The present invention relates to an actuator for operating a vehicle door latch device in a locked state and an unlocked state.
An actuator in a vehicle door latch device comprises a motor, a worm wheel turned by the motor, and a locking lever (active lever) movable between a locking position and an unlocking position by manually operating means such as a key cylinder and a locking knob on a door and by a motor. One rotary surface of the worm wheel is rotatably supported on a casing and the other rotary surface of the worm wheel is selectively engagable with the locking lever to allow the locking lever to turn to the locking and unlocking positions with rotation of the worm wheel as described in Patent Literature 1.
However, in the actuator in the vehicle door latch device as above, when the locking lever moves to the locking or unlocking position with the worm wheel driven by the motor, further rotation of the locking lever is forcedly checked and a force toward a rotation axis exerts onto the worm wheel, so that the worm wheel may float toward the rotation axis. Thus, excessive load acts to a bearing of the worm wheel which is inclined toward the rotation axis thereby making the engagement of the worm wheel and worm gear of the motor less reliable, so that the locking lever is unlikely to move to locking and unlocking positions.
In view of the disadvantage, it is an object of the invention to provide an actuator in a vehicle door latch device in which a locking lever can be moved securely to locking and unlocking positions with rotation of a gear driven by a motor.
According to the present invention, the foregoing problems are solved as below.
The first invention provides an actuator in a vehicle door latch device that comprises a casing, a motor mounted to the casing, a gear pivotally mounted to the casing and a locking lever pivotally mounted to the casing and pivoted between a locking position and an unlocking position by manual operation of manually operating means on a door, characterized in that:
the gear comprises a first engagement projection on one of two rotary surfaces and a second engagement projection on the other rotary surface,
the locking lever comprising a first engagement arm facing closely the one rotary surface and a second engagement arm facing closely the other rotary surface and spaced at a predetermined angle radially from the first engagement arm,
wherein when the locking lever is in one position of the lock and unlocking positions, the gear is turned by the motor in one direction to allow the first engagement projection to abut on the first engagement arm in a rotational direction to turn the locking lever to the other position of the locking and unlocking positions, and the second engagement projection abuts on an end of the second engagement arm to allow the gear to stop at a first stop position,
wherein when the locking lever is in the other position of the locking and unlocking positions, the gear is turned by the motor to the other direction to allow the second engagement projection to abut on the second engagement arm in a rotational direction to allow the locking lever to one of the locking and unlocking positions, the first engagement projection abutting on the end of the first engagement arm to allow the gear to stop at the second stop position.
According to the second invention, in the first invention, when the gear is in the first and second positions, the first and second engagement projections are out of a turning path of the first and second engagement arms.
According to the third invention, in the first or second invention when the first engagement projection abuts on the end of the first engagement arm, the end of the first engagement arm is shaped such that a line of action of force from the first engagement projection to the locking lever becomes a direction that the locking lever turns to one of the locking and unlocking positions,
wherein when the second engagement projection abuts on the end of the second engagement arm, the end of the second engagement arm is shaped such that a line of action of force from the second engagement projection to the locking lever becomes a direction that the locking lever turns to the other of the locking and unlocking positions.
According to the actuator in a vehicle door latch device, both the rotatry surfaces of the gear are held between the first engagement arm and the second engagement arm of the locking lever, so that motion of the gear in a rotational axis can be held down at minimum. Thus, the locking lever can be turned smoothly and securely to the lock and unlocking positions.
