Injection molding systems using actuators directly connected to a valve pin to drive the valve pin along a back and forth upstream, downstream path of travel have been employed in systems requiring a valve for stopping and starting injection flow through one or more gates to one or more mold cavities.
In accordance with the invention there is provided an injection molding apparatus comprising an injection molding machine, a manifold that receives injection fluid from the machine and routes the injection fluid through a flow channel such as manifold channel and nozzle channel communicating with a gate to a cavity of a mold, a first actuator and a second actuator, a closure valve pin having a pin axis A interconnected to the actuators, the closure valve pin being adapted to controllably drive the valve pin 120 upstream and downstream along an axial path of travel A through the flow channel such that a distal tip end of the valve pin is driven into and out of a position that closes flow through the gate,
the first actuator 90 having a linear or axial driver drivable along a reciprocal path of travel coincident or parallel to the axial path of travel A,
the closure valve pin 120 being interconnected to the first actuator 90 such that the valve pin is driven along the axial path of travel A and reciprocally upstream and downstream into and out of the position that closes flow through the gate 70,
the second actuator 100, 150 comprising a rotor 102, 152 having a rotation axis A, IA, the rotor being interconnected to either the closure valve pin 120 or to a second valve pin 160 such that either the closure valve pin 120 or the second valve pin 160 is rotatably driven in unison with the rotor 102, 152 around an axis that is coincident A with or parallel IA to the pin axis A of the closure pin,
the closure pin 120 or second pin 160 that is interconnected to the rotor 120, 152 being disposed within the flow of injection fluid 15 that is routed through the manifold 50.
The second actuator 152 can be mounted such that the axis of the rotor 152 is generally coincident IA with an inlet that communicates flow of injection fluid 15 from the machine 20 to the manifold 50.
The second actuator 152 can be interconnected to the second valve pin 160.
The second actuator 100 can be mounted to the first actuator 90 where the closure valve pin 120 is non-rotatably interconnected to the rotor 102 of the second actuator 100 and the second actuator 100 and the closure valve pin 120 are adapted to travel along the axial path of travel A together with the linear or axial driver 92 of the first actuator 90.
The second valve pin 160 can comprise an elongated shaft having an outer circumferential surface having discontinuous protrusions 123, grooves 129, projections, fins or apertures one or more collectively 162 that generate a selected turbulence in the injection fluid 15 flowing over the outer circumferential surface when the valve pin 160 is rotated R around its pin axis IA.
The closure valve pin 120 can comprise an elongated shaft having an outer circumferential surface having discontinuous protrusions 123, grooves 129, projections, fins or apertures one or more collectively 127 that generate a selected turbulence in the injection fluid 15 flowing over the outer circumferential surface when the valve pin 120 is rotated around its pin axis A.
Where the valve pin 120 or 160 has circumferential surface that has protrusions 123, grooves 129, fins, apertures or the like 162, the valve pin is mounted, arranged and adapted such that the circumferential surface is disposed within the fluid flow 15 flowing through a flow channel such as channel 40 or 63. The pin 120 or 160 is controllably rotatable R such that the circumferential surface containing the protrusions, fins 123 or the like rotate within the fluid flow 15 flowing through a fluid flow channel such as channel 40 or 63.
The head 122 of the pin 120, 160 that is interconnected to the rotor 102, 152 is preferably interconnected such that the pin rotates R around the rotation axis A, IA in unison with rotation of the rotor.
One or the other or both of the actuators 90, 100, 150 can be interconnected to a controller 300 that controllably instructs the actuators to drive the one or the other or both of the closure valve pin 120 and the second valve pin 160 according to a predetermined profile of axial travel or rotation.
In another aspect of the invention there is provided a method of driving a valve pin in an injection molding apparatus comprised of an injection molding machine, a manifold that receives injection fluid from the machine and routes the injection fluid through a flow channel communicating with a gate to a cavity of a mold, a first actuator and a second actuator, a closure valve pin having a pin axis interconnected to the actuators, the closure valve pin being adapted to controllably drive the valve pin upstream and downstream along an axial path of travel through the flow channel such that a distal tip end of the valve pin is driven into and out of a position that closes flow through the gate,
the method comprising:
Such a method typically further comprises mounting the second actuator such that the axis of the rotor is generally coincident with an inlet that communicates flow of injection fluid from the machine to the manifold.
