The present invention relates to an actuator that drives by causing a vibrator to generate an elliptical vibration to cause a friction member to move with respect to the vibrator.
An actuator has been conventionally used as a driving source of, for example, a camera or a lens, to take advantage of characteristics thereof such as silent operation, a driving capability from a low speed to a high speed, and a high torque output.
For example, Japanese Patent Application Laid-Open No. 2011-254587 discloses an ultrasonic motor as an actuator that includes a friction member and a vibrator including a vibration plate and a piezoelectric device. The vibrator is arranged in a friction-contact condition in which the vibrator is pressurized by the friction member. When an ultrasonic vibration is excited in the vibrator that is in the friction-contact condition, an elliptical motion arises at a portion of the vibrator that is in contact with the friction member, and a relative movement is performed between the friction member and the vibrator.
The vibrator includes support portions that extend from two side surfaces in a symmetrical form, and one part of each support portion is fixed to a vibrator holding member. Further, a piezoelectric device is bonded to one side of a rectangular part at a center portion of the vibration plate, and two projections are formed on opposing surfaces and contact the friction member with friction.
In general, when fixing a piezoelectric device on a vibration plate, a surface on which the piezoelectric device is to be fixed is finished into a uniform flat surface from which concavities and convexities, warping, burrs and the like are removed by a polishing process, and fixing is then performed using an adhesive or the like. As a result, the piezoelectric device can be closely adhered to the vibration plate, and a deformation that arises in the piezoelectric device can be reliably transmitted to the vibration plate.
However, with the ultrasonic motor disclosed in Japanese Patent Application Laid-Open No. 2011-254587, there is the problem that if warping, concavities and convexities, a deformation or the like arise in the vibration plate, a large amount of time is required to perform the polishing process, and furthermore the vibration plate becomes an irregular shape after the polishing. In particular, since the rigidity of the support portions of the vibration plate of the vibrator is low, warping or deformation is liable to occur. In a case where the support portions become warped in a manner such that the support portions protrude to the surface side or are deformed, there is the problem that, when polishing the vibration plate, an area from the vicinity of the support portions is polished first, and hence the overall form of the vibration plate becomes a semi-cylindrical shape. This leads to a decrease in the performance of the ultrasonic motor, such as a drift or variations in the resonance frequency of the vibration plate.
In the ultrasonic motor disclosed in Japanese Patent Application Laid-Open No. 2011-254587, no consideration is given to the method of manufacturing the vibration plate, and in the case of using compression molding that is a generally inexpensive manufacturing method, burrs and warping are liable to arise, and consequently the above described problems occur.
The present invention has been made to solve the above described problems, and an object of the present invention is to provide an actuator that has high performance, even when an inexpensive manufacturing method is used.
Another object of the present invention is to provide an actuator including a vibrator including a vibration plate and a piezoelectric device that generates a vibration in the vibration plate, a holding member that holds the vibrator, a friction member configured to contact the vibrator with friction, the friction member relatively moving with respect to the vibrator by the vibration, and a pressure member configured to contact the vibrator with a pressure onto the friction member, wherein the vibration plate includes a center portion including a surface on which the piezoelectric device is fixed, and support portions that extend from both ends of the center portion and are connected to the holding member, the vibration plate includes a friction-sliding surface that contacts the friction member on another surface on an opposite side to the surface, the support portion includes a fixing portion for fixing to the holding member, and a connection portion for connecting the center portion and the fixing portion, and the fixing portion is located between a position on the surface and a position on the friction-sliding surface in a pressing direction in which the vibrator is pressed onto the friction member by the pressure member.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
Preferred embodiments of the present invention will now be described in detail in accordance with the accompanying drawings.
An exemplary embodiment of the present invention will be described hereunder with reference to
An ultrasonic motor 1 includes a rotor 101 that is a circular type of friction member, and a vibrator 104.
In the ultrasonic motor 1 of the present embodiment, the rotor 101 as a friction member is rotationally driven by three sets of the vibrators 104. In
The rotor 101 has an annular ring shape, and is driven to rotate in a manner that takes the center of the annular ring as the center of rotation. Each vibrator 104 includes a vibration plate 102 and a piezoelectric device 103. The piezoelectric device 103 is compression bonded to the surface of the vibration plate 102 by means of an adhesive or the like. Vibration of the vibration plate 102 is excited by applying a voltage to the piezoelectric device 103, and the excited vibration can cause an elliptical motion to be generated on a friction-sliding surface 102d of the vibration plate 102 that contacts the rotor 101. The elliptical motion causes the rotor 101 to perform rotational driving such that the rotor 101 undergoes relative movement with respect to the vibrators 104.
