This application claims priority to German application DE 10 2008 030 003.9 filed on Jun. 24, 2008, and PCT EP/2009/057086 filed on Jun. 9, 2009, both of which are hereby incorporated by reference in their entirety.
The present invention relates to an actuator, in particular an adjusting element for a vehicle.
Adjusting elements of this kind can be used in vehicles, for example, as flap actuator device wherein at least one actuating member is a flap by means of which a cross-section through which a flow can pass of a gas-conveying line can be controlled. Such a flap actuator device can be used, for example, in a fresh gas duct or in an exhaust gas duct of an internal combustion engine or in a fuel cell of the vehicle. Also known are adjusting elements for adjusting a guide vane geometry of a turbine of an exhaust gas turbocharger. Furthermore, a so-called “wastegate” of a turbocharger can be actuated by means of such an adjusting element.
The present invention is concerned with the problem to provide, for an actuator of the aforementioned type or, respectively, for an actuating drive equipped therewith, an improved embodiment which is in particular characterized in that it is compact and/or allows a simplified assembly.
This problem is solved according to the invention by the subject matters of the independent claims. Advantageous embodiments are subject matter of the dependent claims.
The invention is based on the general idea to configure for an actuator, the electric motor of which can be inserted through an insertion opening into a housing, a cover for closing the insertion opening as screw cover which has a cup-shaped section comprising a cylindrical wall and a bottom, and which is adjusted in such a manner that the electric motor rests axially on the bottom of the cover when the cover is screwed on. In this manner, an axial preload or bracing of the electric motor can be implemented with the cover. In particular, manufacturing tolerances can be compensated in this manner to allow a play-free positioning of the electric motor in the housing.
In an advantageous embodiment, between the cup-shaped section and a threaded section, the cover can comprise a transition section which is configured as axial tension spring. This transition section is tensioned during tightening the screwable cover, whereby an axial preload force can be applied to the electric motor. At the same time, the resilient transition region allows thermally related relative movements between the electric motor and the housing with cover. Such relative movements can occur during the operation of the actuator due to different thermal expansion coefficients of the electric motor, on the one hand, and the housing as well as the cover, on the other. Since the resilient transition region allows such relative movements and, at the same time, ensures a sufficient axial preload at all times, thermal stress peaks within the actuator can be prevented which supports the durability of the actuator even in an environment with frequently changing temperatures.
Moreover, a cup-shaped trough can be centrally incorporated at the bottom of the cup-shaped section, into which trough a cylindrical projection of the electric motor can project. Said cylindrical projection can involve, for example, a bearing for a drive shaft of the electric motor. The trough integrated in the bottom of the cover thus allows a positioning of the mentioned projection, thus, in particular, of a shaft bearing. This is in particular advantageous for achieving an increased durability in case of high forces or torques.
Further important features and advantages arise from the sub-claims, from the drawings, and from the associated description of the figures based on the drawings.
It is to be understood that the above mentioned features and the features yet to be explained hereinafter can be used not only in the respectively mentioned combination but also in other combinations or alone without departing from the scope of the present invention.
Preferred exemplary embodiments of the invention are illustrated in the drawings and are explained in the following description in more detail, wherein identical reference numbers refer to identical, or similar, or functionally identical components.
In the figures, schematically:
According to
The adjusting element 1 comprises an actuating shaft 7 by means of which the actuating members 4 can be actuated. Here, the actuating shaft 7 can be rotatably driven about its longitudinal center axis while the actuating members 4 are more or less connected in a rotationally fixed manner to the actuating shaft 7.
The actuator 2 has a housing 8 in which an electric motor 9 is arranged. With the electric motor 9, a driven shaft 10 of the actuator 2 can be rotatably driven. The driven shaft 10 rotates about its longitudinal center axis. For torque transmission between the driven shaft 10 and the actuating shaft 7, a bevel gear drive 11 is provided. The driven shaft 10 and the actuating shaft 7 are oriented relative to one another in such a manner that between a rotation axis 12 of the driven shaft 10 and a rotation axis 13 of the actuating shaft 7 an angle 14 exists which lies in a range of 60° to 120°, inclusively, and which lies in the shown preferred exemplary embodiment at approximately 90°.