Such a method typically further comprises interconnecting the second valve pin to the rotor.
Such a method can further comprise mounting the second actuator to the first actuator, interconnecting the closure valve pin non-rotatably to the rotor of the second actuator and adapting the second actuator and the closure valve pin to travel along the axial path of travel together with the axial driver of the first actuator.
Typically the second valve pin is formed to comprise an elongated shaft having an outer circumferential surface having discontinuous protrusions, grooves, projections, fins or apertures that generate a selected turbulence in the injection fluid flowing over the outer circumferential surface when the valve pin is rotated around its pin axis.
Preferably the head of the pin that is interconnected to the rotor is interconnected such that the pin rotates around the rotation axis in unison with rotation of the rotor.
Such a method can further comprise instructing the actuators to drive the one or the other or both of the closure valve pin and the second valve pin according to a predetermined profile of axial travel or rotation over the course of an injection cycle.
In another aspect of the invention there is provided an injection molding apparatus comprising an injection molding machine, a manifold that receives injection fluid from the machine and routes the injection fluid through a fluid flow channel communicating with a gate to a cavity of a mold, a first actuator and a second actuator, a valve pin having a pin axis interconnected to the actuators, the actuators and the valve pin being arranged for controllably driving the valve pin axially upstream and downstream through the flow channel such that a distal tip end of the valve pin is driven into and out of a position that closes flow through the gate,
the first actuator having an axial driver drivable along a reciprocal path of axial travel,
the second actuator being mounted to the axial driver such that the second actuator is driven along the path of axial travel,
the valve pin being mounted to the second actuator such that the valve pin is driven along the path of axial travel,
the second actuator comprising a rotor that is rotatably driven around an axis coincident or parallel to the path of axial travel,
the rotor of the second actuator being interconnected to the valve pin such that a selected portion of the valve pin is disposed within the fluid flow channel leading to the gate and the selected portion of the valve pin is rotatably driven to rotate the selected portion of the pin within the fluid flow channel.
The valve pin preferably comprises an elongated shaft having an outer circumferential surface having discontinuous protrusions, grooves, projections, fins or apertures that are disposed within a fluid flow channel, the valve pin being controllably rotatable to rotate the protrusions, grooves, projections, fins or apertures within the injection fluid flowing through the fluid flow channel and to generate a selected turbulence in the injection fluid when the valve pin is rotated R around its pin axis.
The first and second actuators are typically driven individually or collectively by hydraulic fluid, pneumatic fluid or an electric motor.
The valve pin preferably has a head that is interconnected to the rotor of the second actuator such that the valve pin is non-rotatably mounted relative to the rotor.
The head of the valve pin is interconnected to the rotor such that the valve pin rotates around its pin axis in unison with rotation of the rotor.
One or the other or both of the actuators is preferably interconnected to a controller that controllably instructs the actuators to drive the valve pin according to a predetermined profile of axial travel or rotation.
In another aspect of the invention there is provided, a method of driving a valve pin in an injection molding apparatus comprised of an injection molding machine, a manifold that receives injection fluid from the machine and routes the injection fluid through a flow channel communicating with a gate to a cavity of a mold and a valve pin having a pin axis and a distal tip end,
the method comprising:
mounting a rotary actuator having a drivable rotor to a linear actuator having an axial driver in an arrangement wherein the rotary actuator moves along a path of travel together with the axial driver,
interconnecting the valve pin to the rotor of the rotary actuator such that the valve pin rotates in unison with the rotor when driven and moves along the path travel together with the axial driver when driven,
arranging the axial actuator, rotary actuator and valve pin such that the valve pin is drivably disposed and mounted within the flow channel for reciprocal upstream, downstream movement within the flow channel,
driving the axial driver of the linear actuator to drive the distal tip end of the valve pin axially into and out of the position that closes flow through the gate.
Such a method preferably further comprises driving the rotary actuator to rotate the valve pin around the pin axis at one or more periods of time while the pin is driven axially.
Such a method typically further comprises forming the valve pin in the form of an elongated shaft having a circumferential surface where the circumferential has one or more of protrusions, grooves, projections, fins or apertures formed therein or attached thereto.