The ultrasonic motor 1 includes a ring member 108 that corresponds to the rotor 101. In each vibrator 104, felt 106 is affixed to one face of the piezoelectric device 103 to absorb vibrations thereof, and each vibrator 104 is attached to a holding member 105 in a manner such that the side on which the piezoelectric device 103 is disposed is positioned on the side of the holding member 105. Fitting projections 105a of the respective holding members 105 are inserted into positioning holes formed in a face on the rotor 101 of the ring member 108, so that the respective holding members 105 are held by the ring member 108. The vibrators 104 are held by the ring member 108 via the holding members 105. A perforated opening portion is formed in the center portion of each holding member 105. A pressure element 107 is inserted and fitted into the opening portion. The pressure element 107 is positioned between the ring member 108 and the felt 106. Each pressure element 107 can apply pressure to the vibrator 104 through the felt 106.
The ring member 108 that is on the opposite side to the rotor 101 includes shaft members 109 and plate springs 110. A pressure member is formed by the pressure element 107, the shaft member 109 and the plate spring 110. Each pressure member contacts the corresponding vibrator 104 while applying pressure to the rotor 101 that is the friction member. That is, each shaft member 109 is inserted into a hole portion that penetrates the ring member 108, and is held so as to be movable in only a direction that is perpendicular to the friction-sliding surface. The tip of each shaft member 109 contacts the corresponding pressure element 107 from the hole portion, and the rear end of the shaft member 109 contacts the corresponding plate spring 110 whose two ends are fixed to the ring member 108 by a screw 111, respectively. A convex portion is provided in the vicinity of the center of the tip of each pressure element 107, and a surface represented by a surface of the tip of the corresponding shaft member 109 comes in contact therewith. The surface of the tip of the shaft member 109 presses the convex portion of the pressure element 107 by means of an elastic force of the plate spring 110, and the pressure element 107 contacts the vibrator 104 through the felt 106 while pressing the rotor 101 that is the friction member. The direction of this pressing is defined as a “pressing direction”.
In this way, each of the above described members are assembled to be unitized as the ultrasonic motor. When the ultrasonic motor is actually mounted in a lens barrel or the like, the friction member 101 is coupled to a focusing mechanism or a zoom mechanism for driving.
Next, the vibration plate 102 is described in detail.
In the figures, the vibration plate 102 includes a center portion 102a that has a flat surface, and support portions 102c at two places that extend symmetrically from both ends of the center portion 102a. Two projections 102b are formed on one side of the center portion 102a.
A friction-sliding surface 102d is provided on an upper end face of each projection 102b. The friction-sliding surface 102d is a surface that contacts against the rotor 101 that is the friction member. In particular, to make the state of such contact favorable, the friction-sliding surface 102d is finished to a uniform flat surface by a polishing process or the like at the time of manufacture. The piezoelectric device 103 is fixed by adhesive or the like to a surface (flat portion) 102e on an opposite side to the side of the center portion 102a on which the projections 102b are formed. Similarly to the friction-sliding surface 102d, the surface 102e is also finished to a uniform flat surface by a polishing process or the like at the time of manufacture.
On the other hand, each of the support portions 102c includes a fixing portion 102f for fixing the vibration plate 102 to the holding member 105, and two connection portions 102g for connecting the fixing portion 102f to the center portion 102a. Various methods, such as bonding, deposition or welding, are conceivable as methods for fixing the fixing portion 102f and the holding member 105, and the strongest fixing method is desirable. The vicinity of the fixing portion 102f is configured to be a node or a vicinity of the node in vibrations, so that the vibrations generated at the piezoelectric device 103 are difficult to be transmitted even though the fixing portion 102f is fixed on the holding member 105.
As illustrated in
By adopting this configuration, the surface 102e for which polishing is required and the fixing portions 102f and connection portions 102g for which polishing is not required are not coplanar. It is thereby possible to polish substantially only the surface 102e without the polishing body contacting other portions. Accordingly, the fixing portions 102f and the connection portions 102g do not adversely affect the polishing process, and the polishing process can be significantly shortened in comparison to the conventional technology. Further, since the vibration plate 102 is not deformed after polishing, it is possible to realize an ultrasonic motor that has high performance.