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
One embodiment of the present invention will be described with respect to the drawings as below. In the following description, the back in
In
In
In the body 5, there is formed a bolt-inserting hole 51 through which the bolt 4 is put; a striker-engagement groove 52 in which the striker S engages when the door is closed, in the rear face; and a cylindrical support 54 projecting to a back plate 11 around an axial hole 53 into which a ratchet shaft 9 is inserted to support a ratchet 10 pivotally, in the front face in
The latch 8 is pivotally mounted via a latch shaft 7 in the body 5 and is forced by a spring 16 around the latch shaft 5 toward a standby position 8A drawn by two dotted lines in
The ratchet 10 is pivotally mounted via a ratchet shaft 9 in the body 5 and is forced by a spring 12 supported by a projection 55 integrally formed with the body 5 below the ratchet shaft 9 toward an engagement position in
In
In
In a full-latch position where the latch 8 engages the striker S as shown by a solid line in
When the door is closed, the striker S comes in striker-entering grooves 52,61 of the body 5 and the cover plate 6 to engage an engaging groove 81 of the latch 8. The latch 8 turns from the standby position 8A to the full-latch position against the force of the spring 16 around a pivot shaft 7. The ratchet 10 engages the pawl 82 of the latch 8 by a force of the spring 12 and prevents the latch 9 from turning toward the standby position, thereby holding the door closed.
When the door is closed, an outside handle (not shown) or an inside handle (not shown) disposed on the outer or inner side of the door respectively is operated, the ratchet 10 turns in a releasing direction (clockwise from
In
The opening lever 15 is held between the front face of the body 5 and the holding portion 112 of the back plate 11 and has an axial hole 154 which fits the holding portion 54 of the body 5 so that the opening lever 15 can pivot together with the ratchet 10 around the same axis. The opening lever 15 comprises a bent portion 151 at one end; a released portion 153 at the other end, and a canceled portion 152 bent from the releasing portion 153.
One end of the opening lever 15 is held between the front face of the body 5 and the holding portion 112 of the back plate 11. The bent portion 151 engages an engagement hole 101 of the ratchet 10 through an arcuate hole 56 of the body 5. Thus, the opening lever 15 is coupled to the ratchet 10 to pivot together anytime.
A releasing portion 211 of a second lift lever 21 of the operational unit 3 can abut on a released portion 153 of the opening lever 15 in an unlocked state. A canceling lever 23 of the operational unit 5 can abut on the canceled portion 152 in a locked state.
The canceled portion 152 and the released portion 153 at the other end of the opening lever 15 project forward from the holding portion 112 of the back plate 11. That is to say, the cancelled portion 152 and the released portion 153 of the opening lever 5 in abutment with the parts of the operational unit 3 are not held between the body 5 and the holding portion 112 of the back plate 11, but extends forward from the holding portion 112.
As mentioned above, the following advantages are achieved by pivoting the opening lever 15 around the cylindrical support portion 54 of the body 5 and holding one side with the axial hole 154 of the opening lever 15 between the front face of the body 5 and the holding portion 112 of the back plate 11.
1) Loosening of the opening lever 15 in a direction of the rotation axis (axis of the ratchet shaft 9) can be securely prevented even if neither a washier nor a spacer is mounted to the ratchet shaft 9.
2) Neither a washier nor a spacer is mounted to the ratchet shaft 9. So, the number of parts can be reduced, saving its cost.
3) One end and the other end of the ratchet shaft 9 are caulked and fixed to the axial hole 62 of the cover plate 6 and the axial hole 113 of the back plate 11 respectively, so that the ratchet shaft 9 can be firmly fixed to the cover plate 6 and the back plate 11 thereby improving support strength of the ratchet 10 and the opening lever 15.
Then, the operational unit 3 will be described in detail. In
The casing 13 comprises a first casing part 13a covering the front face of the body 4; and a second casing part 13B. The first casing part 13A is fixed to the body 5, and the second casing part 13B has an opening covered by the cover 14.
To the lower part of the second casing part 13b of the casing 13 is connected a lid member 130 which hides a coupling portion 193 of the locking lever 19, a coupling portion of the inside lever 22 and motion-transmitting members 30,32 coupled to the coupling portions 193, 221. The lid member 130 can open and close. The lid member 130 is open in
The first key lever 24 is pivoted around a shaft at the top of the second casing part 13B. The first key cylinder 24 is pivoted by a locking motion of a key cylinder (not shown) as manually operating means on the door outside the vehicle by predetermined angles in a locking direction (counterclockwise in
The second key lever 25 is pivoted around a shaft 31 integrally formed with the second casing part 13B between the second casing part 13B and the cover 14 and has an elongate hole 251 in which a projection at the lower end of the first key lever 24 fits. With the motion of the first key lever 24, the second key lever 25 pivots by predetermined angles from the neutral position in
A key switch 41 is provided close to the second key lever 25 in the second casing part 13B. By engaging a detecting arm 411 of the key switch 41 with the second key lever 25, the key switch 41 detects that the first and second key levers 24,25 turned from the neutral position in the unlocking and locking directions or that the key cylinder is operated for unlocking and locking.