Such a method preferably further comprises interconnecting a head of the pin to the rotor of the rotary actuator such that the valve pin is non-rotatably mounted relative to the rotor and interconnecting a head of the pin to the rotor such that the valve pin rotates around its pin axis in unison with rotation of the rotor.
Such a method typically further comprises interconnecting one or the other or both of the actuators to a controller that controllably instructs the actuators to drive the valve pin according to a predetermined profile of axial travel or rotation.
In another aspect of the invention there is provided a method of performing an injection cycle, the method comprising injecting a fluid material 15 from an injection molding machine 20 into an apparatus comprised of a manifold 50 that receives the injection fluid 15 from the injection molding machine 20 and routes the injection fluid 15 through a flow channel such as manifold channel 40 and nozzle 60 channel 63 communicating with a gate 70 to a cavity 80 of a mold 82, a first actuator 90 and a second actuator 100, 150, a closure valve pin 120 having a pin axis A interconnected to the actuators, the closure valve pin 120 being adapted to controllably drive the valve pin 120 upstream and downstream along an axial path of travel A through the flow channel such that a distal tip end 124, 124a of the valve pin 120 is driven into and out of a position that closes flow through the gate 70,
the first actuator 90 having a linear or axial driver 92 drivable along a reciprocal path of travel coincident or parallel to the axial path of travel A,
the closure valve pin 120 being interconnected to the first actuator 90 such that the valve pin is driven along the axial path of travel A and reciprocally upstream and downstream into and out of the position that closes flow through the gate 70,
the second actuator 100, 150 comprising a rotor 102, 152 having a rotation axis A, IA, the rotor being interconnected to either the closure valve pin 120 or to a second valve pin 160 such that either the closure valve pin 120 or the second valve pin 160 is rotatably driven in unison with the rotor 102, 152 around an axis that is coincident with A or parallel IA to the axial path of travel A of the closure pin,
the closure pin 120 or second pin 160 that is interconnected to the rotor 120, 152 the closure pin 120 or second pin 160 having a selected portion that is disposed and controllably rotatable within the flow of injection fluid 15 through the fluid flow channel 40, 63.
The above and further advantages of the invention may be better understood by referring to the following description in conjunction with the accompanying drawings in which:
A linear actuator 90 having a linear driver or piston 92 that is controllably drivable in an upstream-downstream reciprocal manner along an axis A that is in-line with the flow channel or bore of the nozzle 60 is mounted in a stationary position relative to either a top clamp plate 12 or the manifold 50. In the embodiment shown in
The valve pin 120 is connected to the rotor 102 via a head 122 such that the valve pin 120 moves or translates in unison axially A with axial movement of the piston 92 and rotary actuator 100. The distal tip end 124 of the valve pin 120 is moved axially into and out of a closed gate position during the course of an injection cycle axial movement A of piston 92, actuator 100 and its interconnected valve pin 120. The head 122 of the valve pin 120 is connected to the rotor 102 in a manner such as shown in
The pin 120 is adapted not to rotate relative to rotor 102 of
In the
In the
As shown in
Regarding the
In a preferred embodiment, the controller 300 is programmed to controllably drive the actuator 90 and linear or closure valve pin 120 upstream and downstream between a fully closed position where the rate of flow of the molten plastic 15 is stopped, a fully open position at which rate of flow is fully open and variable positions intermediate the fully open and fully closed positions at which rate of flow of the molten plastic varies between stopped and fully open. The program contained in the controller can include instructions that enable the user to control the position of the tip end 124 of the valve pin at any selected profile of positions that vary the rate of flow of injection fluid 15 through the gate 70 which in turn vary according to any predetermined profile of rates that are less than the maximum rate of flow that correspond to the profile of pin positions such as described in U.S. Pat. No. 6,464,909 and international applications PCT/US2011/062099 and PCT/US2011/062096, the disclosures of which are incorporated herein by reference as if fully set forth herein.
The second actuator 100, 150 typically includes a rotor 102, 152 having a rotation axis A, IA, the rotor being interconnected to either the closure valve pin 120 or to a second valve pin 160 such that either the closure valve pin 120 or the second valve pin 160 is rotatably driven in unison with the rotor 102, 152 around an axis that is coincident with A or parallel IA to the pin axis or axial path of travel A of the closure pin.