Further, as illustrated in
Generally, the vibration plate 102 as used in the present invention is often manufactured by a compression molding process, and compression molding can also be utilized for the present invention. When a compression molding process is used, burrs arise during manufacture, and the burrs exert an adverse effect at the time of polishing. Therefore, according to the present invention a configuration is adopted that takes into consideration a direction in which burrs are generated so that the burrs do not exert an adverse effect on polishing. This configuration is described in detail hereunder using
In the above described configuration, a flexible printed board (not illustrated) is connected to the piezoelectric device 103 that is fixed on the surface 102e, and by applying a desired alternating-current voltage thereto, two vibration modes that are in the pressing direction and the driving direction are excited in the vibration plate 102. At this time, by setting the application of the alternating-current voltage so that a desired phase difference can be generated between the vibration phases of the two vibration modes, an elliptical motion is generated at the friction-sliding surface 102d. The elliptical motion is generated at the vibrators at the three places illustrated in
In
The holding member 105 is positioned by being fitted in a hole portion of the ring member 108, and is configured to be movable in the direction of the central line 201. Further, the pressure element 107 is disposed inside the opening portion of the holding member 105, and is configured to be movable in the direction of the central line 201. An elliptical motion is generated in the friction-sliding surface 102d of the vibration plate 102 when a predetermined voltage is applied to the piezoelectric device 103 under a friction-contact condition that is caused by the pressurizing force of the pressure element 107, and thus the friction member 101 can be rotated.
Note that although Embodiment 1 has been described taking as an example a case of driving the friction member 101 to which the vibrator 104 side including the ring member 108 is fixed, a configuration may also be adopted in which, conversely, the vibrator 104 side may be driven and the friction member 101 may be fixed.
Embodiment 2 is a modification of Embodiment 1, and is an example in which a bend is provided at two places in the connection portions 102g of the vibration plate 102, and in which the surface 102e and the fixing portions 102f are configured to be parallel.
As illustrated in
At this time, as indicated by an arrow C portion in
According to Embodiment 2 a configuration is adopted so that the fixing portions 102f and the surface 102e become parallel. It is not necessary to prepare an inclined surface as in the case of Embodiment 1 when fixing the vibrators 104 to the corresponding holding members 105, and hence the vibrators 104 can be fixed more simply. Further, since the positions of the respective fixing portions 102f can be freely changed within the range of the C portion, the degree of design freedom with respect to the layout is increased. Further, since the overall length when the vibration plate 102 is extended to form a flat surface can be altered by altering the position of the respective fixing portions 102f, the degree of design freedom with respect to the resonance frequency is also increased.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
Number | Date | Country | Kind |
---|---|---|---|
2013-174793 | Aug 2013 | JP | national |
This application is a continuation of U.S. patent application Ser. No. 14/464,827, filed Aug. 21, 2014, and which claims the benefit of Japanese Patent Application No. 2013-174793, filed Aug. 26, 2013, which are hereby incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
5521457 | Kawasaki | May 1996 | A |
6211603 | Iino et al. | Apr 2001 | B1 |
7432633 | Sakano | Oct 2008 | B2 |
7922291 | Kubo et al. | Apr 2011 | B2 |
7952258 | Mori | May 2011 | B2 |
7999439 | Sakamoto | Aug 2011 | B2 |
8816568 | Seki et al. | Aug 2014 | B2 |
9143058 | Oikawa et al. | Sep 2015 | B2 |
9537429 | Oikawa et al. | Jan 2017 | B2 |
9641104 | Yamasaki | May 2017 | B2 |
20060186760 | Sakano | Aug 2006 | A1 |
20090278421 | Hamamoto et al. | Nov 2009 | A1 |
20110309722 | Seki et al. | Dec 2011 | A1 |
20130033152 | Yamasaki et al. | Feb 2013 | A1 |
20130033771 | Oikawa et al. | Feb 2013 | A1 |
20130070350 | Oikawa et al. | Mar 2013 | A1 |
20130113339 | Kojima | May 2013 | A1 |
20130193803 | Yamasaki et al. | Aug 2013 | A1 |
20140319966 | Seki et al. | Oct 2014 | A1 |
20150158184 | Kamijo et al. | Jun 2015 | A1 |
20160118913 | Nishitani | Apr 2016 | A1 |
20160126864 | Araki | May 2016 | A1 |
Number | Date | Country |
---|---|---|
4-114300 | Oct 1992 | JP |
9-47045 | Feb 1997 | JP |
2004-304887 | Oct 2004 | JP |
2007-276330 | Oct 2007 | JP |
2008-125147 | May 2008 | JP |
2011-254587 | Dec 2011 | JP |
2012-005309 | Jan 2012 | JP |
2013-038878 | Feb 2013 | JP |
Entry |
---|
Office Action dated Jun. 6, 2017, in Japanese Patent Application No. 2013-174793. |
Number | Date | Country | |
---|---|---|---|
20170207727 A1 | Jul 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14464827 | Aug 2014 | US |
Child | 15478460 | US |