It has been found that rotating agitators used in vacuum cleaners, floor sweepers, and the like, can collect a significant amount of various kinds of dirt and debris on the agitator itself. For example, the debris may include human and animal hairs, strings, threads, carpet fibers and other elongated fibers that wrap around or otherwise cling to the agitator. It has also been found that accumulated debris can reduce the performance of the agitator in a variety of ways. For example, debris may cover the agitation bristles and diminish the agitator's ability to agitate a surface. Further, debris on the agitator may impede the rotation of the agitator by wrapping around the axle or by creating additional friction with the cleaning head. If not removed, such debris can also accumulate on or migrate to the ends of the agitator and enter the bearing areas where it may cause binding, remove bearing lubrication, or otherwise generate high friction, excessive heat, or other undesirable conditions that can damage the bearings or mounting structure. In addition, debris collected on the agitator may create an imbalance in the agitator that may result in sound and/or vibrations when the agitator rotates.
Debris that has collected on an agitator is often difficult to remove because it has wrapped tightly around the agitator and intertwined with the bristles. Users of a cleaning device often must invert the device and remove the debris with manual tools such as knives, scissors or other implements. Manual removal can be unsanitary, time consuming, and, if the user fails to follow instructions to deactivate the vacuum, may expose the user to contact with a moving agitator.
Some known devices use mechanisms and features to facilitate removing elongated fibers, such as string and hair, that may become wrapped around an agitator during use. For example, some agitators are provided with integral grooves that allow access by a pair of scissors or a knife blade to manually cut the fiber. Other cleaning devices use comb-like mechanisms to attempt to remove fibers. One example is shown in U.S. Pat. No. 2,960,714, which is incorporated herein by reference.
It is also known to provide features to clean rotating agitators. For example, U.S. Pat. No. 8,601,643 (“the '643 patent”), which is incorporated herein by reference, describes a variety of agitator cleaning devices that remove fibers that are wound around the agitator. In the device in the '643 patent, the agitator is provided with a raised support surface that provides a firm backing against which the blade presses to pinch and cut the fibers. Devices such as the one in the '643 patent have been found to be effective for simple and durable user-friendly cleaning. Other agitator cleaning devices include those shown in U.S. Pat. Nos. 2,960,714; 2,642,617; and 804,213, which are also incorporated herein by reference.
While various features of vacuum cleaner agitators and agitator cleaning devices are known, there still exists a need to provide alternatives, modifications, and improvements to such devices.
In one exemplary embodiment, there is provided a vacuum cleaner head having a housing extending along a longitudinal direction from a first end of the housing to a second end of the housing, one or more supports extending in a downward direction that is perpendicular to the longitudinal direction from the housing to a first support point located proximate to the first end of the housing, a and suction opening provided through the housing and facing in the downward direction, an agitator chamber located above and in fluid communication with the suction opening. The vacuum cleaner head also includes an agitator having a spindle rotatably mounted to the housing to rotate about a rotation axis that extends through the agitator chamber, and one or more agitating devices projecting from the spindle to a first radial height. A cleaning member is movably mounted to the housing to move between a first cleaning member position in which the cleaning member does not engage the agitator, and a second cleaning member position in which the cleaning member engages the agitator to remove debris from the agitator during rotation of the agitator. A pedal is connected to the housing and movable between a first pedal position in which the pedal does not place the cleaning member in the second cleaning member position, and a second pedal position in which the pedal places the cleaning member in the second cleaning member position. The pedal has an activation surface configured to receive an activation force from an operator to move the pedal from the first pedal position to the second pedal position. The activation surface is configured such that application of the activation force on the pedal generates a moment force to bias the agitator away from the downward direction.
Other embodiments may include additional or alternative features. For example, the vacuum cleaner head may include an anti-rotation support located at the first end of the housing and positioned to limit how far the housing can rotate about the first support point upon application of the activation force. As another example, the pedal may be operatively connected to the cleaning member by a linkage, such as a linear slide configured to convert a first rotational movement of the pedal about a first pivot into a second rotational movement of the cleaning member about a second pivot to move the cleaning member from the first cleaning member position to the second cleaning member position.
It will be appreciated that this Summary is not intended to limit the claimed invention in any way.
A better understanding of the exemplary embodiments may be understood by reference to the attached drawings, in which like reference numbers designate like parts. The drawings are exemplary, and not intended to limit the claims in any way.