The closure pin 120 or second pin 160 is preferably interconnected to the rotor 120, 152 and arranged and mounted such that a portion of the valve pin having grooves, protrusions, fins or the like is disposed and rotates R within the flow of injection fluid 15 that is routed through the manifold 50.
The second actuator 152 can be mounted such that the axis of the rotor 152 is generally coincident IA with an inlet that communicates flow of injection fluid 15 from the machine 20 to the manifold 50.
The second actuator 152 can be interconnected to the second valve pin 160.
The second actuator 100 can be mounted to the first actuator 90 where the closure valve pin 120 is non-rotatably interconnected to the rotor 102 of the second actuator 100 and the second actuator 100 and the closure valve pin 120 are adapted to travel along the axial path of travel A together with the linear or axial driver 92 of the first actuator 90.
The second valve pin 160 can comprise an elongated shaft having an outer circumferential surface having discontinuous protrusions 123, grooves 129, projections, fins or apertures one or more collectively 162 that are disposed within a fluid flow channel leading to the gate and generate a selected turbulence in the injection fluid 15 flowing through the channel and over the outer circumferential surface of the valve pin when the valve pin 160 is rotated R around its pin axis IA.
The closure valve pin 120 typically comprises an elongated shaft having an outer circumferential surface having discontinuous protrusions 123, grooves 129, projections, fins or apertures one or more collectively 127 that are disposed within a fluid flow channel leading to the gate and generate a selected turbulence in the injection fluid 15 flowing over the outer circumferential surface when the valve pin 120 when rotated around its pin axis A.
The head 122 of the pin 120, 160 that is interconnected to the rotor 102, 152 is preferably interconnected such that the pin rotates R around the rotation axis A, IA in unison with rotation of the rotor.
One or the other or both of the actuators 90, 100, 150 can be interconnected to a controller 300 that controllably instructs the actuators to drive the one or the other or both of the closure valve pin 120 and the second valve pin 160 according to a predetermined profile of axial travel or rotation.
With reference to
The controller 300 includes circuitry or a program that enables the user to control the linear and rotational speed, velocity and linear and rotational positioning of the valve pin at any and all linear, axial and rotational points and positions during the course of an injection cycle. A controller, as used herein, refers to electrical and electronic control apparati that comprise a single box or multiple boxes (typically interconnected and communicating with each other) that contain(s) all of the separate electronic processing, memory and electrical signal generating components that are necessary or desirable for carrying out and constructing the methods, functions and apparatuses described herein. Such electronic and electrical components include programs, microprocessors, computers, PID controllers, voltage regulators, current regulators, circuit boards, motors, batteries and instructions for controlling any variable element discussed herein such as length of time, degree of electrical signal output and the like. For example a component of a controller, as that term is used herein, includes programs, controllers and the like that perform functions such as monitoring, alerting and initiating an injection molding cycle including a control device that is used as a standalone device for performing conventional functions such as signaling and instructing an individual injection valve or a series of interdependent valves to start an injection, namely move an actuator and associated valve pin from a gate closed to a gate open position. In addition, although fluid driven actuators are employed in typical or preferred embodiments of the invention, actuators powered by an electric or electronic motor or drive source can alternatively be used as the actuator component. The user can program the controller 300 via data inputs on a user interface to instruct the actuators 90, 100 to drive pins 120, 160 according to any predetermined profile of positions, velocities and the like.
As shown in
Further in accordance with the invention there is provided an apparatus for controlling the rate of flow of a fluid mold material from an injection molding machine to a mold cavity, the apparatus comprising:
a manifold receiving the injected fluid mold material, the manifold having a delivery channel that delivers the fluid mold material to a gate to the mold cavity;
an actuator interconnected to a valve pin having a tip end, the actuator moving the valve pin continuously upstream along a path of travel between a downstream gate closed position and an intermediate upstream gate open position, the downstream gate closed position being a position wherein the tip end of the valve pin obstructs the gate to prevent fluid material from flowing into the mold cavity, the intermediate upstream gate open position being a predetermined position between the downstream gate closed position and a fully open, end of stroke position upstream of the intermediate upstream gate open position at which the fluid mold material flows at a maximum rate through the gate;
a controller interconnected to the actuator that controls movement of the actuator at least in part according to instructions that instruct the actuator to move the valve pin continuously upstream at one or more selected intermediate velocities over the course of travel of the valve pin from the downstream gate closed position to the intermediate upstream gate open position;
the controller further controlling movement of the actuator continuously upstream from the intermediate upstream gate open position to the fully open, end of stroke position at one or more velocities that are higher than the one or more selected intermediate velocities.
