The present disclosure relates to an actuator for a piano, and a piano.
Published Japanese Translation No. H04-500735 of the PCT International Publication (hereinafter Patent Document 1) discloses an actuator for a piano that produces a sound by vibrating the soundboard of the piano. In the piano of Patent Document 1, a part of a transmission unit (drive hammer) coupled to a vibrating body of an actuator for a piano is embedded or fixed inside the bridge of the piano to be attached to the bridge of the piano.
However, as in Patent Document 1, when a section of the actuator for a piano is to be embedded or fixed in the bridge of the piano, it is necessary to perform processing on a component of the piano such as the bridge or use an adhesive. For that reason, there is a problem that it is troublesome to attach/detach the actuator for a piano to/from the piano.
It is also not preferable to perform processing or use adhesive on a component of a piano to attach the actuator for a piano to the piano since doing so may damage components of the piano.
The present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide an actuator for a piano that can be easily attached to and detached from the piano without processing and without using an adhesive, and a piano including the actuator for a piano.
According to a first aspect of the present disclosure, there is provided an actuator for a piano including a bridge and strings. The actuator includes: a vibrating body; and an attachment portion configured to attach the vibrating body to the piano, the attachment portion being configured to be sandwiched between the bridge and at least one string, among the strings of the piano.
According to a second aspect of the present disclosure, there is provided a piano including: a bridge; strings; and an actuator including: a vibrating body; and an attachment portion that attaches the vibrating body to the piano, the attachment portion being sandwiched between the bridge and at least one string, among the strings.
Hereinbelow, embodiments of the present disclosure will be described with reference to
As shown in
The string 3 is stretched across an upper surface 2a of the soundboard 2 by being hooked on a pitch pin 61 and a tuning pin (not shown) of a frame 6 of the piano 1. A plurality of the strings 3 are arranged at an interval from each other (see
The bridge 4 is sandwiched between the upper surface 2a of the soundboard 2 and the string 3. As shown in
A bridge nail 43 for hooking the string 3 is provided at a connecting portion between the top surface 41 of the bridge 4 and each inclined surface 42. The bridge 4 is arranged at a position closer to the pitch pin 61 than the tuning pin in the longitudinal direction of the string 3. As shown in
In the piano 1 of the present embodiment, when the string 3 is struck by a hammer (not shown), the string 3 vibrates mainly in the thickness direction of the soundboard 2. The vibration of the string 3 is transmitted to the soundboard 2 via the bridge 4, whereby the soundboard 2 vibrates.
The actuator for a piano 5 causes the soundboard 2 to vibrate in the thickness direction of the bridge 4 by vibrating the bridge 4 to produce a sound. As shown in
The actuator for a piano 5 may be, for example, a voice coil type actuator.
The attachment portion 53 of the present embodiment has a first extension portion 531 and a second extension portion 532.
The first extension portion 531 extends from the vibrating body 52 in the vibration direction (Z-axis negative direction). Although the first extension portion 531 of the illustrated example is formed in a square columnar shape, it may be formed in an arbitrary columnar shape such as a cylindrical column, or may be formed in a plate shape, for example. Further, the first extension portion 531 may be positioned on the axis of the vibrating body 52 as shown in the illustrated example, but may also be located, for example, in a manner shifted from the axial line of the vibrating body 52.
The second extension portion 532 extends from the tip end portion of the first extension portion 531 in the extension direction in a direction intersecting the vibration direction of the vibrating body 52. The second extension portion 532 may for example extend in a direction inclined with respect to the vibration direction of the vibrating body 52. In the present embodiment, the second extension portion 532 extends in a direction orthogonal to the vibration direction of the vibrating body 52 (Y-axis direction in
The second extension portion 532 may for example extend to only one side of the tip end portion of the first extension portion 531 in a direction orthogonal to the vibration direction. That is, the attachment portion 53 may be formed in an L shape, for example. In the present embodiment, a pair of second extension portions 532 extend in opposite directions from the tip end portion of the first extension portion 531. That is, the attachment portion 53 of this embodiment is formed in a T shape. In the present embodiment, the total length L1 of the pair of second extension portions 532 is larger than the distance D1 between the two adjacent strings 3 (refer to
Although the second extension portion 532 of the illustrated example is formed in a cylindrical columnar shape, it may be formed in an arbitrary columnar shape such as a square column, or may be formed in a plate shape, for example.