The present invention is directed to agitator cleaning devices, and particularly to devices that remove material from the agitator as the agitator rotates. It has been determined that such agitator cleaning devices typically are used while the vacuum cleaner (or other floor cleaning device to which the agitator is attached) remains stationary in one location on the floor. Thus, the rotating agitator may remain in contact with a single spot on the floor during the entire agitator cleaning process. This can lead to excessive abrasion or even burning or melting of the underlying floor, particularly where the floor comprises a soft or delicate carpet fiber.
It has been found that this problem can be exacerbated by certain mechanisms that are used to operate the agitator cleaner. For example, some devices use a foot-operated pedal located approximately above the agitator. In these cases, a downward force on the operation pedal may also generate a force that presses the agitator against the floor. This additional force can increase the likelihood that the rotating agitator will damage the underlying floor.
To counteract the possibility that the force F1 will damage the underlying carpet, the vacuum cleaner 10 may be equipped with a mechanism to lift the agitator 18 away from the floor 24 whenever the vacuum cleaner 10 is placed in the illustrated upright position, or whenever the brushroll cleaning mechanism is operated. Such lifting devices are known and illustrated, by way of non-limiting examples, in U.S. Pat. No. 4,446,594 and U.S. application Ser. No. 13/838,035, which are incorporated herein by reference. Other measures also may be taken, such as limiting the amount of time that the brush motor continues to operate during the cleaning operation, or modifying the agitator bristles to reduce the possibility that they can damage the floor. However, such approaches may have certain drawbacks. For example, such solutions may add cost and complexity to the device.
Another example of a device that could suffer from the foregoing problem of increased likelihood of floor damage is the device shown in the '643 patent. For example, the embodiment of
It has been determined that the likelihood of experiencing excessive downward force on the agitator during the agitator cleaning operation can be mitigated, and possibly eliminated, by providing an agitator cleaning mechanism that generates a neutral (i.e., essentially zero) or negative (i.e., lifting) force on the agitator during agitator cleaning. Exemplary embodiments of such an agitator cleaning mechanism are now described in detail.
The base 102 extends in a longitudinal direction 110 that is parallel to the underlying floor 112, and aligned with the fore-aft direction in which the base 102 is generally moved during floor cleaning. The pivot 106 may comprise a single-axis joint with a pivot axis 108 that is perpendicular to the longitudinal direction 110 and parallel to the floor 112. This direction is referred to herein as the lateral direction. Other alternatives may use multiple-axis joints, which rotate about two or more separate pivot axes, as known in the art.
Referring also to
The agitator 114 may be driven by gears, pulleys, belts, or the like, as known in the art. For example, the shown agitator 114 is driven by a belt 164 that may be powered by a spindle 165 driven by the main suction fan motor of the vacuum cleaner, or by a separate dedicated electric motor 167. Such arrangements are well-known in the art, and need not be described in more detail herein.
The agitator 114 preferably includes one or more agitating devices (bristles, flaps, etc.), such as one or more helical rows of bristles 124. The agitating devices may extend from the spindle 118 to a first radial height (i.e., a first distance, as measured in the radial direction from the agitator rotation axis 122). The first radial height preferably is sufficiently large enough that the ends of the agitating devices extend through the suction opening 126 to contact an underlying floor 112. However, some or all of the agitating devices may not extend this far. A variety of different agitating devices that extend to multiple different radial heights (e.g., a combination of two helical rows of bristles interposed between two somewhat shorter helical flaps) may be used in alternative embodiments. Furthermore, the agitator 114 may be movable relative to the base 102 to selectively retract the agitating devices so that they do not extend through the suction opening 126, as may be desirable during bare floor cleaning.
An agitator cleaning mechanism 128 is also provided in the base 102. The agitator cleaning mechanism 128 may comprise any apparatus that is used to remove dirt, fibers, or the like from the agitator 114. As one example, the agitator cleaning mechanism 128 comprises a blade 130 that is selectively movable into contact with the agitating devices (e.g., bristles 124) as the agitator 114 is rotated, in order to remove dirt and particularly wrapped fibers from the agitator 114. The blade 130 may comprise spring steel or other materials, and may have a sharpened edge. The blade 130 also may be somewhat flexible to limit the amount of force that is generated between the blade 130 and agitator 114. The blade 130 also may be formed as multiple independently-moveable blade parts that extend in parallel and may be placed end-to-end or overlapping one another. If desired, the blade 130 also may be replaced by a comb-like structure or other structures that are suitable for cleaning material from the agitator 114.