Such an apparatus preferably further comprises a sensor that generates one or more signals indicative of the position of the valve pin, the controller carrying out instructions to cause the valve pin to move continuously upstream at the one or more selected intermediate velocities and to adjust upstream velocity of the valve pin based on one or more of the signals generated by the sensor.
The instructions of the controller can utilize the signals received from the sensor to calculate real time velocity of the valve pin and compare the calculated real time velocity to one or more predetermined velocities for the pin during the course of travel of the tip end of the pin from at least the downstream gate closed position to the intermediate upstream gate open position. In such an embodiment, the controller preferably compares the calculated real time velocity to the predetermined velocities and sends a signal instructing the actuator to match the velocity of the pin to the predetermined velocities based on the comparison at any given position of the valve pin. In such an embodiment the instructions and the sensor signals comprise a closed loop control. In such an embodiment, the controller calculates real time velocity based a value corresponding to the position of the pin signal received in real time from the sensor.
In alternative embodiments the controller can include a processor and instructions that receive the pin position information and signals from the position sensor and calculate the real time velocity of the pin from the pin position data in real time at one or more times or positions over the course of the pin travel through the RP, RP2, RP3 path length and/or beyond. Typically such calculations of velocity are continuous throughout the cycle. In such an embodiment, the calculated pin velocity is constantly compared to a predetermined target profile of pin velocities and the velocity of the pin is adjusted in real time by the controller 16 to conform to the profile. In this embodiment as in all previously described embodiments, the pin is moved continuously upstream at all times between the gate closed position and all positions upstream of the gate closed position. Such control systems are described in greater detail in for example U.S. Patent Publication no. 20090061034 the disclosure of which is incorporated herein by reference.
This application is a continuation of and claims the benefit of priority to U.S. Ser. No. 14/962,358 filed Dec. 8, 2015, which is a continuation of PCT/US2014/052639 filed Aug. 26, 2014, the disclosures of which are incorporated by reference as if fully set forth herein. The disclosures of all of the following are incorporated by reference in their entirety as if fully set forth herein: U.S. Pat. No. 5,894,025, U.S. Pat. No. 6,062,840, U.S. Pat. No. 6,294,122, U.S. Pat. No. 6,309,208, U.S. Pat. No. 6,287,107, U.S. Pat. No. 6,343,921, U.S. Pat. No. 6,343,922, U.S. Pat. No. 6,254,377, U.S. Pat. No. 6,261,075, U.S. Pat. No. 6,361,300 (7006), U.S. Pat. No. 6,419,870, U.S. Pat. No. 6,464,909 (7031), U.S. Pat. No. 6,599,116, U.S. Pat. No. 7,234,929 (7075US1), U.S. Pat. No. 7,419,625 (7075US2), U.S. Pat. No. 7,569,169 (7075US3), U.S. patent application Ser. No. 10/214,118, filed Aug. 8, 2002 (7006), U.S. Pat. No. 7,029,268 (7077US1), U.S. Pat. No. 7,270,537 (7077US2), U.S. Pat. No. 7,597,828 (7077US3), U.S. patent application Ser. No. 09/699,856 filed Oct. 30, 2000 (7056), U.S. patent application Ser. No. 10/269,927 filed Oct. 11, 2002 (7031), U.S. application Ser. No. 09/503,832 filed Feb. 15, 2000 (7053), U.S. application Ser. No. 09/656,846 filed Sep. 7, 2000 (7060), U.S. application Ser. No. 10/006,504 filed Dec. 3, 2001, (7068), U.S. application Ser. No. 10/101,278 filed Mar. 19, 2002 (7070) and international applications PCT/US2011/062099 and PCT/US2011/062096.
Number | Date | Country | |
---|---|---|---|
61869950 | Aug 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14962358 | Dec 2015 | US |
Child | 15864435 | US | |
Parent | PCT/US2014/052639 | Aug 2014 | US |
Child | 14962358 | US |