According to
According to the
Each gear stage 20, 21 has a sun gear 22 or 23 as well as at least two planet gears 24. In the example, each gear stage 20, 21 has three planet gears 24. The respective sun gear 22, 23 is in engagement with the associated planet gears 24. The planet gears 24 are each rotatably mounted on a planet gear carrier 25 and are also in engagement with an annulus gear 26. Here, for both gear stages 20, 21, a common annulus gear 26 is provided with which all planet gears 24 of the two gear stages 20, 21 are in engagement. With exactly two gear stages 20, 21, one of them is a drive-side gear stage 20 while the other one is a driven-side gear stage 21. With three or more gear stages 20, 21, between the drive-side and the driven-side gear stages, at least one or more intermediate stages are arranged. In the drive-side gear stage 20, the sun gear 22 is connected to the drive shaft 18 in a rotationally fixed manner. In contrast, in the driven-side gear stage 21, the planet gear carrier 25 is connected to the drive shaft 10 in a rotationally fixed manner. Between the driven shaft 10 and the respective planet gear carrier 25, an axial engagement is provided which takes place on a diameter as large as possible to be able to transmit torques as high as possible. This engagement which transmits torques can be configured, for example, as plug connection.
For the preferred embodiment introduced here, the planet gears 24 of the gear stages 20, 21 are identical parts. In addition, the planet gear carriers 25 are configured as identical parts. In the example, the respective planet gear carrier 25 is connected in each case in a rotationally fixed manner to the sun gear 23 of the next following gear stage. This is preferably implemented in that the respective sun gear 23 of the following stage is manufactured integrally with the planet gear carrier 25 of the preceding stage. Since here, the planet gear carriers 25 are identical parts, the planet gear carrier 25 of the driven-side gear stage 21 is also provided with such a sun gear 23 although it basically does not need such a sun gear 23 because the torque transmission to the drive shaft 10 is advantageously not carried out via said additional sun gear 23, but in a different manner, namely preferably on a larger diameter directly via the planet gear carrier 25.
The sun gear 22 of the input-side gear stage 20 is connected to the drive shaft 18 in a rotationally fixed manner and thus is in particular not an identical part to the sun gears 23 of the planet gear carriers 25. In contrast to this, the sun gears 23 of the gear stages following the input-side gear stage 20 can be configured again as identical parts. It is also possible to configure all sun gears 22, 23 as identical parts if they are manufactured separately from the planet gear carriers 25 and are connected during assembly in a suitable and rotationally fixed manner to the drive shaft 18 or the respective planet gear carrier 25.
In the embodiments of the
According to the
The housing 8 receives the electric motor 9 and the planetary gear drive 19 or, respectively, the insert part 27. According to
According to
To improve the accuracy of the rotation angle sensor 32 or the angular resolution of the rotation angle sensor 32, two conductive elements 33 are provided here. They are configured in such a manner that they redirect a magnetic field of the permanent magnet 31 at least partially to the Hall sensor 32. For example, such conductive elements 33 can be made of sheet metal. The conductive elements 33 extend starting from the Hall sensor 32 and radially spaced apart from the permanent magnet 31 and with respect to the rotational axis 12 of the driven axis 10 in the circumferential direction. For example, each conductive element 33 extends over an angle of approximately 90° so that together, they encompass the permanent magnet 31 over an angle of approximately 180°.
For axial positioning of the conductive elements 33 it can be provided according to
According to
According to the
For this, the housing 8 has a thread 43 in an insertion section 42 which includes the insertion opening 38, wherein the thread is preferably configured as external thread 43. Complementary to that, the cover 41 has a threaded section provided with a corresponding thread 45 which is preferably configured as internal thread 45. Furthermore, the cover 41 has a cup-shaped section 46 which has a cylindrical wall 47 and a bottom 48. In the assembled state, the rear end 40 of the electric motor 9 abuts axially against said bottom 48.
Moreover, the cover 41 has a transition section 49 between the cup-shaped section 46 and the threaded section 44. The transition section is configured as axial tension spring and allows an axial preload of the electric motor 9 against the bottom 39 of the motor receiving compartment 37.