The coordinating lever 26 is pivoted around the same axis as the second key lever 25 and turns between a locking position in
In the lower part of the coordinating lever 26, there is provided an elongate hole 262 coupled to the locking lever 19 and a detected portion 263 at the upper end. The locking and unlocking positions of the coordinating lever 26 are detected with the position detecting switch 42 by getting the abutted portion 263 to abut on or leave the position detecting switch 42 with rotation of the coordinating lever 26.
When the coordinating lever 26 is in the locking position in
The locking lever 19 is pivoted on a pivot shaft 29 which extends in a width direction of the vehicle. The pivot shaft 29 is integrally formed with the second casing part 13B between the second casing part 13B and the cover 14. By operating the key cylinder and a locking knob as manually operating means in the interior of the vehicle and turning a worm wheel 18 by a motor, the locking lever 19 turns between the locking position in
In FIGS. 8,9, a coupling portion 193 at the lower end of the locking lever 19 is coupled to the end of a motion-transmitting member 30 such as a cable via which motion of the locking knob can be transmitted. Locking or unlocking of the locking knob allows the locking lever 19 to move to the locking or unlocking position.
An upward-extending arm 194 is formed on a locking lever 19. In
Furthermore, the second projection 196 which projects toward the interior of the vehicle is formed on the side opposite the side on which the first projection 195 of the arm 194 is formed. The second projection 196 slides in the first elongate hole 201 of the first lift lever 20 to allow the locking lever 19 to be connected to the first lift lever 20.
First and second engagement arms 191,192 extend away from the pivot shaft 29. In
A rotary surface of the first engagement arm 191 closely faces one rotary surface (surface facing the cover 14) of the worm wheel 18 and the first engagement arm 191 can abut on first engagement projections 181,182 on the rotary surface of the worm wheel 18. A rotary surface of the second engagement arm 192 closely faces the other rotary surface (surface facing the second casing part 13B) of the worm wheel 18, and the second engagement arm 192 can abut on second engagement projections 183,184 of the other rotary surface of the worm wheel 18. The first and second engagement arms 191,192 are set to the length so as not to cross the axis of rotation of the worm wheel 18 when the locking lever 19 turns from the locking position to the unlocking position and vice versa.
In this embodiment, as mentioned above, both the rotary surfaces of the worm wheel 18 are held between the first engagement arm 191 which closely faces one rotary surface of the worm wheel 18 and the second engagement arm 192 which closely faces the other rotary surface of the worm wheel 18. The worm wheel 17 is tilted with respect to the axis of the rotation by force exerting onto the part where the worm 171 meshes with the worm wheel 18 when the worm wheel 18 is forcedly stopped from rotation. By the structure of the worm wheel 18 held between the first and second engagement arms 191 and 192, tilting of the worm wheel 18 with respect to a rotational axis is held down at minimum, which is advantageous in this invention. The advantage is achieved by the two rotary surfaces of the worm wheel 18 in abutment with the first engagement arm 191 and second engagement arm 192.
Furthermore, in this embodiment, as mentioned above, when the locking lever 19 turns from the locking position to the unlocking position and vice versa, the first and second engagement arms 191,192 are set to the lengths so as not to cross the axis of rotation of the worm wheel 18. Thus, the pivot shaft 28 for pivotally mounting the worm wheel 18 to the casing 13 is integrally formed with the casing 13, and the tip end is held on the cover 14, thereby improving the strength of the pivot shaft 28 and mounting the worm wheel 18 to the casing 13 rotationally and securely.
