This application is a National Phase Entry of International Patent Application No. PCT/EP2018/086501, filed on Dec. 21, 2018, which claims priority to French Patent Application Serial No. 17/62829, filed on Dec. 21, 2017, both of which are incorporated by reference herein.
The present invention concerns the field of electric actuators with direct drive moving a control member along a limited angular travel. Such actuators can, for example, be used to drive movement of a camshaft of an internal combustion engine.
Patent EP1897211 discloses a single-phase electromagnetic servo actuator composed of a rotary actuator designed to move a mobile member along a limited travel, including a 2N pole stator structure, N being equal to 1 or 2, and at least one field coil, said stator structure being made of a material with high magnetic permeability, and a rotor having a ferromagnetic yoke and a thin magnetized portion consisting of 2N pairs of axially magnetized poles, in alternate directions and a rotor angular position sensor. These servo actuators are generally used in closed-loop, i.e. with continuous control of movement thanks to the feedback provided by the position sensor, in order to guarantee precise positioning.
The disadvantage of this solution of the prior art is that a strong impact is produced when the movement of the rotor is stopped by solid stops. Impact can create rebounding and therefore erratic positioning, at least temporarily, when the stops are too stiff, and can also cause breakage of these stops due to repeated impact. For this reason, the solutions of the prior art often use position sensors and closed-loop control (with position sensor for continuous feedback and continuous movement correction) to slow movement at the end of movement to protect the stops. This solution nevertheless complicates the product and represents a significant cost.
The object of the present invention is to remedy this cited disadvantage by proposing an actuator controlled in an open-loop (i.e. a control without continuous feedback from a position sensor), limiting impact at the end of travel while ensuring high reliability, robustness and a longer service life. To this end, the invention concerns, in its most general sense, a brushless rotary actuator with travel limited by two stops, comprising a wound stator and a magnetic cylindrical rotor rigidly attached to a shaft having a first end rigidly attached to a control member, characterized in that the second end of said shaft is rigidly attached to a travel limiting part acting as stops, in that said travel limiting part has bending, resilient beam shapes, and in that the actuator is electrically controlled in an open-loop.
Preferably, said control member also has a bending, resilient beam shape. Advantageously, said beams are made of a material with a ratio between the breaking stress and the modulus of elasticity greater than 0.020 and a Charpy notched impact strength greater than 20 kJ/m2. This combination of beam and materials with mechanical characteristics favorable to viscoelastic damping ensures a long service life of the device in open-loop control in which the position or speed are not continuously controlled in order to minimize the impact speed when moving from one end of actuator travel to the other.
The material selected for the travel limiting part and the control member is preferably, but not limited to, an unfilled thermoplastic material and said beams are symmetrical to allow identical damping from one end of travel to the other. Likewise, the actuator can accept a mechanical movement return spring in a predefined position in open-loop control, for example when the control voltage is stopped. Specifically, the travel limiting part preferably has:
According to variants which are not mutually exclusive:
The actuator alternately comprises a position sensor designed to provide feedback on the position of the rotor in order to determine the state of actuation. It is typically a digital sensor providing on/off feedback to determine whether the actuation has been carried out, i.e. whether the rotor has moved along its travel.
The application of this actuator is typically, but not limited to, the driving, via the control member, of a lever rigidly attached to a camshaft of a motorized vehicle. As such, the invention also concerns a control system for controlling the lift value of the valves of an internal combustion engine comprising a camshaft, characterized in that the movement of said camshaft is ensured by a lever driven by a brushless rotary actuator with travel limited by two stops, comprising a wound stator and a magnetic cylindrical rotor rigidly attached to a shaft having a first end rigidly attached to a control member, wherein the second end of said shaft is rigidly attached to a travel limiting part acting as stops, in that said travel limiting part has bending, resilient beam shapes, said actuator being electrically controlled in an open-loop.