To agitator cleaning mechanism 128 also may include one or more rigid friction surfaces 132 on the agitator 114, against which the blade 130 bears to help strip away fibers. As shown in
The friction surfaces 132 preferably comprise one or more helical protrusions. For example, the embodiment of
The blade 130 is mounted to the base 102, preferably at a location adjacent the agitator 114, and movable between a first position in which the blade 130 is spaced from the agitator 114, and a second position in which the blade engages the agitator 114 to clean away debris. In the second position, the blade 130 may contact the friction surface 132 at one or more locations. To provide such movement, the blade 130 may be mounted to the base 102 by a pivot 134. Alternative embodiments may use sliding mounts or other kinds of movable connections. A spring 136 may be provided to automatically return the blade 130 to the first position when agitator cleaning is not desired.
Further details of the exemplary cleaning mechanism 128 and other alternative embodiments are found in the '643 patent, and U.S. application Ser. Nos. 13/838,035; 14/357,460; 14/357,449; and 14/357,466 (as well as other references noted herein), which are incorporated herein by reference. It will be understood that the inventions described herein relate to agitator cleaning mechanisms in general, and may be used with the foregoing examples or any other kind of mechanism that selectively cleans dirt, and particularly elongated fibers like string and hair, from the agitator 114.
The agitator cleaning mechanism 128 is operated by a pedal 138 on the base 102. In the shown example, the pedal 138 is mounted on the base 102 by a pedal pivot 140, which allows the pedal 138 to rotate relative to the base 102 about a predetermined range of movement. The pivot may be replaced by sliding connections and other movable connections in other embodiments. A linkage operatively connects the pedal 138 to the blade 130. Any suitable linkage may be used. For example, the linkage may comprise a linear slide 142 that has a first end 144 adjacent the pedal 138 and a second end 146 adjacent the blade 130. The slide 142 is mounted on a track (e.g., a channel formed in the base 102) to reciprocate along a linear direction extending between the first and second ends 144, 146. A spring 148 is provided to bias the slide 142 in a direction towards the first end 144.
The first end 144 of the slide 142 is positioned and shaped to be contacted and pressed by the pedal 138 when the pedal 138 is depressed by a user. In this example, the pedal 138 is shaped as an “L”, with the pivot 140 at the corner of the “L”, one leg of the “L” being positioned to receive a user's foot or hand, and the other leg of the “L” abutting the first end 144 of the slide 142. The second end 146 of the slide 142 is positioned and shaped to move the blade 130 from the first position (inactive) to the second position (agitator cleaning). For example, the second end 146 may be shaped with a cam surface 150 that abuts an arm 152 that is rigidly connected to the blade 130. In this embodiment, pressing the pedal 138 downward moves the slide 142 towards the second end 146, and the cam surface 150 presses the arm 152 upwards to rotate the blade 130 downward into engagement with the agitator 114. When pressure on the pedal 138 is released, the spring 148 moves the slide 142 back towards the first end 144 and the first end 144 pushes the pedal 138 back to the inactive position, and the blade spring 136 lifts the blade 130 away from the agitator 114.
Other embodiments may use other mechanisms to operatively connect the pedal 138 to the blade 130. For example, the slide spring 148 may be removed if the blade spring 136 is sufficiently strong to return all of the parts to their inactive position when the user stops pressing the pedal 138. As another example, the cam surface 150 and arm 152 may be replaced by a pin-in-slot arrangement that provides two-way position control, so that the slide 142 pulls the blade 130 into the inactive position as it moves back towards the first end 144 (which can eliminate the need for a separate blade spring 136). The slide 142 or other parts also may include a resilient member (e.g., a compression spring) through which the force is applied, and such a resilient member can be configured to compress to allow the blade 130 to flex away from the fully-operative position in the event a large object is wrapped around the agitator 114. The blade 130 itself may be formed as the resilient member, as described in the incorporated references. Other embodiments may use other mechanisms to operate the agitator cleaning mechanism, such as multiple pivoting links, gears, belts, and the like. Other alternatives will be readily apparent to persons of ordinary skill in the art in view of the present disclosure.
Referring now to
The agitator 114 is located, with respect to the longitudinal direction 110, such that it contacts the floor 112 in front of the rear wheel contact point 162. The agitator also may be located proximate to a front end 116 of the base 102. The base 102 also may include one or more front supports 160, such as wheels, skids or ball rollers, located to contact the floor 112 at a point between the rear wheel contact point 162 and the front end 116. The front supports 160 may be movable to selectively raise and lower the agitator 114 relative to the floor 112.