As clearly shown in
The worm wheel 18 is pivotally mounted to a pivot shaft 28 integrally formed with the second casing part 13B between the second casing part 13B and the cover 14. The worm wheel 18 meshes with the worm 171 attached to a rotary shaft of the motor 17 and rotates reversibly with the rotation of the motor 17. In
On one rotary surface (facing the cover 14) of the worm wheel 18, the first engagement projections 181,182 which abut on the first engagement arm 191 of the locking lever 19 are provided, and the second engagement projections 183,184 which abut on the second engagement arm 192 is provided on the other rotary surface (facing the second casing part 13B). The first engagement projections 181,182 and the second engagement projections 183,184 have the same shape and are provided at symmetrical positions of the sides.
The first and second engagement projections 181,182 are provided on the one rotary surface with respect to the center of rotation of the worm wheel 18. The second engagement projections 183,184 are provided on the other rotary surface with respect to the center of rotation of the worm wheel 18.
In each of the engagement projections 181,182,183,184, the width of the rotary surface gradually reduces as it gets away from the pivot shaft 28 and is constricted close to the pivot shaft 28. Thus, in
In
In
In the unlocking position in
Then, in
In
a) shows that the locking lever 19 abuts on a locking stopper 135 in the locking position which is the same state as that in
In the locked state, a switch in the interior of the vehicle or a portable switch is operated to unlock the door, and the motor 17 rotates in an unlocking direction. The worm wheel 18 turns at almost 80 degrees in an unlocking direction from
In
In the unlocked state in
In
In this embodiment, with the rotation of the worm wheel 18 by the motor 18, the locking lever 19 turns securely to the unlocked or locking position.
The end 191a of the first engagement arm 191 is determined such that the line of action of force to the locking lever 19 by the first engagement projection 181 or 182 becomes a direction for turning to the locking position when the locking lever 19 turns in a direction of locking in case that the first engagement projection 181 or 182 of the worm wheel 18 abuts on the end 191a of the first engagement arm 191 of the locking lever 19. Furthermore, the end 192a of the second engagement arm 192 is determined in shape such that the line of action of force from the second engagement projection 183 or 184 to the locking lever 19 becomes a direction of turning to the unlocking position when the locking lever turns in a direction for unlocking in case that the second engagement projection 183 or 184 abuts on the end 192a of the second engagement arm 192.
Describing the foregoing structure concretely with respect to
From the unlocked state in
From the locked state in
Furthermore, in this embodiment, the locking lever 19 can turn in the locking or unlocking position by turning the worm wheel 18 by the motor 17 even if the locking lever 19 stops between the locking and unlocking positions in
As mentioned above, the foregoing structure is achieved by sharpening the engagement projections 181,182 of the worm wheel 18. Not only in case that the locking lever 19 is in the locking and unlocking positions, but also in case that the locking lever 19 is between the locking and unlocking positions, either the first engagement projections 181,182 or second engagement projections 183,184 of the worm wheel 18 can abut on the inner periphery 191b of the first engagement arm 191 or inner periphery 192b of the second engagement arm 192. As clearly understood from
The outside lever 27 is pivotally mounted to a cylindrical pivot shaft 133 integrally formed with the lower part of the first casing part 13A, and is held between the end of an annular portion 134 and the back plate 11 around the pivot shaft 133 not to loosen axially. The pivot shaft 133 is connected to the back plate 11 with a tapping screw 34 put in from the outside for the casing 13 thereby improving rigidity of the pivot shaft 133 and pivoting the outside lever 27 to the first casing part 13A securely.
The outside lever 27 comprises a vehicle-inside connecting portion 271 and a vehicle-outside connecting portion 272 at the ends. The first and second lift levers 20,21 are coupled to the vehicle-inside connecting portion 271 flexibly at a predetermined angle. An outside handle on the door outside the vehicle is connected to the vehicle-outside connecting portion 272 via a vertical motion-transmitting member (not shown). When the outside handle is operated to open the door, the outside lever 27 turns from the standby position in
Under the vehicle-inside connecting portion 271 of the outside lever 27, there is provided a released abutment portion 273 which abuts on a releasing abutment portion 223 of the inside lever 22.