In the shown preferred embodiment, the transition section 49 has an annular collar 50. The latter, on the one hand, is radially fixedly connected, here radially on the inside, to the cup-shaped section 47, and, on the other, radially fixedly connected, here radially on the outside, to the threaded section 44. In particular, the whole cover 41 is made from one piece which integrally comprises the individual sections, thus, the cup-shaped section 46, the threaded section 44, and the transition section 50.
For example, the cover 41 involves a formed sheet metal part or an injection molded part.
The transition section 50 results in an axial positioning of the cup-shaped section 46 relative to the threaded section 44. Furthermore, the transition section 50 is configured in such a manner that an axial distance of the threaded section 44 from the bottom 48 of the cup-shaped section 46 can be increased against a reset force of the transition section 49. Here, the transition section 49 acts like a spring.
Advantageously, the cover 41, housing 8 and electric motor 9 are adapted to one another in such a manner that the tension spring, which is formed by the transition section 49, is tensioned during screwing on, thus when screwing on the cover 41, thereby generating the desired axial preload of the electric motor 9 against the bottom 39 within the motor receiving compartment 37. With the cover 41 screwed on, the electric motor 9 is then braced between the bottoms 39 and 48.
For finding and fixing a desired relative rotational position between cover 41 and housing 8, a latching mechanism can be provided which is not described here in more detail. Such a latching connection comprises at least one radially projecting latching element which, when the desired relative position between housing 8 and cover 41 is reached, latches or snaps into a latching receptacle which is complementary thereto. The respective latching element can be formed as nose, ramp, rib or hemisphere or the like. The respective latching receptacle can be configured as recess, breakout, indentation or cavity or the like. Advantageously, the at least one latching element is formed on the housing 8 and projects therefrom substantially in the radial direction towards the outside. The associated latching receptacle is provided on the cover 41. As soon as the desired relative rotational position between cover 41 and housing 8 is reached, the respective latching element engages with the associated latching receptacle and secures the cover 41 against an undesired rotation so that the cover 41 can not self-actingly disengage from the housing 8. Alternatively, the latching element can be arranged on the cover 41 and can interact with the latching receptacle arranged on the housing 8.
Particularly advantageous, said latching connection can be utilized for setting a predetermined axial preload of the electric motor 9 against the bottom 39 in the motor receiving compartment 37. For this, the positioning of the latching connection can be adapted to the interacting threads 43, 45 in such a manner that the electric motor 9 reaches the desired axial preloaded exactly at the moment when the cover 41 latches via the latching connection with the housing 8. This can take place as follows:
After insertion of the electric motor 9 into the motor receiving compartment 37, the cover 41 is placed onto the housing 8 and screwed on. As soon as the electric motor 9 axially abuts, on the one side, against the bottom 39 and, on the other side, against the cover 41 without, however, already transmitting a tensile stress onto the transition section 49, a defined state exists with a predetermined relative position between the cover 41 and the housing 8. Starting from said state, the cover 41 has to be further rotated or screwed by a maximum of 90°, thus by a quarter turn, before the latching connection between cover 41 and housing 8 can snap in. Within said quarter turn, an axial distance between cover 41 and housing 8 is covered which distance depends on the thread pitch and which transmits a defined preload to the transition section 49. For example, the threads 43, 45 interacting with one another can have a pitch of 2 mm. A quarter turn thus results in an axial travel of 0.5 mm. The length tolerance between the maximum length and the minimum length of the electric motor 9 is advantageously maximum 0.5 mm, advantageously less than 0.5 mm, however. Thus, through the proposed construction, the length tolerance of the electric motor 9 can be completely covered within the mentioned quarter turn. If other length tolerances have to be compensated, other adequate thread pitches and/or other rotation ranges can be provided. An electric motor 9 with the minimal length thus has the lowest preload. In contrast, the electric motor 9 with the maximal length is fixed with the highest preload. The lowest preload force is configured such that it is sufficient for supporting and fixing the electric motor 9. The highest preload force is advantageously configured such that the electric motor 9 is not damaged.
The
In the shown example, in the region of the insertion opening 38, a seal 51 is arranged between the insertion section 42 and the cover 41. Particularly advantageous is the embodiment shown here in which the seal 51 is arranged at a transition 52 between the transition section 49 and the threaded section 44. During tightening the cover 41, the seal 51 is compressed whereby the desired tightness can be achieved.
