The present invention relates to an actuator, also known as a drive apparatus, and in particular to a gearbox for an actuator.
Existing actuators, such as the driving apparatus for car window lift systems, typically include a motor and a gearbox. The gearbox usually includes a transmission mechanism such as worm and worm gear. A drive gear is rotatably attached around a fixed shaft of the gearbox. An output shaft of the motor is meshed with the transmission mechanism. Upon power-on, the motor drives the transmission mechanism to rotate about the fixed shaft to drive a load. In order to ensure the stable connection between the transmission mechanism and the load, the fixed shaft is usually a metal shaft with high strength to make sure that the shaft does not deform or bend under load, affecting the stability of the connection. However, on the one hand, the metal shaft has a high material cost. On the other hand, after being initially shaped, the metal shaft needs further mechanical machining to form a sufficiently smooth surface to reduce the friction with the transmission mechanism. Therefore, the use of the metal shaft increases the overall cost of the gearbox.
Hence there is a desire for an actuator gearbox which has a low cost and provides a stable output.
Accordingly, in one aspect thereof, the present invention provides an actuator gearbox comprising: a lower housing comprising a support shaft, the support shaft being hollow and made of a plastic material; a gear received in the lower housing and supported by the support shaft for rotation relative to the lower housing; a cover disposed at one end of the lower housing; and a core shaft inserted into the support shaft, the core shaft being made of a metal material.
Preferably, the support shaft and the lower housing are integrally formed by injection molding.
Preferably, a center hole is formed in the support shaft, and the core shaft is an interference-fit in the center hole of the support shaft.
Preferably, the center hole is a blind hole with one end closed and the other end opened.
Preferably, at least a portion of an outer surface of the core shaft and an inner wall surface of the center hole form a gap there between.
Preferably, the center hole is a round hole, and at least a portion of the outer surface of the core shaft is formed with knurls.
Alternatively, the gap between the core shaft and the center hole is formed by a ventilation groove extending axially along the inner wall surface of the center hole.
Preferably, a ratio of a width of an opening of the ventilation groove in the center hole and a diameter of the center hole ranges from 0.1 to 0.5.
Preferably, the core shaft is made of steel.
Preferably, a ratio of a diameter of the core shaft to a diameter of the support shaft ranges from 0.1 to 0.75.
According to a second aspect, the present invention provides an actuator comprising: a motor; and a gearbox connected with the motor, the gearbox comprising: a lower housing comprising a support shaft, the support shaft being hollow and made of a plastic material; a gear received in the lower housing and supported on the support shaft for rotation relative to the lower housing; a cover disposed at one end of the lower housing; and a core shaft inserted into the support shaft, the core shaft being made of a metal material.
In comparison with the prior art, the support shaft of the gearbox of the present invention is made of plastic, which has a low cost and can be easily formed. In addition, the core shaft made of metal material is inserted into the support shaft, which ensures the strength of the whole shaft and maintains the stability of the connection while effectively reducing the cost.
A preferred embodiment of the invention will now be described, by way of example only, with reference to figures of the accompanying drawings. In the figures, identical structures, elements or parts that appear in more than one figure are generally labeled with a same reference numeral in all the figures in which they appear. Dimensions of components and features shown in the figures are generally chosen for convenience and clarity of presentation and are not necessarily shown to scale. The figures are listed below.
Referring to
The outer housing 14 includes a lower housing 20 and an end cover 22 connected with the lower housing 20. The lower housing 20 is a cylindrical structure with an open end. When viewed from the aspect illustrated in
In this embodiment, the center hole 26 is a blind hole with an opened bottom end and a closed top end. The core shaft 28 is cylindrical and elongated in shape, which is inserted into the center hole 26 from the bottom opening of the center hole 26. Preferably, a diameter of the core shaft 28 may be substantially equal to or slightly greater than a hole diameter of the center hole 26. Because the support shaft 24 is made of plastic, it produces a certain amount of deformation during the course of inserting the core shaft 28. After the core shaft 28 is inserted, the core shaft and the support shaft 24 form an interference-fit there between and are thereby fixed together. Because the core shaft 28 is made of metal, the core shaft 28 and the support shaft 24 together form an axle 30 with high strength which can withstand the loading applied by the worm gear without being deformed. Preferably, a ratio of a diameter of the core shaft 28 to a diameter of the support shaft 24 ranges from 0.1 to 0.75.
Referring to
Because the plastic support shaft 24 is integrally formed with the lower housing 20, the support shaft 24, upon being formed, can provide a smooth outer surface for supporting the worm gear 26 for rotation without further mechanic machining. In addition, the metal core shaft 28 is inserted into the support shaft 24, which can effectively enhance the strength of the support shaft 24 and prevent the support shaft 24 from being deformed under the torque applied to the worm gear 26. The forming of the entire support shaft structure of the present invention is simplified, more convenient and faster when compared with the conventional metal shaft. In addition, the material of the shaft support 24 is plastic, which has a lower material cost than metal and can thus reduce cost. Furthermore, the metal core shaft 28 is inserted into the center of the support shaft 24, which ensures that the entire support shaft structure have an enhanced strength and will not be deformed during rotation of the worm gear, and ensures stability of the transmission or connection to the load and reduced noise as well.
In the description and claims of the present application, each of the verbs “comprise”, “include”, “contain” and “have”, and variations thereof, are used in an inclusive sense, to specify the presence of the stated item or feature but do not preclude the presence of additional items or features.
It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable sub-combination.
The embodiments described above are provided by way of example only, and various other modifications will be apparent to persons skilled in the field without departing from the scope of the invention as defined by the appended claims.
For example, a non-standard cylindrical center hole such as a polygonal hole, e.g. a square hole or a hexagonal hole, is formed to replace the ventilation groove; or, the center hole is slightly tapered along the axial direction of the support shaft.
Number | Date | Country | Kind |
---|---|---|---|
201510345657.6 | Jun 2015 | CN | national |
This non-provisional patent application claims priority under 35 U.S.C. §119(a) from Patent Application No. 201510345657.6 filed in The People's Republic of China on Jun. 19, 2015, the entire contents of which are hereby incorporated by reference.