As noted above, it has been found that some agitator cleaning devices are configured in such a way that the force applied to activate the agitator cleaning device also tends to press the agitator 114 into the underlying floor 112 material. This increases the likelihood that the rotating agitator 114 will damage the floor 112, unless countermeasures are taken to prevent such damage. For example,
To address this problem, the pedal 138 of the exemplary embodiment is located and oriented such that the operating force applied to the pedal 138 does not press the agitator 114 into the floor 112, and may in fact reduce the existing contact force between the agitator 114 and the floor 112. Embodiments providing this arrangement may be may be configured in various ways, as explained by the following examples.
As a first example, the embodiment of
In practice, the agitator 114 may not actually perceptibly move away from the floor 112, due to flexure of the pedal 138 and other parts of the linkage that joins the pedal 138 to the agitator cleaning mechanism 128, or flexure of the underlying floor 112. For example, if the base 102 is on a particularly soft floor 112, such as a very high pile rug, the activation force F2 may initially generate an increased downward force across the base 102 to press the rear wheels 154 deeper into the rug, and the overall lifting effect at the agitator 114 may not be as pronounced as it would be on a harder floor surface. However, even in these cases it is expected that the activation force F2 will not appreciably increase the force of contact between the agitator 114 and the floor 112, and is more likely to decrease the force of such contact.
The activation force F2 in the embodiment of
A second example is shown in
Another example is shown in
A final example is shown in
It will be appreciated that embodiments may be implemented in any kind of vacuum cleaner or surface cleaner that uses a user-operated mechanism to activate a rotating agitator cleaning mechanism. For example, embodiments may be used in “sweeper” devices that lack a vacuum source. As another example, embodiments may be used in upright vacuum cleaners (as shown), stick vacuum cleaners 172 such as the one shown in
The present disclosure describes a number of new, useful and nonobvious features and/or combinations of features that may be used alone or together. The embodiments described herein are all exemplary, and are not intended to limit the scope of the inventions. It will be appreciated that the features shown and described in the documents incorporated herein by reference may be added to embodiments in a manner corresponding to the use of such features in the incorporated references. It will also be appreciated that the inventions described herein can be modified and adapted in various ways, and all such modifications and adaptations are intended to be included in the scope of this disclosure and the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
804213 | Chaplin | Nov 1905 | A |
969441 | Backer | Sep 1910 | A |
1231077 | Scheffler | Jun 1917 | A |
1268963 | Gray | Jun 1918 | A |
1412420 | Polansky | Apr 1922 | A |
1757461 | Losey | May 1930 | A |
1813325 | Smith | Jul 1931 | A |
1820350 | Dance | Aug 1931 | A |
1907692 | White | May 1933 | A |
1965614 | Sellers | Jul 1934 | A |
1999696 | Kitto | Apr 1935 | A |
2032345 | Cranon | Mar 1936 | A |
2625698 | De Kadt | Jan 1953 | A |
2642601 | Saffioti | Jun 1953 | A |
2642617 | Lilly | Jun 1953 | A |
2663045 | Conway | Dec 1953 | A |
2733000 | Sparklin | Jan 1956 | A |
2741785 | Siebert | Apr 1956 | A |
