This invention deals generally with actuators for use in fenestration systems for openings having a swinging closure means such as a swinging sash, door, or gate. More specifically, it pertains to locking systems that use sliding elements to transfer locking motion, especially those using bendable sliding elements to transfer locking motion around a corner. It emphasizes systems using a flexible push-pull member and actuating lever handle arrangements suitable for use with such systems.
Fenestration is generally considered to include any opening in a building's envelope, including windows, doors, and skylights. The technology applicable in the fenestration context can, however, also be applicable for other enclosure openings, such as gates in walls or fences.
There are many fenestration locking systems currently in existence. Only a few of these systems use a bendable sliding element to transfer locking motion around a corner. Among systems using a bendable sliding element are sash locking systems that have a flexible cable that extends all the way around the window. In these systems, a locking element can be pulled in two directions by opposing cables for locking and unlocking purposes. However, the cables are only used in a pulling mode; they cannot be used in a pushing mode. More typical are sash locking systems that feature a flexible push-pull member at the corner of the window frame. This push-pull member serves as a bendable sliding element and can be pulled or pushed to lock or unlock a window sash. In these systems, the flexible push-pull member is generally connected to a rigid vertical locking bar carrying the locking pins for the sash. Sash locking systems also use a variety of lever handle arrangements for moving these bendable sliding elements back and forth so as to engage or disengage a sash lock.
U.S. Pat. No. 4,887,392, issued to Lense in 1989 for an “Apparatus for Actuating and Locking a Window Sash”, provides an example of a design using a flexible push-pull member at a window corner. This patent uses a flexible tape that drives around the corner; but once the tape rounds the corner; it connects to a rigid locking bar that moves up and down to accomplish sash locking. The tape is also moved by an actuator that opens and closes the window, rather than by a separate lever.
Contrasting but related designs can be seen in U.S. Pat. Nos. 4,807,914 and 5,370,428. U.S. Pat. No. 4,807,914, issued to Fleming et al. in 1989 for a “Window Lock Assembly”, shows a locking system driven by a perforated tape. However, this tape does not extend around a corner. It merely serves as a rack driving a pinion formed as a locking cam. U.S. Pat. No. 5,370,428, issued to Dreifert et al. in 1994 for a “Mechanism for Releasably Locking Sashes in Door or Window Frames”, shows sash locking pins driven by a moving lock bar to which the pins are not attached. The pins are trapped for movement within guides that straddle or cover both sides of the locking bar.
Of the systems described above, those using a flexible member to form a bendable corner push-pull sliding element have proven to be simpler to construct and less expensive. However, there remains a need for improvements that will create a locking system that is similar in function, but even simpler to manufacture and operate than prior art devices. These improvements should also serve to create a single lever locking system that is more versatile and significantly less expensive to construct and install.
Our first improvement is the use of a uniformly flexible push-pull member that can be used not only to transfer movement around a fenestration corner, but to transfer movement all the way from a distant location on the fenestration edge to a locking member. Thus, our flexible push-pull member can be used to transfer movement from a locking lever at the bottom of a window around the corner and up the side of the frame (or “jamb”) to the position of the upper-most locking pin. In addition, the location of the operative parts of our invention can be reversed. For example, the flexible push-pull member and related parts can be mounted on the door or sash with keepers mounted on or incorporated into the doorframe or jamb. The actuating assembly can, likewise, be mounted either with the flexible push-pull member or opposed to it. Thus, for example, it can be mounted with the flexible push-pull member on a sash or opposed to it on a frame. Further, our invention, unlike prior art devices, is capable of use around irregularly shaped windows and doors. Thus, it can easily be adapted for use around a round window or window opening.
In our invention, locking pins are not directly attached to the flexible member. In some embodiments of our invention, the locking pins have collars or enlarged portions that trap the pins in place under slotted guides mounted on the edges of the fenestration or fenestration closure means. In other embodiments, the guide is a slotted cover strip that overlays the flexible member and locking pins. In either case, the locking pin is generally provided with a coaxial motion transmitting pin or member that extends into regularly spaced perforations in the flexible member. This eliminates any permanent connection between our locking pins and the flexible member and simplifies the installation of the pins and flexible member. It also allows the locking pins to be mounted to engage various perforations in the flexible member, depending on the dimensional requirements of the door, window, or opening in question. Finally, it can be used to easily increase the locking points for a given sized window. This makes the window more secure and also allows it to pass higher test standards.
