Actuator mechanism for an external circuit breaker operating device

Information

  • Patent Grant
  • 6504460
  • Patent Number
    6,504,460
  • Date Filed
    Tuesday, April 17, 2001
    23 years ago
  • Date Issued
    Tuesday, January 7, 2003
    22 years ago
Abstract
An actuator mechanism, for a circuit breaker having an operating handle, which includes a slider assembly and a mounting plate assembly. The slider assembly has a rigid, generally planar member with at least one notch. The mounting plate assembly has at least two generally parallel, spaced flanges and is structured to mount on the circuit breaker housing. One of the at least two flanges is structured to cooperate with the notch to allow the slider assembly to be slidably coupled to the mounting plate between the at least two flanges.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to an external operating device for a molded case circuit breaker and, more particularly, to an actuator mechanism having assembly notches in a slider assembly and a mounting plate having attachment points located to the side of the circuit breaker operating handle, adapted to be coupled to a circuit breaker operating handle, for moving the operating handle to an open position or, alternatively, to a closed position, which may be controlled from a handle that is external to the circuit breaker enclosure.




2. Description of the Prior Art




Molded case circuit breakers are generally used to provide overcorrect protection for various types of electrical equipment. However, in some applications, it is desirable to have an operating device for the circuit breaker that is external to the circuit beaker enclosure. Such external operators make it easier to operate the circuit breakers. Such a remote control system is also useful for molded case switches.




In such applications, external operators have been provided that are adapted to be mechanically coupled to the operating handle of the circuit breaker or molded case switch. The external operator is, typically, a lever or handle attached to a cable. The cable is coupled to an actuator assembly mounted on the face of the circuit breaker. The actuator assembly includes a mounting plate assembly and a slider assembly. The slider assembly includes a rigid member having a formed cutout sized to fit about the operating handle of the circuit breaker. The slider assembly further includes a bent tab coupled to the cable When the external operating handle is actuated, the cable acts on the slider assembly which moves the circuit breaker operating handle between the open and closed position. The prior art actuator assemblies suffer from at least two disadvantages. First, one type of actuator assembly has three components, a slider assembly, a first mounting plate and a second mounting plate. It would be more cost effective to reduce the number of components. Additionally, the two-part mounting brackets were attached by two fasteners on each bracket. Should the fasteners on either one of the mounting brackets become unattached to the circuit breaker, the entire device may be rendered inoperable. Some actuator assemblies have only one mounting plate assembly, and thus only two parts. The slider assembly tab is inserted into the bracket and the slider is fished through the slot until the end opposite the tab can be inserted into the bracket. A portion of the slider assembly is wider than one of the slots, thus, the slider assembly is captured in the slots by the bent tab and the wide portion. Manufacturing costs and procedure could be simplified if the slider assembly were more easily installable.




A second disadvantage of the prior art actuator assemblies is that the mounting plate assemblies typically placed the bracket fastener openings within, or near, the generally straight path of travel of the circuit breaker operating handle. That is, for a circuit breaker mounted with the operating handle moving between an “up” position and a “down” position, the mounting plate assembly attachment openings would be located above and below the operating handle. In certain models of circuit breakers, a trip unit is disposed in the area “below” the actuating handle. Use of the prior art mounting plate assembly would interfere with adjustment controls on the trip unit.




Therefore, there is a need for an actuator assembly that can be more easily assembled in the field.




There is further need for an actuator assembly, to be used with circuit breakers having a trip unit with controls disposed adjacent to a circuit breaker operating handle, with a mounting plate that does not block access to the trip unit controls.