As shown in
The second extension portion 532 has a dimension that is capable of being passed between two adjacent strings 3. Specifically, as shown in
In the present embodiment, the width dimension of the first extension portion 531 is also smaller than the distance D1 between the two adjacent strings 3, similarly to the width dimension W1 of the second extension portion 532. It is sufficient that at least at only the section of the first extension portion 531 that can pass between the two strings 3 (for example, the tip end portion of the first extension portion 531), the width dimension of the first extension portion 531 is smaller than the distance D1 between the two strings 3. In the attachment portion 53 illustrated in
As shown in
As shown in
The pulling portion 54 pulls in the opposite direction of the first direction (positive direction of the X axis in
The pulling portion 54 of the present embodiment is an elastic body that elastically expands and contracts in a linear direction, and is passed between the first extension portion 531 and a pin that is provided on the piano 1 to hook the string 3. The pulling portion 54, which is an elastic body, may be, for example, a coil spring, but in the present embodiment is a rubber string that is easy to suppress interference with the string 3.
In the present embodiment, the pulling portion 54 is passed between the first extension portion 531 and the pitch pin 61, in the state of the second extension portion 532 being arranged in the first gap 7A positioned on the opposite side of the pitch pin 61 with respect to the top surface 41 of the bridge 4 in the longitudinal direction of the string 3. As a result, the elastic force of the pulling portion 54 can pull the second extension portion 532 in a direction in which the interval of the first gap 7A becomes smaller. By hooking the pulling portion 54 on the pitch pin 61 located near the bridge 4, the length of the pulling portion 54 can be kept short.
Next, an example of a method of sandwiching the attachment portion 53 of the actuator for a piano 5 of the present embodiment between the bridge 4 and the string 3 will be described mainly with reference to
First, as shown in
Next, as shown in
Finally, as shown in
As shown in
As described above, according to the actuator for a piano 5 of the present embodiment, the actuator for a piano 5 can be easily attached to the piano 1 by simply sandwiching the attachment portion 53 between the bridge 4 and the strings 3. Therefore, the actuator for a piano 5 can be attached to the piano 1 without performing processing on the piano 1 or adhering the actuator for a piano 5 to the piano 1. Further, the actuator for a piano 5 can be easily removed from the piano 1 by simply removing the attachment portion 53 from between the bridge 4 and the strings 3 of the piano 1.
That is, the actuator for a piano 5 can be easily attached to and detached from the piano 1 without performing any processing and without using an adhesive.
Further, the attachment portion 53 of the actuator for a piano 5 of the present embodiment has a first extension portion 531 extending in the vibration direction from the vibrating body 52 and a second extension portion 532 extending in a direction intersecting the vibration direction from the tip end portion of the first extension portion 531 and sandwiched between the bridge 4 and the string 3. Therefore, in the state of the second extension portion 532 being sandwiched between the bridge 4 and the string 3, the first extension portion 531 can be extended in the direction in which the bridge 4 and the string 3 are aligned (the arrangement direction of the bridge 4 and the string 3). Thereby, the main body 51 and the vibrating body 52 can be arranged at positions away from the string 3 in the arrangement direction of the bridge 4 and the string 3. Accordingly, it is possible to prevent the main body 51 and the vibrating body 52 of the actuator for a piano 5 from interfering with the string 3 and the bridge 4.
In the actuator for a piano 5 of the present embodiment, the pair of second extension portions 532 extend in opposite directions from the tip portion of the first extension portion 531. As a result, the pair of second extension portions 532 can be sandwiched between the bridge 4 and two strings 3. Therefore, compared with the case where one second extension portion 532 is sandwiched between the bridge 4 and one string 3, the force pressing the second extension portion 532 against the bridge 4 is increased by the tension of the strings 3. Accordingly, the second extension portion 532 can be held more firmly against the bridge 4.
Further, since the first extension portion 531 is located between the pair of second extension portions 532 sandwiched between the bridge 4 and the strings 3, the actuator for a piano 5 can be stably attached to the piano 1.
In the actuator for a piano 5 of the present embodiment, the thickness dimension T1 of the second extension portion 532 sandwiched in the gap 7 (for example, the first gap 7A) between the bridge 4 and the string 3 is smaller than the maximum dimension D2 of the gap 7, where the interval between the bridge 4 and the string 3 gradually increases heading in the first direction (for example, the negative direction of the X axis) in the longitudinal direction of the strings 3. Thereby, the second extension portion 532 can be easily and surely inserted into the gap 7 between the bridge 4 and the string 3. As a result, the second extension portion 532 can be easily and surely sandwiched between the bridge 4 and the string 3.