The present invention will be better understood upon reading the detailed description of a non-limiting embodiment of the invention which follows, referring to the accompanying drawings in which:
This shaft (7) drives, at its first end, a control member (9), the details of which are shown in
The actuator comprises, in a known manner, a stator formed by a base plate (13) comprising a plate stack of ferromagnetic sheets in which the pole pieces (14, 15) are driven in the form of cylinder portions, each surrounded by a coil (16, 17) of electric wires. In the center of the stator, the actuator has a tube (19) in the central position, which surrounds the shaft (7) and supports at its rear end an axial ball bearing (20) supporting the rotor (21) having, in a known manner, a ferromagnetic yoke carrying permanent magnets used for actuation in combination with the action of the coils (16, 17). This assembly causes the angular displacement of the rotor (21) in a first direction when the wound stator is supplied with electric current. A spring (22) ensures the angular displacement (the return) of the rotor (21) in an opposite angular direction, until it returns to an original position.
A travel limiting part (23) rigidly attached to the rotor (21), and positioned at the second end of the shaft (7), limits its movement between a rest position controlled by the spring (22), and a working position controlled by the current supply of the stator. An annular permanent magnet (24) rigidly attached to the rotor (21) provides a magnetic field detected by a magnetosensitive probe (25) positioned in the extension of the shaft (7). This magnetosensitive probe (25) is mounted on a printed circuit board (26) fixed on the cover (2). It is specified that the position sensor formed by the annular magnet (24) and the magnetosensitive probe (25) is used in order to roughly determine the position of the rotor (for example, to know whether or not the rotor has performed the movement) but that it is not used for closed-loop control of the actuator.
In
The travel limiting part (23) consists of an injected plastic part as can be observed in
These arms (44, 45) do not join the center of the part (23) but extend from an end corresponding to the radius of the rotor (21) to an intermediate radius (46, 47). Similarly, the arms (32, 33) do not join the center of the part (23) but extend from an end corresponding to the radius of the rotor (21) to an intermediate radius (48, 49). The rear end of an arm (44, 45) supporting the engaging pad (42, 43) is connected to the rear end of an adjacent arm (32, 33) supporting the travel limiting pad (30, 31) by a bridge (50, 51, 52, 53) in the form of a pin (50 to 53).
These bridges (50, 51, 52, 53) extend radially and define a curved end extended by two arms separated by a radial slot (54 to 57). This slot (54 to 57) widens slightly on the side of the angularly closest limiting pad. These bridges (50, 51, 52, 53) forming bending, mechanical beams, thus offer viscoelastic deformation making it possible to absorb the impact and dissipate its energy when the travel limiting pads (30, 31) come into contact with the stop (34, 35 or 36, 37). Preferably, by the combination of the damping properties accumulated between this travel limiting part (23) and the control member (9), the viability and the service life of the actuator in the application are considerably increased.
Inside this part (23) is a configuration having a central passage (58) defined by four split arms (59 to 62) connected to the junction region between a bridge (50, 51, 52, 53) and an arm (32, 33, 44, 45). This configuration is in a plane offset axially with respect to the plane defined by the bridges (50, 51, 52, 53) and the arms (32, 33, 44, 45). To allow optimal adjustment of the spring preload, the stop limiting part has several forks (29, 63 to 66). The movable end of the spring can be engaged in any one of these forks (29, 63 to 66).
Number | Date | Country | Kind |
---|---|---|---|
1762829 | Dec 2017 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2018/086501 | 12/21/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/122299 | 6/27/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
8222777 | Loussert et al. | Jul 2012 | B2 |
8502426 | Loussert et al. | Aug 2013 | B2 |
20030227362 | Byram | Dec 2003 | A1 |
20060181171 | Zhao | Aug 2006 | A1 |
20080197728 | Loussert et al. | Aug 2008 | A1 |
20090014085 | Faller | Jan 2009 | A1 |
20120019185 | Guidarelli | Jan 2012 | A1 |
20120326574 | Lousset et al. | Dec 2012 | A1 |
20170133907 | Choi et al. | May 2017 | A1 |
Number | Date | Country |
---|---|---|
0359653 | Mar 1990 | EP |
03596563 | Mar 1990 | EP |
1122868 | Aug 2001 | EP |
2732417 | Oct 1996 | FR |
2732417 | Oct 1996 | FR |
WO 2012023159 | Feb 2012 | WO |
WO-2012023159 | Feb 2012 | WO |
WO-2013164272 | Nov 2013 | WO |
Number | Date | Country | |
---|---|---|---|
20200318505 A1 | Oct 2020 | US |