SUMMARY OF THE INVENTION




These needs and other needs are satisfied by the present invention which provides an actuator assembly having a slider assembly having a wide portion and a narrow portion, and a mounting plate assembly having an open slot sized to cooperate with the narrow portion to allow the slider assembly to be inserted into the mounting plate assembly. The slider assembly is a rigid, generally planar member. The planar member includes at least one lateral notch disposed between the wide portion and the narrow portion. At the location of the notch, the planar member has a reduced width. The wide portion includes a formed cutout. The slider assembly also includes a tab that is generally perpendicular to the planar member. The mounting plate assembly includes two slots, a first slot sized to correspond to the slider assembly narrow portion, and a second slot sized to correspond to the slider assembly wide portion. The first slot has a partially open top that is sized to correspond to reduced width of the planar member at the location of the notch.




To construct the actuator assembly, the slider assembly is inserted into the mounting plate assembly by passing the reduced width portion of the rigid planar member through the opening in the partially open first slot. The wide portion of the slider assembly is then aligned with the second slot. The narrow portion is then slid through the first slot until the wide portion enters the second slot. Once assembled, the narrow portion is constrained by the first slot and the wide portion is constrained by the second slot. Thus, the actuator assembly may be constructed out of only two components and be assembled in the field.




Additionally, the mounting plate assembly is structured with mounting openings that are attached to the faceplate on either side of the circuit breaker operating handle. That is, spaced to the sides of the path of travel of the operating handle. As such, the mounting plate assembly does not extend to the area occupied by the trip unit. Therefore, the mounting plate assembly does not block access to the trip unit controls or prevent the opening of a flip lid over the trip unit controls.











DESCRIPTION OF THE DRAWINGS




These and other advantages of the present invention will become readily apparent upon consideration of the following detailed description and attached drawing, wherein:





FIG. 1

is an isometric view of actuator assembly in accordance with the present invention mounted on a molded case circuit breaker.





FIGS. 2



a-




2




c


are isometric views illustrating the construction steps that couples the slider assembly to the mounting plate assembly.











DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT




As used herein, “correspond” indicates that two structural components are sized to engage each other with a minimum amount of friction. Thus, an opening which corresponds to a member is sized slightly larger than the member so that the member may pass through the opening with a minimum amount of friction.




As shown in

FIG. 1

, an actuator assembly


10


in accordance with the present invention is shown coupled to a molded case circuit breaker


1


. The molded case circuit breaker is typically disposed within an enclosure (not shown). The actuator assembly


10


is typically coupled to an external handle assembly (not shown) that is mounted outside of the enclosure. The molded case circuit breaker


1


includes an outwardly extending operating handle


2


, a faceplate


3


, and a trip unit


4


. The trip unit


4


includes adjustable controls


5


and/or a flip lid


5


A covering the controls


5


. Such circuit breakers


1


include a pair of separable main contacts (not shown) controlled by the operating handle


2


. The operating handle


2


pivots between an open position, wherein the main contacts are separated, and a closed position, wherein the main contacts are closed. The distance the operating handle


2


travels as it pivots between the open position and the closed position is the operating handle “stroke.”




The actuator assembly


10


, as shown in

FIGS. 1 and 2



a-




2




c


, includes a slider assembly


20


and a mounting plate assembly


30


. As shown best in

FIG. 2



a


, the slider assembly


20


includes a rigid, generally planar member


21


. In the preferred embodiment, the planar member


21


includes a narrow portion


22


and a wide portion


23


. Between the narrow portion


22


and the wide portion


23


is at least one notch


24


. In the preferred embodiment there are two notches


24




a


,


24




b


. The notches


24




a


,


24




b


extend laterally inward from two opposing sides


18


,


19


of the planar member


21


. Between the notches


24




a


,


24




b


, the planar member


21


has a reduced width portion


28


which is more narrow than the narrow portion


22


. The wide portion


23


includes a formed cutout


25


which is sized to fit closely about operating handle


2


. The formed cutout


25


includes two extensions


29


which, when the actuator assembly


10


is installed on a circuit breaker


1


, extend toward the circuit breaker faceplate


3


. The narrow portion


22


includes an integral tab


26


that is generally perpendicular to planar member


21


. The tab


26


has a shaft opening


27


therein.