2789306 | Kath | Apr 1957 | A |
2904818 | Sheahan | Sep 1959 | A |
2960714 | Senne | Nov 1960 | A |
2975450 | Williams | Mar 1961 | A |
3268936 | Fukuba | Aug 1966 | A |
3470575 | Larson | Oct 1969 | A |
3536977 | Porter | Oct 1970 | A |
3683444 | Schaefer | Aug 1972 | A |
3722018 | Fisher | Mar 1973 | A |
3862467 | Krickovich | Jan 1975 | A |
3863285 | Hukuba | Feb 1975 | A |
3928884 | Sutter | Dec 1975 | A |
4020526 | Johansson | May 1977 | A |
4084283 | Rosendall | Apr 1978 | A |
4171554 | Tschudy | Oct 1979 | A |
4173054 | Ando | Nov 1979 | A |
4193710 | Pietrowski | Mar 1980 | A |
4209872 | Maier | Jul 1980 | A |
4317253 | Gut | Mar 1982 | A |
4352221 | Revells | Oct 1982 | A |
4370690 | Baker | Jan 1983 | A |
4370777 | Woerwag | Feb 1983 | A |
4372004 | Vermillion | Feb 1983 | A |
4373228 | Dyson | Feb 1983 | A |
4398231 | Currence | Aug 1983 | A |
4426751 | Nordeen | Jan 1984 | A |
4573235 | Baird, Sr. | Mar 1986 | A |
4654924 | Getz | Apr 1987 | A |
4702122 | Richard | Oct 1987 | A |
4802254 | Lahndorff | Feb 1989 | A |
4847944 | Lackner | Jul 1989 | A |
4875246 | MacGregor | Oct 1989 | A |
4920605 | Takashima | May 1990 | A |
4953253 | Fukuda et al. | Sep 1990 | A |
4989293 | Bashyam | Feb 1991 | A |
5075922 | Tsuchida | Dec 1991 | A |
5115538 | Cochran | May 1992 | A |
5121592 | Jertson | Jun 1992 | A |
5203047 | Lynn | Apr 1993 | A |
5243732 | Koharagi | Sep 1993 | A |
5287581 | Lo | Feb 1994 | A |
5394588 | Kweon | Mar 1995 | A |
5452490 | Brundula | Sep 1995 | A |
5482562 | Abernathy | Jan 1996 | A |
5657503 | Caruso | Aug 1997 | A |
5657504 | Khoury | Aug 1997 | A |
5698957 | Sowada | Dec 1997 | A |
5974975 | Seefried | Nov 1999 | A |
6042656 | Knutson | Mar 2000 | A |
6123779 | Conrad | Sep 2000 | A |
6131238 | Weber | Oct 2000 | A |
6170119 | Conrad | Jan 2001 | B1 |
6253414 | Bradd | Jul 2001 | B1 |
6266838 | Caruso | Jul 2001 | B1 |
6282749 | Tajima | Sep 2001 | B1 |
6286180 | Kasper | Sep 2001 | B1 |
6289552 | McCormick | Sep 2001 | B1 |
6351872 | McCormick | Mar 2002 | B1 |
6367120 | Beauchamp | Apr 2002 | B2 |
6502277 | Petersson | Jan 2003 | B1 |
6539575 | Cohen | Apr 2003 | B1 |
6539577 | Okuda | Apr 2003 | B1 |
6605156 | Clark | Aug 2003 | B1 |
6810559 | Mertes | Nov 2004 | B2 |
6883201 | Jones | Apr 2005 | B2 |
6892420 | Haan | May 2005 | B1 |
7143461 | Spooner | Dec 2006 | B2 |
7159276 | Omoto | Jan 2007 | B2 |
7163568 | Sepke | Jan 2007 | B2 |
7171723 | Kobayashi | Feb 2007 | B2 |
7228593 | Conrad | Jun 2007 | B2 |
7237298 | Reindle | Jul 2007 | B2 |
7243393 | Matusz | Jul 2007 | B2 |
7293326 | Hawkins | Nov 2007 | B2 |
7627927 | Blocker | Dec 2009 | B2 |
7631392 | Meitz | Dec 2009 | B1 |
7731618 | Burlington | Jun 2010 | B2 |
8087117 | Kapoor | Jan 2012 | B2 |
8418303 | Kapoor | Apr 2013 | B2 |
8567009 | Krebs | Oct 2013 | B2 |
8601643 | Eriksson | Dec 2013 | B2 |
8671515 | Eriksson | Mar 2014 | B2 |
9072416 | Kowalski | Jul 2015 | B2 |
9186030 | Jung | Nov 2015 | B2 |
9314140 | Eriksson | Apr 2016 | B2 |
20020007528 | Beauchamp | Jan 2002 | A1 |
20040172769 | Giddings | Sep 2004 | A1 |
20040181888 | Tawara | Sep 2004 | A1 |
20040244140 | Joo | Dec 2004 | A1 |
20050015916 | Orubor | Jan 2005 | A1 |
20050015922 | Lim | Jan 2005 | A1 |
20050091788 | Forsberg | May 2005 | A1 |
20060000053 | Lim | Jan 2006 | A1 |
20060037170 | Shimizu | Feb 2006 | A1 |
20060162121 | Naito | Jul 2006 | A1 |
20060272122 | Butler | Dec 2006 | A1 |
20060288517 | Oh | Dec 2006 | A1 |
20070079474 | Min | Apr 2007 | A1 |
20080052846 | Kapoor | Mar 2008 | A1 |
20080289141 | Oh et al. | Nov 2008 | A1 |
20090000057 | Yoo | Jan 2009 | A1 |
20090100636 | Sohn | Apr 2009 | A1 |