The inside lever 22 is pivotally mounted to a cylindrical pivot shaft 131 integrally formed with the second casing part 13B. Further describing the pivoting structure in
The pivot shaft 131 is connected to the cover 14 with the tapping screw 33 which is put from the outside of the casing 13, thereby improving rigidity of the pivot shaft 132 and pivotally mounting the inside lever 22 to the second casing part 13B securely.
To a coupling portion 221 at the lower end of the inside lever 22 is coupled a motion-transmitting member 32 via which motion of the inside handle (not shown) inside the vehicle can be transmitted. Thus, when the inside handle is operated to open the door, the inside lever 22 turns in an opening direction or clockwise from the standby position in
The inside lever 22 comprises the releasing abutment portion 223 which abuts on the released abutment portion 273. Thus, when the inside lever 223 is operated to open the door, the inside lever 22 turns from the standby position in the direction of opening the door.
The inside lever 22 has an abutment portion 222 which faces an abutted portion 187 at the lower end of the locking lever 19. When the inside handle is operated to open the door in
The vehicle-inside connecting portion 271 of the outside lever 27 is inserted in a drum-like hole 202 at the lower end of the first lift lever 20, so that the first lift lever 20 is pivotally mounted in a longitudinal direction of the vehicle around the vehicle-inside connecting portion 271.
A first vertically elongate hole 201 is formed at the side nearer to the outside of the vehicle of the first lift lever 20. A second projection 196 of the locking lever 19 slides vertically in the first elongate hole 201. The locking lever 19 turns from the locking position to the unlocking position or vice versa, so that the first lift lever 20 turns with the locking lever 19 from the locking position in
In the first elongate hole 201, there are formed two confirmation windows 203,204 which go through in the width direction of the vehicle. Through the confirmation windows 203,204, in assembling steps, an operator can confirm from the outside whether or not the second projection 196 of the locking lever 19 engages in the first elongate hole 201 of the first lift lever 20 securely.
The upper confirmation window 203 corresponds to the second projection 196 in position when the locking lever 19 and first lift lever 29 are in the locking position. The lower confirmation window 204 corresponds to the second projection 196 in position when the first lift lever 20 is in the unlocking position.
At the side of the first lift lever 20 facing the inside of the vehicle, a second elongate hole 205 having an L-shape is formed under the first elongate hole 201. An engagement portion 231 of the canceling lever 23 slides in the second elongate hole 205 vertically and longitudinally of the vehicle. The second elongate hole 205 does not overlap the first elongate hole 201 and is positioned below, thereby reducing thickness of the first lift lever 20 along the width of the vehicle.
The second lift lever 21 is movable together with the first lift lever 20 between the locking position in
The spring 37 engages with the first lift lever 20 at one end, and with the second lift lever 21 at the other end. Clockwise force is applied to the second lift lever 21 in
The second lift lever 21 has a releasing portion 211 which abuts on the released portion 153 of the opening lever 15. Thus, the second lift lever 21 moves upward with the first lift lever 20 to allow the releasing portion 211 to abut on the released portion 153, so that the opening lever 15 turns from the standby position in the direction of opening the door to release the ratchet 10 from the latch 8 thereby opening the door. But when the second lift lever 21 moves with the first lift lever 20 upward from the locking position, the releasing portion 211 swings without touching the released portion 153, and the opening lever 15 does not turn, so that the door cannot be opened.
This embodiment provides the structure with improved connection and more reliable operation of the first lift lever 20 with the second lift lever 21 and spring 37. As shown in
As shown in
Furthermore, in FIGS. 22,23, when the cylindrical shaft 208 of the first lift lever 20 is disposed in the circular hole 212 of the second lift lever 21, the engagement portions 209,209 engages with the surrounding of the circular hole 212, so that the second lift lever 21 is not easily removed from the cylindrical shaft 208. Thus, the first lift lever 20 can be connected to the second lift lever 21 provisionally in advance, thereby achieving the connection of the first lift lever 20 and second lift lever 21 to the outside lever 27 more effectively.