The mounting plate assembly


30


includes a generally planar body


31


having a generally perpendicular first flange


32


at one end and a generally perpendicular second flange


33


at the opposite end. Thus, the flanges


32


,


33


are generally parallel and spaced apart. The generally planar body


31


also includes at least one first attachment opening


34


and at least one second attachment opening


35


. The at least one first attachment opening


34


may be disposed on a tab


36


which extends from generally planar body


31


and may be disposed in a different, but generally parallel plane, to the generally planar body. The first flange


32


includes a partially open, first slot


37


. The first slot


37


is sized to correspond to the narrow portion


22


of the slider assembly


20


. The first flange


32


further includes an opening


38


that communicates with first slot


37


, thereby making the first slot


37


“partially open.” The first flange opening


38


is sized to correspond to the notches


24


on the planar member


21


of the slider assembly


20


. The first flange opening


38


is narrower than the narrow portion


22


of slider assembly


20


. The second flange


33


includes a second slot


39


sized to correspond to the wide portion


23


of the slider assembly


20


. The second flange also includes a mounting opening


40


. The mounting opening


40


is a slot located adjacent to the distal edge of the second flange


33


. The mounting opening


40


is sized to fit outside of the flexible shaft assembly


50


(described below).




The steps for constructing the actuator assembly


10


are shown in

FIGS. 2



a


-


2




c


. Initially, the slider assembly


20


and the mounting plate assembly


30


are separated. The slider assembly


20


is inserted into the first flange


32


by passing planar member


21


, at notches


24


, through first flange opening


38


. The wide portion


23


is disposed near second flange


33


and the slider assembly tab


26


is opposite second flange


33


. When slider assembly


20


is inserted into the first slot


37


, the slider assembly


20


is moved, or slid, toward the second flange


33


so that wide portion


23


may be inserted into the second slot


39


. As the slider assembly


20


is being moved, the narrow portion


22


moves into the first slot


37


. Once the notches


24


are not aligned with first flange opening


38


, the slider assembly


20


is slidably captured in the mounting plate assembly


30


.




As shown on

FIG. 1

, the actuator assembly


10


is structured to be coupled to the circuit breaker


1


. When the actuator assembly


10


is coupled to the circuit breaker


1


, the at least one first attachment opening


34


is structured to be aligned with a fastener opening (not shown) on faceplate


3


. The fastener opening on the faceplate


3


is spaced to the side of the operating handle


2


and not in the direction the operating handle


2


travels as the operating handle


2


moves between the open and closed positions. As such, neither the slider assembly


20


nor the mounting plate assembly


30


blocks access to the trip unit controls


5


. Additionally, the operating handle


2


is passed through formed cutout


25


.




The formed cutout


25


and the notches


24




a


,


24




b


are spaced apart on planar member


21


. The spacing of the formed cutout


25


and the notches


24




a


,


24




b


is such that, when the actuator assembly


10


is installed on a circuit breaker


1


and the formed cutout


25


engages the operating handle


2


, the slider assembly


20


will not travel a sufficient distance, relative to mounting plate assembly


30


, to allow the notches


24




a


,


24




b


to align with opening


38


as the operating handle


2


moves through its stroke. As such, the operating handle


2


aids in capturing the slider assembly


20


in first slot


37


and second slot


39


because the stroke of the operating handle


2


limits the travel of the slider assembly


20


so that the notches


24




a


,


24




b


cannot become aligned with the opening


38


. In other words, when the operating handle


2


engages the formed cutout


25


, the notches


24




a


,


24




b


cannot be aligned with the opening


38


.