We have also improved the actuating assembly used in our invention. It has a simple three-piece structure. In general, it features a lower piece with a slot that runs parallel with and above the flexible member (or “locking tape”), and an upper piece with a slot oriented transverse to the direction of movement of the locking tape. In this configuration, the locking lever has a drive pin that extends into the locking tape and a pivot pin that extends upward into the slot running transverse to the tape. However, our actuating assembly can also be constructed with both slots and both pins on the same side of the locking lever. In either configuration, as the lever is rotated, the pivot pin moves along the length of the transverse slot while the tape drive pin drives along the direction of movement of the tape. This, in effect, creates a lever arm that is rotatable about two axes of rotation, one provided by the drive pin and the other provided by the pivot arm. The arrangement provides a low mechanical advantage and higher speed movement as the locking motion is commenced, and a greatly increased mechanical advantage and slower speed movement as the locking pins are driven home to pull the sash or door snuggly into a sealed closure with its frame. The arrangement also aligns the two pins with the direction of movement of the tape. Thus, when the sash or door is locked, it is not possible to pry into the edge of the frame and push against the locking pins to move the tape to an unlocked position.
These improvements serve to create a fenestration locking system that is similar in function but simpler and more effective in installation and application than prior art devices. Indeed, all a user generally needs for implementing our invention in a window or door opening is (1) a strip of flexible member; (2) one or more of our pins; (3) pin guides; (4) a corner bracket for guiding the flexible member around sharp corners; (5) keepers for placement on frame, door, or sash; and (6) an actuating assembly. There is no further need for fixed length locking bars with pins mounted on the locking bars in addition to guide plates supporting such pins or locking bars. These improvements also serve to create a single lever locking system that is significantly less expensive. Indeed, our improved actuating assembly is so compact that the locking lever can fit directly below the operator that opens and closes a sash, putting all the controls neatly in a single location and avoiding any interference with window blinds and curtains. These and the numerous other advantages of our invention will become evident upon review of the drawings and detailed description that follow.
Tape 1 serves as the flexible push-pull member in our design and can start at an actuating assembly (denoted generally by arrow 300). In the embodiments of our invention illustrated in
In our invention, both locking pin assemblies 100, 200 can be substantially identical in terms of their form and parts. Instead of having a locking pin permanently affixed to tape 1, the locking pins 5 of these embodiments have collars 5A that trap the locking pins 5 in place within guides 6 mounted on frame 4. Our locking pins 5 also have a coaxial motion transmitting pin 5B that extends into pin slots 7 in tape 1. (Only one pin slot 7 is denoted to avoid over-crowding of the drawing figures.) Collars 5A keep pins 5 trapped within guides 6 mounted to the casement side (frame 4) so that pins 5 extend outward to engage or disengage keepers 8 on the sash, when their motion transmitting pins 5B are moved up and down by tape 1.
The elimination of any permanent connection between our locking pins 5 and tape 1 greatly simplifies the installation of our invention. It also allows upper locking pin assembly 100 and lower locking pin assembly 200 with their respective locking pins 5 to be mounted to engage various pin slots 7 in tape 1. Tape 1 can be provided in rolls and can easily be trimmed to the length desired. This allows our locking pin assemblies 100, 200 to be affixed at virtually any location along frame 4.
Thus, both locking pin assemblies 100, 200 and actuating assembly 300 can be easily and simply positioned by the installer in any location desired or at any location dictated by the dimensional requirements of the fenestration opening. Some may choose to mount the actuating assembly 300 between locking pin assemblies 100, 200 on frame 4. Ultimately, all a user needs for adding the fenestration locking system of our invention to almost any window or door in almost any configuration is: (1) a strip of perforated tape 1; (2) pins 5 for the keepers 8 on the window sash or door; (3) pin guides 6 for frame 4; (4) a corner bracket 3 for guiding the tape 1 at the corner of the window or door frame; (5) keepers 8 for the sash or door; and (6) some type of actuating member to move tape 1. The foregoing components can be advantageously manufactured from a variety of materials, including plastics and metallic materials.
The preferred actuating member for our invention is actuating assembly 300, which can be best understood by reviewing
This arrangement provides a low mechanical advantage and higher speed movement as the locking motion is commenced and a greatly increased mechanical advantage and slower speed movement as the locking pins 5 are driven home to pull a sash or door snuggly against its frame. The arrangement also aligns the drive pin 41 and the pivot pin 42 with the direction of movement of tape 1 when the sash is locked. In this position, it is not possible to pry into the edge of the window or door and push against locking pin(s) 5 or drive pin 41 and move tape 1 to an unlocked position.