In
The canceling lever 23 is disposed between the second casing part 13B and the cover 14 and pivotally mounted on the pivot shaft 36 supported by the cover 14 and extending along the width of the vehicle. At the lower end of the canceling lever 23, there is provided an engagement portion 231 which slides in a second elongate hole 205 of the first lift lever 20, and at the upper part of the canceling lever, there is provided a canceled portion 232 which abuts on the canceling portion 152 of the opening lever 15.
In
By the foregoing structure, a locking knob is operated for locking when the door is open. Then, the door is closed and unlocked with canceling of the locking. With turning of the latch 8 when the door is closed, the ratchet 10 and opening lever 15 turn from the standby position in a direction of opening the door, so that the canceling portion 152 of the opening lever 15 abuts on the canceled portion 232 of the canceling lever 23. Thus, the canceling lever 23 turns counterclockwise from
The locking knob is operated for locking while the door is open and the door is closed while the outside handle is operated for opening the door. The locking is not canceled. That is to say, according to opening operation of the outside handle, the outside lever 27 turns in a direction of opening the door. When the first lift lever 20 moves upward from the locking position, the engagement portion 231 of the canceling lever 23 moves to a wider part of the second elongate hole 205 of the first lift lever 20. Thus, even when the door is closed and the canceling lever 23 turns counterclockwise from
The operation of one embodiment according to the present invention will be described as below.
When the door latch device 1 is in an unlocked state, the locking lever 19, first and second lift levers 20,21 and coordinating lever 26 are placed in the unlocking position. When the outside handle is operated to open the door, the outside lever 27 turns from the standby position against force of the spring 35 in the direction of opening the door to allow the vehicle-inside connecting portion 271 to move upward, so that the first and second lift levers 20,21 move upward from the unlocking position. The releasing portion 211 of the second lift lever 21 abuts on the released portion 153 of the opening lever 15 to turn the ratchet 10 and opening lever 15, so that the ratchet 10 leaves the latch 8 and the door can be opened.
When the door latch device 1 is in the unlocked state, the inside handle is operated to open the door, and the inside lever 22 turns from the standby position to allow the releasing abutment portion 223 of the inside lever 22 to abut on the released abutment portion 273 of the outside lever 27, so that the outside lever 27 turns from the standby position against the spring 35 in the direction for opening the door. Thus the door can be opened as the outside handle is operated to open the door.
When the door latch device 1 is in the locked state in
When the door latch device 1 is in the locked state, the inside handle is operated in the interior of the vehicle. The motion of the inside handle is transmitted to the inside lever 22 via the motion transmitting member 32. The inside lever 22 turns from the standby position around the pivot shaft 131 in the direction for opening the door, and in
Unlocking by the key cylinder is transmitted to the first key lever 24 thereby turning the first key lever 24 clockwise from a neutral position, which is transmitted to the second key lever 25 via the projection 241 of the first key lever 24 and the elongate hole 251 of the second key lever 25, which turns around the pivot shaft 31 counterclockwise from a neutral position in
The coordinating lever 26 turns around the pivot shaft 31 from the locking position to the unlocking position, which is transmitted to the locking lever 19 via the elongate hole 262 of the coordinating lever 26 and the projection 195 of the locking lever 19. The locking lever 19 turns around the pivot shaft 29 from the locking position to the unlocking position, which is transmitted to the first lift lever 20 via the projection 196 of the locking lever 19 and the first elongate hole 201 of the first lift lever 20.
The first and second lift levers 20,21 turn around the vehicle-inside connecting portion 271 of the outside lever 27 from the locking position to the unlocking position. After each of the levers moves to the unlocking position, the first and second lift levers 24,25 return to the neutral position. By pulling the key out of the key cylinder, it becomes the unlocked state in
In this case, the first and second engagement projections 181,182,183,184 of the worm wheel 18 in the first stop position are positioned out of the turning path of the first and second engagement arms 191,192 of the first locking lever 19. The first and second engagement arms 191,192 merely move along the rotary surface of the worm wheel 18, and the rotation of the locking lever 19 is not transmitted to the worm wheel 18. Unlocking by the locking knob is carried out by a weak force without reversing the worm wheel 18 or motor 17.