The slider assembly


20


is coupled to a flexible shaft assembly


50


. The flexible shaft assembly


50


includes a handle attachment end


52


and an actuator attachment end


60


. The handle attachment end


52


may be coupled to a handle (not shown) that is disposed outside of the circuit breaker enclosure. The flexible shaft assembly


50


also includes a cable, or flexible shaft


54


that is partially disposed within an outer sheath


56


. The actuator attachment end


60


includes a threaded end


62


and a mounting means, such as a double nut mounting


64


. The threaded end


62


is sized to pass through tab opening


27


. Two nuts


66


(one shown) are threaded onto threaded end


62


on either side of tab


26


, thereby capturing tab


26


between the two nuts


66


. Similarly, the double nut mounting


64


is disposed within mounting opening


40


with a nut on either side of the second flange


33


. The double nut mounting includes threads (not shown) that are structured to allow the nuts


64




a


,


64




b


of the double nut mounting to bear against the second flange


33


.




In operation, after the actuator assembly


10


is mounted on the circuit breaker


1


, a user would operate the handle attached to handle attachment end


52


to cause cable


54


to move. Moving the cable


54


, which is coupled to tab


26


, causes the slider assembly


20


to slide between a first position and a second position. Movement of the slider assembly


20


between its first and second position causes the operating handle


2


, which is disposed within the formed cutout


25


, to move between the operating handle first and second position.




While specific embodiments of the invention have been described in detail, it will be appreciated by those skilled in the art that various modifications and alternatives to those details could be developed in light of the overall teachings of the disclosure. For example, the slider assembly could include a Z-shaped member. Thus, the first and second flanges


32


,


33


would not necessarily have to be aligned. Accordingly, the particular arrangements disclosed are meant to be illustrative only and not limiting as to the scope of invention which is to be given the full breadth of the claims appended and any and all equivalents thereof.



