conversion mechanism including a cam that is rotated about a rotation shaft so as to press a cam engagement portion disposed on a back face side of the push-type ignition,
wherein the tip end portion of the flexible shaft is detachably connected to an adapter disposed on the holder, and rotation of the flexible shaft is transmitted to the rotation shaft of the cam via a rotation transmission mechanism.
According to a second aspect of the present invention, there is provided the ignition operation actuator as described in the first aspect, wherein the cam is provided with a cam follower that is brought into contact with the cam engagement portion and presses the cam engagement portion.
According to a third aspect of the present invention, there is provided the ignition operation actuator as described in the second aspect, wherein the cam follower is constituted of a first cam follower disposed on an end portion of one side of the cam with respect to a rotation shaft of the cam, and a second cam follower disposed on an end portion of the other side of the cam with respect to the rotation shaft of the cam.
According to a fourth aspect of the present invention, there is provided the ignition operation actuator as described in the second aspect, further including a spring that pushes back the press button when the cam engagement portion is released from pressing by the cam follower.
According to a fifth aspect of the present invention, there is provided the ignition operation actuator as described in the fourth aspect, wherein the cam engagement portion includes a first cam engagement surface that is opposed to the first cam follower and pressed by the first cam follower, and a second cam engagement surface that is opposed to the second cam follower and pressed by the second cam follower, the first cam engagement surface and the second cam engagement surface each being formed into an inclined surface inclined in such a direction that as a distance on the inclined surface which extends from a central portion of a boundary between the first cam engagement surface and the second cam engagement surface toward a side of the cam engagement portion increases, the inclined surface is gradually spaced apart from the corresponding cam followers.
According to a sixth aspect of the present invention, there is provided the ignition operation actuator as described in any one of the first to fifth aspects, wherein the operation section is mounted to a fixed frame fixed to a seat of a vehicle through an arm.
According to a seventh aspect of the present invention, there is provided the ignition operation actuator as described in any one of the first to fifth aspects, wherein the operation section is mounted to a fixed frame fixed to a seat of a vehicle through an arm and a fixture.
According to an eighth aspect of the present invention, there is provided the ignition operation actuator as described in any one of the first to fifth aspects, wherein the operation section is mounted to an interior surface of a vehicle by means of a suction cup.
(1) In the ignition operation actuator as described in the first aspect, a cam is used in the motion conversion mechanism configured to convert rotation of the motor into a linear motion of the press button. Therefore, as compared with the conventional ignition operation actuator in which the conventional motion conversion mechanism uses a rack and pinion gear, a ball screw, a ball nut, etc., the configuration of the operation section can be simplified to thereby reduce a size and a weight of the operation section.
Particularly, the tip end portion of the flexible shaft is detachably connected to an adapter disposed on the holder, and rotation of the flexible shaft is transmitted to the rotation shaft of the cam via a rotation transmission mechanism. With this configuration, the ignition operation actuator can be used as a rotary ignition operation actuator by detaching the press-type operation section from the tip end portion of the flexible shaft and attaching the rotary operation section 104 as shown in
(2) In the ignition operation actuator as described in the second aspect, the cam is provided with a cam follower, and the cam engagement portion disposed on the back face side of the press button is pressed by the cam follower. With this configuration, the cam follower is rotated to slide on the cam engagement portion and press the cam engagement portion.
(3) In the ignition operation actuator as described in the third aspect, the cam follower includes a first cam follower disposed on an end portion of one side of the cam with respect to the rotation shaft of the cam, and second cam follower disposed on an end portion of the other side of the cam with respect to the rotation shaft of the cam. With this configuration, one of the cam followers can press the cam engagement portion by rotating the cam in one direction, and the other of cam followers can press the cam engagement portion by rotating the cam in the other direction (rotating the cam in a reverse direction).