20090229075 | Eriksson | Sep 2009 | A1 |
20100107359 | Yoo | May 2010 | A1 |
20100205768 | Oh | Aug 2010 | A1 |
20100287717 | Jang | Nov 2010 | A1 |
20100313912 | Han | Dec 2010 | A1 |
20110035900 | Chae | Feb 2011 | A1 |
20120013907 | Jung | Jan 2012 | A1 |
20120124769 | Krebs | May 2012 | A1 |
20130007982 | Yun | Jan 2013 | A1 |
20130008469 | Yun | Jan 2013 | A1 |
20130042429 | Misumi | Feb 2013 | A1 |
20130055522 | Hawkins | Mar 2013 | A1 |
20130192021 | Eriksson | Aug 2013 | A1 |
20130192022 | Eriksson | Aug 2013 | A1 |
20130192023 | Eriksson | Aug 2013 | A1 |
20130192024 | Eriksson | Aug 2013 | A1 |
20130198995 | Eriksson | Aug 2013 | A1 |
20140259521 | Kowalski | Sep 2014 | A1 |
20140304941 | Eriksson | Oct 2014 | A1 |
20140331446 | Eriksson | Nov 2014 | A1 |
20140352104 | Eriksson | Dec 2014 | A1 |
20140366300 | Eriksson | Dec 2014 | A1 |
20160015233 | Uphoff | Jan 2016 | A1 |
Number | Date | Country |
---|---|---|
2466000 | May 2003 | CA |
1457742 | Nov 2003 | CN |
1593320 | Mar 2005 | CN |
2746989 | Dec 2005 | CN |
1816300 | Aug 2006 | CN |
1816301 | Aug 2006 | CN |
1883354 | Dec 2006 | CN |
101310666 | Nov 2008 | CN |
101686783 | Mar 2010 | CN |
101984742 | Mar 2011 | CN |
102334943 | Feb 2012 | CN |
102462450 | May 2012 | CN |
102010017211 | Dec 2011 | DE |
102010017258 | Dec 2011 | DE |
0649625 | Apr 1995 | EP |
1415583 | May 2004 | EP |
1442693 | Aug 2004 | EP |
1642520 | Apr 2006 | EP |
1994869 | Nov 2008 | EP |
2253258 | Nov 2010 | EP |
2273906 | Jan 2011 | EP |
2543301 | Jan 2013 | EP |
1068296 | Jun 1954 | FR |
2855742 | Dec 2004 | FR |
2000963 | Jan 1979 | GB |
2231778 | Nov 1990 | GB |
4944560 | Apr 1974 | JP |
50114057 | Sep 1975 | JP |
61062426 | Mar 1986 | JP |
05095868 | Apr 1993 | JP |
5095868 | Apr 1993 | JP |
05103740 | Apr 1993 | JP |
5305044 | Nov 1993 | JP |
0686743 | Mar 1994 | JP |
6086743 | Mar 1994 | JP |
0856877 | Mar 1996 | JP |
08056877 | Mar 1996 | JP |
08289862 | Nov 1996 | JP |
2002165731 | Jun 2002 | JP |
2003047577 | Feb 2003 | JP |
2003125991 | May 2003 | JP |
2005160578 | Jun 2005 | JP |
2005211426 | Aug 2005 | JP |
2008000382 | Jan 2008 | JP |
2008188319 | Aug 2008 | JP |
2008278947 | Nov 2008 | JP |
2009022644 | Feb 2009 | JP |
9210967 | Jul 1992 | WO |
2008099583 | Aug 2008 | WO |
2009117383 | Sep 2009 | WO |
2010041184 | Apr 2010 | WO |
2013060365 | May 2013 | WO |
2013060879 | May 2013 | WO |
2013060880 | May 2013 | WO |
2013113395 | Aug 2013 | WO |
2014094869 | Jun 2014 | WO |
2014177216 | Nov 2014 | WO |
Entry |
---|
Notice of Allowance dated Apr. 24, 2015 for U.S. Appl. No. 13/838,035. |
Entire patent prosecution history of U.S. Appl. No. 14/651,059, filed Jun. 10, 2015, entitled, “Cleaning Arrangement for a Rotatable Member of a Vacuum Cleaner, Cleaner Nozzle, Vacuum Cleaner and Cleaning Unit.” |
Entire patent prosecution history of U.S. Appl. No. 14/702,034, filed May 1, 2015, entitled, “Cleaning Nozzle for a Vacuum Cleaner.” |
Entire patent prosecution history of U.S. Appl. No. 14/730,833, filed Jun. 4, 2015, entitled, “Vacuum Cleaner Agitator Cleaner With Agitator Lifting Mechanism.” |
International Search Report for International Application No. PCT/EP2012/076620 dated Jul. 23, 2013. |
Non-Final Office Action dated Apr. 16, 2015 for U.S. Appl. No. 14/354,460. |
Office Action dated May 20, 2015 for U.S. Appl. No. 13/835,691. |
Notice of Allowance dated Jun. 24, 2015 for U.S. Appl. No. 13/826,855. |
Office Action dated Jul. 7, 2015 for U.S. Appl. No. 13/826,934. |
Chinese Office Action dated Jul. 1, 2015 for Chinese Application No. 201310485330.X, including English language translation. |
