There is an ongoing effort to build mechanical systems that elegantly mimic or simulate the mechanisms that occur in nature. For example, artificial hearts are configured to mimic the movement and action of the natural heart. Another example is in the field of robotics where there is a growing effort to accurately simulate incremental movements and motion that occur in the natural skeletal system and muscular systems.
Such artificial systems can be severely limited by the mechanical actuation system that control the artificial, physical structure such as an artificial heart or muscle. Current actuation systems are typically limited by both the size of the mechanical portion of the actuator as well as the control signal that governs the movement of actuator. A mechanical actuator can be relatively large in size, which limits the amount of incremental and fine-level movement that can be achieved by the actuator. Although microscopic microelectromechanical systems can somewhat overcome the size limitations of traditional mechanical actuators, such systems are still limited by the control signal that governs movement of the actuator.
In view of the foregoing, there is a need for improved systems and methods for accurately simulating the mechanical and control systems that occur in nature.
Disclosed is an actuator system (or actuation system) that includes a computational model that drives or controls a physical actuator. In a non-limiting embodiment, the actuator can serve as an artificial organ or muscle, as described below. For example, the actuator can serve as an artificial muscle with computational model performing a virtual action potential and a virtual calcium transient, wherein the computational model controls a physical, mechanical contraction unit that mimics movement of a muscle. In other embodiments, the actuator system can achieve deformations and/or movements of a dynamic structure, such as an automobile, aircraft, spacecraft, watercraft. The actuator system can also achieve deformations and/or movements of a static structure, such as a chair, desk, building, etc. The actuation system can achieve such deformations or movements via a physical, chemical, mechanical, and/or electrical dynamics or combinations thereof. The model provides an output that drives a change in the physical structure wherein the change is achieved or accomplished via a physical, chemical, mechanical, and/or electrical dynamic or combinations thereof.
The details of one or more variations of the subject matter described herein are set forth in the accompanying drawings and the description below. Other features and advantages of the subject matter described herein will be apparent from the description and drawings, and from the claims.
Disclosed herein is an actuation system that includes a virtual or computer-modeled portion that is coupled to a physical portion. In an embodiment, the virtual portion is a computer model that models or otherwise simulates a function or action, such as a physiological function or action, including for example an action potential, a calcium transient, and/or a chemical reaction, as described more fully below. It should be appreciated that the computer model is not limited to simulating a physiological function but can model or simulate other actions or functions. For example, the computer model may model or simulate a chemical action, a mechanical action (such as movement of a wing) or any other action. The virtual portion drives or controls one or more physical actuators, which can be sized on a microscopic scale, such as on a nanometer scale. The actuation system can be used as or part of an artificial anatomical structure or organ, such as an artificial heart, muscle, bone, etc.
In a non-limiting example, the actuation system is configured to model cardiac function and can be part of an artificial heart or be coupled to a natural heart. The actuation system can comprise an artificial cardiac muscle actuator with a combination of the virtual action potential, virtual calcium transient, and physical mechanical contraction unit using high performance computing and microelectromechanical systems. The artificial cardiac muscle actuator can include or be coupled to natural cardiac cells and/or tissue. The actuation system can receive electrical signals from natural cardiac cells and tissue and physically contract based on a real time computer model and emit electrical signals to effectuate contraction of a natural heart.
To the extent that the actuation artificial cardiac muscle actuator includes or is coupled to cardiac cells and/or tissue, the corresponding cardiac cells/tissues can be Induced Pluripotent Stem Cells (iPS) or iPS derived cardiac cells/tissue. In addition, the actuation system, when implanted in a heart, can stimulate surrounding heart tissue to reshape the natural action potential and/or act as an additional pace making site to prevent or suppress arrhythmias.
To make artificial cardiac tissue a single cell unit can be used to develop cardiac tissue using multi cellular units. The virtual portion (as described below) can use, for example, a physiologically detailed action potential model that can reproduce physiological action potentials and Calcium transients. The physical actuator or unit can be any of a variety of physical units as described herein. To make artificial cardiac tissue, the cellular units can be developed into cardiac muscle tissue actuators. Tissue actuators such as 1 dimensional, two dimensional, and three dimensional actuators can be used. A one dimensional actuator can be formed of a single string in series of cellular units embedded in elastic bodies. Non-limiting examples of elastic bodies include silicone rubber and sodium alginate. A two dimensional actuator can be formed of a planar or sheet assembly of one dimensional actuators, while a three dimensional actuator can be formed of a stack of sheets of two dimensional actuators.