(4) In the ignition operation actuator as described in the fourth aspect, when the cam engagement portion is released from the state being pressed by the cam follower, the press button is urged by a spring so as to return to an ignition press release position in which the push-type ignition is released from the pressed state.
(5) In the ignition operation actuator as described in the fifth aspect, the cam engagement portion includes a first cam engagement surface opposed to the first cam follower so as to be pressed by the first cam follower, and a second cam engagement surface opposed to the second cam follower so as to be pressed by the second cam follower, the first cam engagement surface and the second cam engagement surface each being formed into an inclined surface inclined in such a direction that as a distance on the inclined surface which extends from a central portion of a boundary between the first cam engagement surface and the second cam engagement surface toward a side of the cam engagement portion increases, the inclined surface is gradually spaced apart from the corresponding cam follower. With this configuration, a return movement of the press button which is caused by the spring can be smoothly performed.
(6) In the ignition operation actuator as described in the sixth aspect, the operation section is mounted to a fixed frame fixed to a seat of a vehicle through an arm. With this configuration, even if there is a play in a steering wheel, displacement of a center point of pressing of the press button can be suppressed.
(7) In the ignition operation actuator as described in the seventh aspect, the operation section can be more certainly held in place by an arm of a fixed frame fixed to a seat of a vehicle and a fixture.
(8) In the ignition operation actuator as described in the eighth aspect, the operation section can be sucked and fixed to an interior surface of a vehicle by means of a suction cup even if a free guide arm or the like is not used.
In the following, an embodiment of the present invention will be explained by referring to drawings.
The drive section 2 and the operation section 4 are mounted to a fixed frame 111 for fixing a drive robot (not shown) to a seat 110 of the vehicle, and suppress misalignment with a center point of the ignition 117 to which the pressing force is to be applied, the misalignment being caused due to a play of a steering wheel 112.
The operation section 4 is mounted to a tip end portion of a free guide arm 114 through a universal joint 113. A base end portion of the free guide arm 114 is mounted to a clamp lever 116 provided on the fixed frame 111, by means of a clamp 115.
As shown in
The operation section 4 includes the operation button 5, a holder 6 to which the operation button 5 is slidably mounted, a cam 7 that presses the operation button 5 to project to a position shown in
The operation button 5 includes a button body 11 that presses the press-type ignition 117, a rod 12 having one end portion to which the button body 11 is mounted, and a cam engagement portion 13 mounted to the other end portion of the rod 12, the cam engagement portion 13 being pressed by the cam 7.
The holder 6 has a button body accommodation portion 14 on one end side thereof which accommodates the button body 11, a rod support portion 16 in a middle thereof which slidably supports the rod 12 through a thrust bearing 15, and a cam accommodation portion 17 on the other end side thereof which accommodates the cam 7.
The cam 7 is formed into a generally isosceles triangle shape, and has a central portion mounted to a rotation shaft 21 and both side portions to which first and second cam followers 22, 23 are mounted. Either one of the cam followers 22, 23 presses the cam engagement portion 13.
The cam engagement portion 13 includes a first cam engagement surface 24 located to be opposed to the first cam follower 22 and a second cam engagement surface 25 located to be opposed to the second cam follower 23. The first cam engagement surface 24 is pressed by the first cam follower 22. The second cam engagement surface 25 is pressed by the second cam follower 23.
As shown in
Next, a configuration of the rod 12, a method of mounting the rod 12 to the button body 11, and a method of mounting the cam engagement portion 13 to the rod 12 are explained by referring to
The button body 11 includes a rod mount hole 26 into which a tip end of the rod 12 is inserted and fixed thereto, and a spring receiving hole 27 communicated with one end portion of the rod mount hole 26. The spring receiving hole 27 has a diameter larger than a diameter of the rod mount hole 26.