As illustrated in
In the embodiments of our invention illustrated in
Modified tape 1A of these embodiments is seated in a groove 400 in the edge of a door/sash 401. It extends around the corner of door/sash 401 and is held in place in the curved portion of groove 400 extending around the corner of door/sash 401 via a corner guide/cover 402. In general, however, modified tape 1A is held in place by cover strips 403. Cover strips 403 and modified tape 1A have specialized features to enable them to perform as required in this embodiment. First, the structure and positioning of cover strips 403 requires the use of fastening means positioned in a way that could, potentially, interfere with the function of modified tape 1A. The centrally positioned screw holes 403A of cover strips 403 require the placement of tape slots 1B in modified tape 1A in order to allow modified tape 1A to slide back and forth around screws fastening cover strips 403 to a door/sash 401 via screw holes 403A. Second, cover strips 403 serve the same general function as the guides 6 of the first embodiment. Thus, they must also be provided with slide slots 6A to allow pins 5 to be moved up and down by modified tape 1A. The keeper (not shown) for this embodiment will typically be incorporated into the frame for the fenestration opening with a gap in the frame allowing the locking pin 5 to be released and the sash or door to be unlocked.
In addition,
Other possible variations in our invention are illustrated in
In the preferred embodiments illustrated, retention member 350 is elongate with a first end 350A by which it is connected to actuating assembly 300 and a contact end 350B which contacts interior side 503. Preferably, retention member 350 is molded and formed as an integral portion of actuating assembly 300. Further, it should be noted that this system is completely different than current systems, which use overhanging flanges with screws fastening directly into the fenestration frame. Instead of using an overhanging flange with a screw boring into the fenestration frame outside of the borders of rout 500, our tightening system is arranged so that screw 504, its interface (screw head 504A), retention member 350 and gripping portion 351 are all located within the boundary defined by rout 500 and actuator rout opening 502.
As will also be noted, rout 500 penetrates completely through the fenestration frame 4 (or door/sash mounted in that frame) so that there is a handle rout opening opposite actuator rout opening 502. Handle 301A extends through the handle rout opening. Thus, while actuating assembly 300 is mounted in rout 500 by sliding it into actuator rout opening 502, handle 301A will typically be attached to receiver 301C of lever arm 40 by inserting it through a slotted escutcheon 600 (with snap connectors 601A for connecting it to actuating assembly 300) that serves to cover the handle rout opening.
Finally,
The foregoing variations and embodiments should not, however, be seen as exhaustive. The inventive concepts underlying our invention can give rise to numerous variations without exceeding the scope of our invention as better defined by the claims that follow.
This application is a Continuation-In-Part of copending parent application Ser. No. 10/154,246, filed 23 May 2002, entitled FENESTRATION LOCKING SYSTEM, which parent application claims the benefit of U.S. Provisional Application No. 60/294,533, filed on 30 May 2001. Both the parent application and the Provisional application are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1866684 | Van Der Leun | Jul 1932 | A |
2548578 | Andersson et al. | Apr 1951 | A |
4199176 | Kelly | Apr 1980 | A |
4602457 | Kreusel | Jul 1986 | A |
4739583 | Tonsmann et al. | Apr 1988 | A |
4807914 | Fleming et al. | Feb 1989 | A |
4887392 | Lense | Dec 1989 | A |
4937976 | Tucker et al. | Jul 1990 | A |
5118145 | Tucker | Jun 1992 | A |
5152103 | Tucker et al. | Oct 1992 | A |
5318333 | Dreifert | Jun 1994 | A |
5329869 | Freeman et al. | Jul 1994 | A |
5370428 | Driefert et al. | Dec 1994 | A |
5492377 | Guelck | Feb 1996 | A |
5533798 | Feldpausch et al. | Jul 1996 | A |
5741031 | Bauman et al. | Apr 1998 | A |
5927767 | Smith et al. | Jul 1999 | A |
5992907 | Sheldon et al. | Nov 1999 | A |
6135511 | Smith et al. | Oct 2000 | A |
6450554 | Rotondi et al. | Sep 2002 | B1 |
6523868 | Timothy | Feb 2003 | B1 |
6565133 | Timothy | May 2003 | B1 |
6651389 | Minter et al. | Nov 2003 | B2 |
7004515 | Timothy | Feb 2006 | B2 |
7219469 | DiFrancesco | May 2007 | B2 |
Number | Date | Country | |
---|---|---|---|
20070052247 A1 | Mar 2007 | US |
Number | Date | Country | |
---|---|---|---|
60294533 | May 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10154246 | May 2002 | US |
Child | 10980204 | US |