Each cellular unit is independent and receives signals of contraction generated by a computer for example. Electrical power is delivered to each cellular unit and a feedback signal comprised of a physical displacement (such as contraction) and/or force of each cell is used. The virtual action potential of healthy and diseased conditions can be reflected by the physical displacement or contraction.
In other non-limiting example embodiments, the actuation system can be used to achieve deformations or shape changes in structures such as automobiles, aircraft, spacecraft, watercraft, buildings, and static objects such desks and chairs.
With reference still to
The manner in which the computational unit models the action potential and/or the calcium transients can vary. In an example, the action potential model is performed pursuant to the computer model. In a non-limiting embodiment, mathematical modeling of the cardiac action potential includes modeling of cardiac arrhythmias and/or other functions of an animal heart such as a human heart. The model can reproduce the dynamics of the cardiac action potential and intracellular calcium cycling at rapid heart rates such as relevant to ventricular tachycardia and fibrillation. In a non-limiting embodiment, the model is at least partially based on a rabbit ventricular action potential model wherein L-type calcium current and intracellular calcium cycling formulations are modified based on experimental patch-clamp data obtained in isolated rabbit ventricular myocytes using perforated patch configurations at 35 degrees Celsius for example. A minimal seven-state Markovian model can be incorporated that reproduces Calcium and voltage dependent kinetics in combination with existing dynamic intracellular Calcium cycling models to replicate action potential duration and intracellular transient alternans at rapid heart rates and also reproduces experimental action potential duration restitution curves obtained by either dynamics or S1S2 pacing. The following publication, which is incorporated by reference, provides details regarding a physiologically detailed computer model of the rabbit ventricular myocyte in two-dimensional tissue to determine how spiral waves respond to β-adrenergic activation following administration of isoproternol: “How does β-adrenergic signalling affect the transitions from ventricular tachycardia to ventricular fibrillation?” published in European Society of Cardiology, Europace (2014) 16, 452-457 doi:10.1093/europace/eut412 by Yuanfang Xie, Eleonora Grandi, Donald M. Bers, and Daisuke Sato, which is incorporated herein by reference in its entirety.
As mentioned, the actuation system 100 can have a size on a microscopic scale such as on a nanometer˜millimeter scale, which is a non-limiting example. In this regard, each actuation system can be smaller in size than a biological cell structure such as smaller than the scale of organelle of a cell. A series or collection of actuation systems 100 can be assembled to form a collection of virtual cells 305, such as shown in
The actuation system 100 or a collection of actuation systems 100 can include a power supply.
In use, the cells (each of which includes one or more actuation systems 100) can be embedded or otherwise coupled to a structural body that can change in shape in response to the virtual action potential and virtual calcium transient that drives the physical actuator. The structural body can be a one-dimensional fiber or a planar body in which the cells are arranged in a two-dimensional plane or sheet. The structural body can also be a three-dimensional arrangement formed of a stacked collection of two-dimensional sheets. In any event, each cell is independent and can receive signals for contraction and electric power. The cells can also provide a feedback signal, such as displacement or movement of each cell and a controller can be used to adjust further movement based on the feedback signal. The cells collectively form an artificial tissue that can achieve changes in shape, size, stiffness, or other mechanical property based on the simulated action potential and calcium transient.
As mentioned, the actuation system 100 can also be used to achieve or effectuate mechanical changes in other structures, such as the shape of a vehicle (including an automobile, aircraft, watercraft, etc.) The actuation system 100 can also achieve structural changes in passive or static structures, such as the shape of a chair, desk, mobile phone or any ergonomic shape of any structure.
There are now described various examples of mechanical structures that can serve as the physical unit 110 of the actuation system. In a first example shown in
In another example of the physical unit 110, the physical unit 110 is at least partially formed of an ultrasonic linear motor. As shown in
In another example of the physical unit 110, the physical unit 110 is at least partially formed of a shape memory alloy (SMA) (such as an SMA manufactured by TOKI Corp.) which can contract in only one direction.