Locking by the key cylinder is transmitted to the first key lever 24. The first key lever 24 turns counterclockwise from the neutral position in
The second key lever 25 turns around the pivot shaft 31 from the neutral position in
Even in this case, the first and second engagement projections 181,182,183,184 of the worm wheel 18 in the second stop position are positioned out of the turning path of the first and second engagement arms 191,192 of the locking lever 19. Thus, the first and second engagement arms 191,192 of the locking lever 19 merely move along the rotary surface of the worm wheel 18, and the rotation of the locking lever 19 is not transmitted to the worm wheel 18. Locking of the locking knob can be achieved by a weak force without reversing the worm wheel 18 or motor 17.
Locking by the locking knob is transmitted to the locking lever 19 via the motion transmitting member 30. The locking lever turns from the unlocking position in
In this case, the first and second engagement projections 181,182,183,184 of the worm wheel 18 in the second stop position are out of the turning path of the first and second engagement arms 191,192 of the locking lever 19. The first and second engagement arms 191,192 of the locking lever 19 merely move along the rotary surface of the worm wheel 18, and the rotation of the locking lever 19 is not transmitted to the worm wheel 18. Locking by the locking knob can be achieved by weak force without reversing the worm wheel 18 or motor 17.
Unlocking by the locking knob is transmitted to the locking lever 19 via the motion transmitting member 30. The locking lever 19 turns from the locking position in
In this case, the first and second engagement projections 181,182,183,184 of the worm wheel 18 in the first stop position are out of the turning path of the first and second engagement arms 191,192 of the first locking lever 19. The first and second engagement arms 191,192 of the locking lever 19 merely move along the rotary surface of the worm wheel 18, and the rotation of the locking lever 19 is not transmitted to the worm wheel 18. Unlocking by the locking knob is achieved by a weak force without reversing the worm wheel 18 or motor 19.
When a switch is operated for locking to rotate the motor 17 in the locking direction, the worm wheel 18 turns clockwise around the pivot shaft 28 from the position in
When the locking lever 19 turns to the locking position, the first engagement projection 182 of the worm wheel 18 abuts on the end 191a of the first engagement arm 191 of the locking lever 19, so that the worm wheel 18 stops turning. Following the turning of the locking lever from the unlocking position to the locking position, the first and second lift levers 20,21 and coordinating lever 26 move from the unlocking position to the locking position and become the locked state.
When the switch is operated for unlocking, the motor turns in a direction of unlocking, and the worm wheel 18 turns counterclockwise around the pivot shaft 28 from the position in
The locking lever 19 turns to the unlocking position in
When the door latch device 1 is in the locked state, the outside handle (or the inside handle) is operated to open the door, the outside lever 27 turns in a direction of releasing. The releasing portion 211 of the second lift lever 21 swings without abutment with the released portion 153 of the opening lever 15 from the locking position, and the first and second left levers 20,21 are in an upward-moving state. Right after it, the switch is operated for unlocking, and with rotation of the motor 17 and the worm wheel 18, the locking lever 19 turns from the locking position in the direction of unlocking. In
Opening operation of the outside handle (or the inside handle) stops once, and the outside lever 27 returns to the standby position. In
Embodiments of the present invention are described as above. Without departing from the gist of the invention, various variations and changes as below may be made to the embodiments.
(i) One of the first engagement projections 181,182 is provided on one of the rotary surfaces of the worm wheel 18, and one of the second engagement projections 183,184 is provided on the other rotary surface.
(ii) The first key lever 24 is integrally formed with the second key lever 25.
(iii) A gear driven by the motor 17 is a spur gear instead of the worm wheel 18.
(iv) The motor 17, worm wheel 18 and locking lever 19 which constitute an actuator are provided in a casing for the actuator separately formed from the casing 13 of the door larch device 1. The locking lever 19 is connected to the door latch device 1 via a motion-transmitting member such as a cable, a rod or a link.
Number | Date | Country | Kind |
---|---|---|---|
2009-288867 | Dec 2009 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2010/067043 | 9/30/2010 | WO | 00 | 6/19/2012 |