Chinese Office Action dated Jul. 14, 2015 for Chinese Application No. 201310479507.5, including English language translation. |
Chinese Office Action dated Jul. 3, 2015 for Chinese Application No. 201310485943.3, including English language translation. |
Chinese Office Action dated Jun. 30, 2015 for Chinese Application No. 201310485447.8, including English language translation. |
International Preliminary Report on Patentability for International Application No. PCT/IB2014/001050 dated Sep. 15, 2015. |
International Preliminary Report on Patentability for International Application No. PCT/IB2014/001256 dated Sep. 15, 2015. |
Notice of Allowance dated Sep. 10, 2015 for U.S. Appl. No. 13/826,630. |
Notice of Allowance dated Oct. 9, 2015 for U.S. Appl. No. 14/354,460. |
Notice of Allowance dated Oct. 16, 2015 for U.S. Appl. No. 13/835,691. |
Final Office Action dated Nov. 30, 2015 for U.S. Appl. No. 13/826,934. |
Notice of Allowance dated Dec. 31, 2015 for U.S. Appl. No. 13/826,630. |
Notice of Allowance dated Dec. 15, 2015 for U.S. Appl. No. 13/835,691. |
Notice of Allowance dated Dec. 23, 2015 for U.S. Appl. No. 14/354,460. |
International Search Report dated Dec. 10, 2013 for International Application No. PCT/EP2013059148. |
International Search Report and Written Opinion for International Application No. PCT/IB2015/001873, dated Feb. 4, 2016. |
Notice of Allowance dated Feb. 11, 2016 for U.S. Appl. No. 13/826,934. |
Japanese Office Action dated Dec. 15, 2015 for Japanese Application No. 2014-555092 with translation. |
Chinese Office Action dated Nov. 27, 2015 for Chinese Application No. 201280068532.8 with translation. |
Non Final Office Action for U.S. Appl. No. 14/730,833, dated May 19, 2016. (pp. 1-31). |
Chinese Office Action dated Apr. 1, 2016 for Chinese Application No. 201280076273.3 with translation. (pp. 1-17). |
Chinese Office Action for Chinese Application No. 201310485447.8, dated Feb. 14, 2016. (pp. 1-5). |
Chinese Office Action dated Feb. 29, 2016 for Chinese Application No. 201310485330.X with translation. (pp. 1-9). |
Non Final Office Action for U.S. Appl. No. 14/354,449, dated Aug. 11, 2016, 45 pages. |
Japanese Office Action for Japanese Application No. 2014-537645, dated Jun. 14, 2016 with translation, 5 pages. |
Japanese Office Action for Japanese Application No. 2014-555092, dated May 24. 2016 with translation, 5 pages. |
Non Final Office Action for U.S. Appl. No. 14/888,275, dated Dec. 2, 2016, 24 pages. |
Notice of Allowance for U.S. Appl. No. 14/730,833, dated Dec. 2, 2016, 14 pages. |
Notice of Allowance for U.S. Appl. No. 14/354,449, dated Nov. 30, 2016, 10 pages. |
Japanese Office Action for Japanese Application No. 2015548227, dated Oct. 14, 2016, 5 pages. |
Chinese Office Action for Application No. 201280058003.X, dated Oct. 9, 2016, 18 pages. |
International Search Report for International Application No. PCT/US2009/037348 dated May 14, 2009. |
International Search Report for PCT International Application No. PCT/EP2011/068743 dated Jun. 14, 2012. |
International Search Report for PCT International Application No. PCT/EP2012/051773 dated Sep. 17, 2012. |
International Search Report for PCT International Application No. PCT/EP2012/071318 dated Jan. 3, 2013. |
International Search Report for PCT International Application No. PCT/EP2012/071319 dated Dec. 11, 2012. |
Office Action for CN 200980110915.5 (with English Translation), The State Intellectual Property Office of China, dated Feb. 4, 2013. |
Supplemental European Search Report for Application No. EP 09 72 1677, dated Oct. 30, 2012. |