The actuator for a piano 5 of the present embodiment includes the pulling portion 54 that pulls the second extension portion 532 in the opposite direction of the first direction (for example, positive direction of the X axis) in the state of the second extension portion 532 being arranged in the gap 7 between the bridge 4 and the string 3. Therefore, the second extension portion 532 is pulled by the pulling portion 54 in the direction in which the interval in the gap 7 between the bridge 4 and the string 3 becomes smaller. Thereby, the second extension portion 532 can be held in a state of being sandwiched between the bridge 4 and the string 3, that is, the second extension portion 532 can be prevented from coining out of the gap 7 between the bridge 4 and the string 3.
In the actuator for a piano 5 of the present embodiment, the pulling portion 54 pulls the section of the first extension portion 531 separated from the second extension portion 532 in the opposite direction (X-axis positive direction). Therefore, it is possible to prevent the actuator for a piano 5 from rotating (swinging) with respect to the piano 1 about the extension direction of the second extension portion 532. In particular, when viewed from the direction shown in
Further, the actuator for a piano 5 of the present embodiment has a dimension (width dimension W1) that allows the second extension portion 532 to pass between two adjacent strings 3. As a result, as shown in
In the actuator for a piano 5 of the present embodiment, the second extension portion 532 is formed in a cylindrical columnar shape. In a state where the second extension portion 532 is sandwiched between the bridge 4 and the string 3, the outer peripheral surface of the second extension portion 532 comes into contact with the bridge 4 and the string 3. Therefore, compared with the case where the second extension portion 532 is formed in a square columnar shape, it is possible to prevent the bridge 4 and the string 3 from being damaged by the second extension portion 532.
Although the present disclosure has been described in detail above, the present disclosure is not limited to the above embodiment, and various modifications can be made in a range that does not depart from the spirit of the present disclosure.
In the present disclosure, the actuator for a piano 5 may include a cushioning material 55 that covers the surfaces of the attachment portion 53 facing the bridge 4 and the string 3, as shown in
By interposing the cushioning material 55 between the attachment portion 53 and the bridge 4 or the string 3, it is possible to prevent the bridge 4 or the string 3 from being damaged by the attachment portion 53 coming into contact with the bridge 4 or the string 3. That is, the bridge 4 and the string 3 can be protected.
In the present disclosure, the pulling portion 54 is not limited to being passed between the first extension portion 531 and the pitch pin 61, and may, for example, be passed between the first extension portion 531 and the tuning pin or the bridge nail 43. For example, in the above embodiment, when the second extension portion 532 of the actuator for a piano 5 is arranged in the second gap 7B (see
In the present disclosure, the main body 51 of the actuator for a piano 5 may be fixed to, for example, the housing of the piano 1.
In the present disclosure, the same (single) piano 1 may be provided with a plurality of the actuators for a piano 5. In this case, the actuators for a piano 5 may be provided for, for example, a plurality of strings 3 having mutually different sound ranges. The actuators for a piano 5 may be provided for each string 3 corresponding to, for example, a low range, a mid-range, and a high range. Further, the actuators for a piano 5 may be provided on, for example, a long bridge and a short bridge of the piano 1, respectively. Alternatively, the plurality of actuators for a piano 5 may be provided at mutually different positions in the longitudinal direction of the bridge 4 with respect to the same (single) bridge 4.
When the actuators for a piano 5 are provided in mutually different sound ranges of the piano 1, each actuator for a piano 5 may vibrate the bridge 4 on the basis of a drive signal with a characteristic corresponding to the respective sound range.
For example, the piano of the present disclosure may include an actuator for a piano that directly vibrates the soundboard 2 in addition to the actuator for a piano 5 that vibrates the bridge 4.
The actuator for a piano of the present disclosure is not limited to a grand piano, and may also be applied to, for example, an upright piano in which the thickness direction of the soundboard 2 faces substantially the horizontal direction.
According to the present disclosure, the actuator for a piano can be easily attached to and detached from a piano without any processing and without using an adhesive.
The present application is a continuation application of International Application No. PCT/JP2019/044498, filed Nov. 13, 2019. The content of the application is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2019/044498 | Nov 2019 | US |
Child | 17723617 | US |