In the shown embodiments, the bottom 48 of the cup-shaped section 46 has a trough 53. The same is arranged centrally with respect to the cover 41 and is formed cup-shaped. A cylindrical projection 54 of the electric motor 9 projects into said trough 53. Said projection 54 extends axially from the rear end 40 of the electric motor 9. Said projection 54 can comprise, for example, a bearing, which is not shown here in detail, for the drive shaft 18 of the electric motor 9. Advantageously, the projection 54 and the trough 53 are adapted to one another with respect to their dimensions in such a manner that, on the one hand, a radial support of the projection 54 takes place on a wall 55 of the trough 53. On the other hand, the projection 54 is spaced apart in the axial direction from a bottom 56 of the trough 53. Accordingly, the trough 53 is only an alignment of the projection 54 with respect to the rotational axis of the drive shaft 18. The axial bracing of the electric motor 9, however, is carried out outside of the trough 53 via the bottom 48 of the cover 41.
While the cover 41 is made, for example, from a metal, the rest of the housing 8 consists preferably of a plastic. By means of the resilient transition section 49, thermally related expansions which can result in different length changes within the housing 8, the cover 41 and the electric motor 9 can be resiliently absorbed.
In addition, in the assembled state, the cover 41 assumes the function of a heat sink for the electric motor 9 to dissipate the lost energy of the electric motor 9 to the surrounding atmosphere. Here, the heat of the electric motor 9 is transmitted via the surface of its rear end 40 to the surface of the bottom 48 of the cover 41 which, e.g., is made of sheet metal. The heat thus can be dissipated to the surrounding atmosphere whereby the electric motor 9 is cooled.
According to the
In
The proposed curved or convex tooth flank geometry of the bevel gears 15 results in a point contact in the engagement region 17 via the tooth flanks 58. The selected shape for the tooth flanks 58 can compensate position deviations between the rotational axes 12 and 13 of the driven shaft 10 and the actuating shaft 7. For example, the bevel gears 15, 16 are configured for an angle 14 between the rotational axes 12, 13 which is, for example, 90°. The design of the bevel gears 15, 16 defines a target state here. However, due to assembly tolerances, after the assembly of the actuator 2 or the adjusting element 1, an actual situation arises which usually deviates from the target specification. Thus, in the assembled state, the rotational axes 12, 13 of the driven shaft 10 and the actuating shaft 7 can enclose an angle 14 which deviates from 90°. Furthermore, it might well be the case that the two rotational axes 12, 13 do not intersect, which also results in a positional deviation of the bevel gears 15, 16 which are fixedly connected to the shafts 10, 7. In
Moreover, it is sufficient to tooth one of the two bevel gears 15, 16 in the described manner. However, it is preferred to equip both bevel gears 15, 16 with the described toothing. Preferred is an embodiment in which both bevel gears 15, 16 are configured as identical parts. The bevel gears 15, 16 can in particular be made of plastic, wherein injection molding is preferred.
Number | Date | Country | Kind |
---|---|---|---|
10 2008 030 003 | Jun 2008 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2009/057086 | 6/9/2009 | WO | 00 | 12/23/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/156268 | 12/30/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2230581 | Avigdor | Oct 1938 | A |
6763582 | Kaiser et al. | Jul 2004 | B2 |
7078835 | Gross et al. | Jul 2006 | B2 |
7207545 | Kawai et al. | Apr 2007 | B2 |
20010026107 | Uruma et al. | Oct 2001 | A1 |
20030117030 | Agnes et al. | Jun 2003 | A1 |
20040119041 | Kawai et al. | Jun 2004 | A1 |
20040123838 | Hashimoto et al. | Jul 2004 | A1 |
20060181167 | Bradfield et al. | Aug 2006 | A1 |
Number | Date | Country |
---|---|---|
3332036 | Mar 1984 | DE |
10351382 | May 2004 | DE |
1281849 | Feb 2003 | EP |
1777150 | Apr 2007 | EP |
Entry |
---|
Germany Search Report for DE 102008030003.9 dated Jan. 16, 2013. |
English abstract for DE-3332036. |
Number | Date | Country | |
---|---|---|---|
20110101809 A1 | May 2011 | US |