In another example of the physical unit 110, the physical unit 110 is at least partially formed of an electrostatic actuator 1305 used for contraction. As shown in
In another non-limiting example, the physical unit 110 is at least partially formed of a piezoelectric element.
As mentioned, the actuation system can be used to achieve movement, shape change, or deformation of any of a variety of structures. For example, the system can be used for artificial organs such as an artificial heart or prostheses. The system can be used for artificial muscle in robots including humanoid robots. This actuator system can also provide an alternative method of iPS cell-engineered cardiac tissue for cardiac regeneration. In addition, embedded artificial cardiac tissue can pace the tissue and actively suppress arrhythmias by off-site pacing. The actuator system can be used to effectuate a more natural, more realistic, and more comfortable prosthesis.
The actuation system can also be used in vehicles such as automobiles, airplanes, rockets, ships and submarines. The actuation system can be used to improve maneuverability of such vehicles by mimicking shape changes that occur in natural biological processes or organisms. The actuation system can also be used to achieve “smart” shape changes in structures such as buildings by controlling material properties such as the stiffness of the materials that form the structure.
One or more aspects or features of the subject matter described herein may be realized in digital electronic circuitry, integrated circuitry, specially designed ASICs (application specific integrated circuits), computer hardware, firmware, software, and/or combinations thereof. These various implementations may include implementation in one or more computer programs that are executable and/or interpretable on a programmable system including at least one programmable processor, which may be special or general purpose, coupled to receive data and instructions from, and to transmit data and instructions to, a storage system. The implementations can also include at least one input device (e.g., mouse, touch screen, etc.) and at least one output device.
These computer programs, which can also be referred to as programs, software, software applications, applications, components, or code, include machine instructions for a programmable processor, and can be implemented in a high-level procedural and/or object-oriented programming language, and/or in assembly/machine language. As used herein, the term “machine-readable medium” refers to any computer program product, apparatus and/or device, such as for example magnetic discs, optical disks, memory, and Programmable Logic Devices (PLDs), used to provide machine instructions and/or data to a programmable processor, including a machine-readable medium that receives machine instructions as a machine-readable signal. The term “machine-readable signal” refers to any signal used to provide machine instructions and/or data to a programmable processor. The machine-readable medium can store such machine instructions non-transitorily, such as for example as would a non-transient solid state memory or a magnetic hard drive or any equivalent storage medium. The machine-readable medium can alternatively or additionally store such machine instructions in a transient manner, such as for example as would a processor cache or other random access memory associated with one or more physical processor cores.
To provide for interaction with a user, the subject matter described herein can be implemented on a computer having a computer processor and a display device, such as for example a cathode ray tube (CRT) or a liquid crystal display (LCD) monitor for displaying information to the user and a keyboard and a pointing device, such as for example a mouse or a trackball, by which the user may provide input to the computer. Other kinds of devices can be used to provide for interaction with a user as well. For example, feedback provided to the user can be any form of sensory feedback, such as for example visual feedback, auditory feedback, or tactile feedback; and input from the user may be received in any form, including, but not limited to, acoustic, speech, or tactile input. Other possible input devices include, but are not limited to, touch screens or other touch-sensitive devices such as single or multi-point resistive or capacitive trackpads, voice recognition hardware and software, optical scanners, optical pointers, digital image capture devices and associated interpretation software, and the like.
In an example, a prototype actuation system 100 was built that included a shape memory alloy wrapped in a silicone wrapper. A single board computer comprised of a Raspberry Pi computer was used to program the prototype actuation system 100.
As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope of the subject matter described herein. Any recited method can be carried out in the order of events recited or in any other order which is logically possible.
While this specification contains many specifics, these should not be construed as limitations on the scope of an invention that is claimed or of what may be claimed, but rather as descriptions of features specific to particular embodiments. Certain features that are described in this specification in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or a variation of a sub-combination. Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results.
This invention was made with Government support under Grant No. R00-HL111334, awarded by the National Institutes of Health. The Government has certain rights in this invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/054430 | 10/4/2018 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62568160 | Oct 2017 | US |