Claims
  • 1. An actuator mechanism for a circuit breaker having an operating handle, said actuator mechanism comprising:a slider assembly having a rigid, generally planar member with at least one notch; a mounting plate assembly having at least two generally parallel, spaced flanges and structured to mount on a circuit breaker housing; one of said at least two flanges structured to cooperate with said at least one notch to allow said slider assembly to be slidably coupled to said mounting plate between said at least two flanges; said slider assembly has a narrow portion and a wide portion; said at least two flanges include a first flange and a second flange; each of said first and second flanges having a slot therein; said first flange slot sized to correspond to said slider assembly narrow portion; and said second flange slot sized to correspond to said slider assembly wide portion.
  • 2. The actuator mechanism of claim 1, wherein said at least one notch is disposed between said narrow portion and said wide portion.
  • 3. The actuator mechanism of claim 2, wherein:said first flange includes an opening which communicates with said first flange slot; and said opening sized to correspond to the width of said planar member at said at least one notch.
  • 4. The actuator mechanism of claim 3, wherein said planar member includes two opposing sides, each said side having a notch extending laterally inward.
  • 5. The actuator mechanism of claim 3, wherein said planar member includes a formed cutout structured to fit about said circuit breaker operating handle.
  • 6. The actuator mechanism of claim 5, wherein said formed cutout includes two extensions structured to extend toward said circuit breaker, when said actuator assembly is installed on a circuit breaker.
  • 7. The actuator mechanism of claim 5, wherein said operating handle pivots through a set stroke and wherein said at least one notch and said cutout are spaced apart on said planar member so that when said formed cutout engages said operating handle said at least on notch cannot be aligned with said opening.
  • 8. An actuator mechanism for a circuit breaker having an operating handle, wherein said circuit breaker includes an operating handle which pivots through a generally straight path of travel, said actuator mechanism comprising:a slider assembly having a rigid, generally planar member with at least one notch; a mounting plate assembly having at least two generally parallel, spaced flanges and structured to mount on a circuit breaker housing; one of said at least two flanges structured to cooperate with said at least one notch to allow said slider assembly to be slidably coupled to said mounting plate between said at least two flanges; said mounting plate assembly includes at least one first attachment opening and at least one second attachment opening; and said at least one first attachment opening disposed generally to the side of the path of travel of said handle.
  • 9. The actuator mechanism of claim 8, wherein said circuit breaker includes a trip unit and a face plate, said trip unit disposed beside said face plate, and wherein said at least one first attachment opening is structured to be disposed on said face plate.
  • 10. The actuator mechanism of claim 9 wherein said slider assembly includes a planar member and a tab disposed at a generally perpendicular angle to said planar member.
  • 11. The actuator mechanism of claim 10, wherein said planar member includes a formed cutout structured to fit about said circuit breaker operating handle.
  • 12. The actuator mechanism of claim 11, wherein said circuit breaker operating handle is structured to travel between a first position and a second position and wherein said slider assembly is structured to slide a sufficient distance so that said formed cutout travels between position adjacent to said circuit breaker operating handle first position and second position.
  • 13. A circuit breaker comprising:a housing having a faceplate; an operating handle extending from said face plate; a trip unit disposed in said housing and having controls adjacent to said faceplate; an actuator mechanism comprising: a slider assembly having a rigid, generally planar member with at least one notch; a mounting plate assembly having at least two generally parallel, spaced flanges and structured to mount on a circuit breaker housing; one of said at least two flanges structured to cooperate with said at least one notch to allow said slider assembly to be slidably coupled to said mounting plate between said at least two flanges; said slider assembly has a narrow portion and a wide portion; said at least two flanges includes a first flange and a second flange; each of said first and second flanges having a slot therein; said first flange slot sized to correspond to said slider assembly narrow portion; and said second flange slot sized to correspond to said slider assembly wide portion.
  • 14. The circuit breaker of claim 13, wherein said at least one notch is disposed between said narrow portion and said wide portion.
  • 15. The circuit breaker of claim 14, wherein:said first flange includes an opening which communicates with said first flange slot; and said opening sized to correspond to the width of said planar member at said at least one notch.
  • 16. The circuit breaker of claim 15, wherein said planar member includes two opposing sides, each said side having a notch extending laterally inward.
  • 17. The circuit breaker of claim 16, wherein said planar member includes a formed cutout structured to fit about said circuit breaker operating handle.
  • 18. The circuit breaker of claim 17, wherein said formed cutout includes two extensions structured to extend toward said circuit breaker, when said actuator assembly is installed on a circuit breaker.
  • 19. The circuit breaker of claim 18, wherein said operating handle pivots through a set stroke and wherein said at least one notch and said cutout are spaced apart on said planar member so that when said formed cutout engages said operating handle said at least one notch cannot be aligned with said opening.
  • 20. A circuit breaker wherein said circuit breaker includes an operating handle which pivots through a generally straight path of travel, said circuit breaker comprising:a housing having a faceplate; an operating handle extending from said face plate; a trip unit disposed in said housing and having controls adjacent to said faceplate; an actuator mechanism comprising: a slider assembly having a rigid, generally planar member with at least one notch; a mounting plate assembly having at least two generally parallel, spaced flanges and structured to mount on a circuit breaker housing; one of said at least two flanges structured to cooperate with said at least one notch to allow said slider assembly to be slidably coupled to said mounting plate between said at least two flanges; said mounting plate assembly includes at least one first attachment opening and at least one second attachment opening; and said at least one first attachment opening disposed generally to the side of the path of travel of said handle.
  • 21. The circuit breaker of claim 20 wherein said slider assembly includes a planar member and a tab disposed at a generally perpendicular angle to said planar member.
  • 22. The circuit breaker of claim 20, wherein said planar member includes a formed cutout structured to fit about said circuit breaker operating handle.
  • 23. The circuit breaker of claim 22, wherein:said circuit breaker operating handle is structured to travel between a first position and a second position; and said slider assembly is structured to slide a sufficient distance so that said formed cutout travels between position adjacent to said circuit breaker operating handle first position and second position.
US Referenced Citations (2)
Number Name Date Kind
5663862 Hopping-Mills Sep 1997 A
5875886 Elster Mar 1999 A