The rod 12 includes a first shaft portion 31, a second shaft portion 32 having a diameter larger than a diameter of the first shaft portion 31, a bolt 34 inserted into a bolt receiving hole 33 formed in the second shaft portion 32, and a nut 35 screwed onto an outer circumference of a head of the bolt 34 so as to sandwich the can engagement portion 13 between the nut 35 and the second shaft portion 32.
A tip end of the first shaft portion 31 is attached to the rod mount hole 26. Further, a central portion of the first shaft portion 31 is formed with a flange 36. Disposed between the flange 36 and a bottom surface of the coil spring receiving hole 27 is a spring 37 that is compressed for a relief motion of the button body 11 when an excessive load is exerted on the button body 11. Reference sign 38 denotes a ring-shaped member attached to a back side of the button body 11 by means of bolts 39. The ring-shaped member 38 serves as a stop against which the flange 36 is abutted.
Attached to the holder 6 is an operation button rotation inhibition pin 41 that extends through the thrust bearing 15 and the rod support portion 16. The operation button rotation inhibition pin 41 is inserted into a slit formed in the second shaft portion 32. The operation button rotation inhibition pin 41 inhibits rotation of the rod 12 and the button body 11, and allows the rod 12 and the button body 11 to linearly move. The spring 8 is interposed between the operation button rotation inhibition pin 41 and the head of the bolt 34.
As shown in
Next, an operation of the ignition operation actuator 1 will be explained.
As shown in
On the contrary, when the cam 7 is rotated by a predetermined angle in a clockwise direction in
When releasing the press-type ignition 117 from the pressing force applied thereto by the operation button 5, the cam 7 is returned to the position shown in
The key hold member 52 has an adapter 55 on one side surface thereof. The tip end 3a of the flexible shaft 3 is inserted into the adapter 55 and fixed by a fastening screw 56. Thus, the key hold member 52 is connected to the tip end 3a of the flexible shaft 3. Then, the rotary operation section 51 and the ignition key are rotated by the flexible shaft 3 to thereby perform on-off operation of the ignition.
Accordingly, in a case where the press-type operation section 4 and the rotary operation section 51 are prepared, it is possible to mount the rotary operation section 51 instead of the press-type operation section 4 to the tip end 3a of the flexible shaft 3, so that the ignition operation actuator can be also used for operating the ignition key for the rotary ignition.
1 . . . ignition operation actuator
2 . . . drive section
3 . . . flexible shaft
4 . . . operation section
5 . . . operation button
6 . . . holder
7 . . . cam
8 . . . spring
13 . . . cam engagement portion
21 . . . rotation shaft of cam
22 . . . first cam follower
23 . . . second cam follower
24 . . . first cam engagement portion
25 . . . second cam engagement portion
42, 55 . . . adapter
44 . . . rotation transmission mechanism
Number | Date | Country | Kind |
---|---|---|---|
2012-102064 | Apr 2012 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2013/058096 | 3/21/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/161461 | 10/31/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1556889 | Wright | Oct 1925 | A |
1588832 | Young | Jun 1926 | A |
1832732 | Peacock | Nov 1931 | A |
2029326 | Lembke | Feb 1936 | A |
2087018 | Carter | Jul 1937 | A |
2113084 | Hewitt | Apr 1938 | A |
2121831 | Simmons | Jun 1938 | A |
2317158 | Westover | Apr 1943 | A |
2525922 | Mandl | Oct 1950 | A |
2884842 | Schmitz | May 1959 | A |
3152942 | Horton | Oct 1964 | A |
3374685 | Eheim | Mar 1968 | A |
3438271 | Cain | Apr 1969 | A |
3449967 | Dancsik | Jun 1969 | A |
Number | Date | Country |
---|---|---|
3-68041 | Jul 1991 | JP |
05-157666 | Jun 1993 | JP |
2004-087140 | Aug 2004 | JP |
2009-162715 | Jul 2009 | JP |
2009-233844 | Oct 2009 | JP |
Number | Date | Country | |
---|---|---|---|
20150053026 A1 | Feb 2015 | US |