Entire patent prosecution history of U.S. Appl. No. 13/826,630, filed Mar. 14, 2013, entitled, “Brushroll Cleaning Feature With Spaced Brushes and Friction Surfaces to Prevent Contact.” |
Entire patent prosecution history of U.S. Appl. No. 13/826,855, filed Mar. 14, 2013, entitled, “Brushroll Cleaning Feature With Overload Protection During Cleaning.” |
Entire patent prosecution history of U.S. Appl. No. 13/826,934, filed Mar. 14, 2013, entitled, “Automated Brushroll Cleaning.” |
Entire patent prosecution history of U.S. Appl. No. 13/835,691, filed Mar. 15, 2013, entitled, “Vacuum Cleaner Agitator Cleaner With Power Control.” |
Entire patent prosecution history of U.S. Appl. No. 14/462,956, filed Aug. 19, 2014, entitled, “Vacuum Cleaner Brushroll Cleaner Configuration.” |
Entire patent prosecution history of U.S. Appl. No. 13/838,035, filed Mar. 15, 2013, entitled, “Vacuum Cleaner Agitator Cleaner With Brushroll Lifting Mechanism.” |
Entire patent prosecution history of U.S. Appl. No. 13/826,400, filed Mar. 14, 2013, entitled, “Brushroll Cleaning Feature With Resilient Linkage to Regulate User-Applied Force,” now U.S. Pat. No. 8,671,515, issued Mar. 18, 2014. |
Entire patent prosecution history of U.S. Appl. No. 12/405,761, filed Mar. 17, 2009, entitled, “Agitator With Cleaning Features,” now U.S. Pat. No. 8,601,643, issued Dec. 10, 2013. |
Entire patent prosecution history of U.S. Appl. No. 14/374,119, filed Aug. 25, 2014, entitled, “Cleaning Arrangement for a Nozzle of a Vacuum Cleaner.” |
Entire patent prosecution history of U.S. Appl. No. 14/354,460, filed Jun. 19, 2014, entitled, “Cleaning Nozzle for a Vacuum Cleaner.” |
Entire patent prosecution history of U.S. Appl. No. 14/354,449, filed Apr. 25, 2014, entitled, “Cleaning Nozzle for a Vacuum Cleaner.” |
Entire patent prosecution history of U.S. Appl. No. 14/354,466, filed Apr. 25, 2014, entitled, “Cleaning Nozzle for a Vacuum Cleaner.” |
International Search Report and Written Opinion for International Application No. PCT/IB2014/001050, dated Oct. 28, 2014. |
International Search Report and Written Opinion for International Application No. PCT/IB2014/001256, dated Oct. 28, 2014. |
International Preliminary Report on Patentability for International Application No. PCT/IB2015/001873, dated Feb. 28, 2017. |
Non Final Office Action for U.S. Appl. No. 14/354,466, dated Jan. 27, 2017, 10 pages. |
Non Final Office Action for U.S. Appl. No. 14/462,956, dated Feb. 22, 2017, 13 pages. |
Chinese Office Action for Chinese Application No. 201280058003.X, dated Apr. 6, 2017 with translation, 17 pages. |
Final Office Action for U.S. Appl. No. 14/354,466, dated May 12, 2017, 13 pages. |
Notice of Allowance for U.S. Appl. No. 14/354,449, dated Aug. 11, 2017, 9 pages. |
Notice of Allowance for U.S. Appl. No. 14/354,466, dated Aug. 1, 2017, 8 pages. |
Notice of Allowance for U.S. Appl. No. 14/462,956, dated Jul. 19, 2017, 10 pages. |
Non Final Office Action for U.S. Appl. No. 14/374,119, dated Jun. 27, 2017, 8 pages. |
Non Final Office Action for U.S. Appl. No. 14/651,059, dated Jul. 17, 2017, 8 pages. |
Korean Office Action for Korean Application No. 10-2014-7013892, dated Jun. 30, 2017 with translation, 16 pages. |
Non-Final Office Action for U.S. Appl. No. 14/702,034, dated Oct. 16, 2017, 11 pages. |
Number | Date | Country | |
---|---|---|---|
20140359968 A1 | Dec 2014 | US |
Number | Date | Country | |
---|---|---|---|
61037167 | Mar 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12405761 | Mar 2009 | US |
Child | 13826630 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13826630 | Mar 2013 | US |
Child | 14467697 | US |