The outlet opening 326 is defined by the first, second, and third inner surfaces 380, 382, and 384 of the adjustment member 332 and, in the first configuration illustrated in
The present invention generally relates to systems and methods for applying texture material to an interior surface such as a wall or ceiling. In particular, buildings are typically constructed with a wood or metal framework. To form interior wall and ceiling surfaces, drywall material is attached to the framework. Typically, at least one primer layer and at least one paint layer is applied to the surface of the drywall material to form a finished wall surface.
For aesthetic and other reasons, a bumpy or irregular texture layer is often formed on the drywall material after the drywall material has been primed and before it has been painted. The appearance of the texture layer can take a number of patterns. As its name suggests, an “orange peel” texture pattern generally has the appearance of the surface of an orange and is formed by a spray of relatively small droplets of texture material applied in a dense, overlapping pattern. A “splatter” texture pattern is formed by larger, more spaced out droplets of texture material. A “knockdown” texture patter is formed by spraying texture material in larger droplets (like a “splatter” texture pattern) and then lightly working the surfaces of the applied droplets with a knife or scraper so that the highest points of the applied droplets are flattened. In some situations, a visible aggregate material such as polystyrene chips is added to the texture material to form what is commonly referred to as an “acoustic” or “popcorn” texture pattern.
For larger applications, such as a whole room or structure, the texture layer is typically initially formed using a commercial texture sprayer. Commercial texture sprayers typically comprise a spray gun, a hopper or other source of texture material, and a source of pressurized air. The texture material is mixed with a stream of pressurized air within the texture gun, and the stream of pressurized air carries the texture material in droplets onto the target surface to be textured. Commercial texture sprayers contain numerous points of adjustment (e.g., amount of texture material, pressure of pressurized air, size of outlet opening, etc.) and thus allow precise control of the texture pattern and facilitate the quick application of texture material to large surface areas. However, commercial texture sprayers are expensive and can be difficult to set up, operate, and clean up, especially for small jobs where overspray may be a problem.
For smaller jobs and repairs, especially those performed by non-professionals, a number of “do-it-yourself” (DIY) products for applying texture material are currently available in the market. Perhaps the most common type of DIY texturing products includes aerosol systems that contain texture material and a propellant. Aerosol systems typically include a container, a valve, and an actuator. The container contains the texture material and propellant under pressure. The valve is mounted to the container selectively to allow the pressurized propellant to force the texture material out of the container. The actuator defines an outlet opening, and, when the actuator is depressed to place the valve in an open configuration, the pressurized propellant forces the texture material out of the outlet opening in a spray. The spray typically approximates only one texture pattern, so it was difficult to match a variety of perhaps unknown preexisting texture patterns with original aerosol texturing products.
A relatively crude work around for using an aerosol texturing system to apply more than one texture pattern is to reduce the pressure of the propellant material within the container prior to operating the valve. In particular, when maintained under pressure within the container, typical propellant materials exist in both a gas phase and in a liquid phase. The propellant material in the liquid phase is mixed with the texture material, and the texture material in the gas state pressurizes the mixture of texture material and liquid propellant material. When the container is held upright, the liquid contents of the container are at the bottom of the container chamber, while the gas contents of the container collect at the top of the container chamber. A dip tube extends from the valve to the bottom of the container chamber to allow the propellant in the gas phase to force the texture material up from the bottom of the container chamber and out of the outlet opening when the valve is opened. To increase the size of the droplets sprayed out of the aerosol system, the container can be inverted, the valve opened, and the gas phase propellant material allowed to flow out of the aerosol system, reducing pressure within the container chamber. The container is then returned upright and the valve operated again before the pressure of the propellant recovers such that the liquid contents are forced out in a coarser texture pattern. This technique of adjusting the applied texture pattern result in only a limited number of texture patterns that are not highly repeatable and can drain the can of propellant before the texture material is fully dispensed.
A more refined method of varying the applied texture pattern created by aerosol texturing patterns involved adjusting the size of the outlet opening formed by the actuator structure. Initially, it was discovered that the applied texture pattern could be varied by attaching one of a plurality of straws or tubes to the actuator member, where each tube defined an internal bore of a different diameter. The straws or tubes were sized and dimensioned to obtain fine, medium, and coarse texture patterns appropriate for matching a relatively wide range of pre-existing texture patterns. Additional structures such as caps and plates defining a plurality of openings each having a different cross-sectional area could be rotatably attached relative to the actuator member to change the size of the outlet opening. More recently, a class of products has been developed using a resilient member that is deformed to alter the size of the outlet opening and thus the applied texture pattern.
The need thus exists for improved aerosol texturing systems and methods that can approximate the results obtained by commercial texture sprayers.
The present invention may be embodied as an aerosol dispensing system for dispensing stored material in a spray comprising a container, a conduit, and an adjustment system. The container defines a chamber containing the stored material and pressurized material. The conduit defines a conduit passageway having a conduit inlet and a conduit outlet. The conduit inlet is arranged within the chamber and the conduit outlet is arranged outside of the chamber. An adjustment system is arranged to vary a flow of stored material along the conduit passageway. The adjustment system is arranged adjacent to the conduit outlet and comprises an actuator member and first and second adjustment members. The actuator member forms at least a portion of the conduit and defines at least a portion of the conduit passageway. The first and second adjustment members are supported by the actuator member. The conduit outlet is defined by a first surface of the first adjustment member and a second surface of the second adjustment member. At least one of the first and second adjustment members is movably supported by the actuator member such that moving the first and second adjustment members relative to each other alters a cross-sectional area of the conduit outlet.
The present invention may also be embodied as a method of dispensing stored material in a spray comprising the following steps. A chamber is defined. The stored material and pressurized material are arranged within the chamber. A conduit passageway having a conduit inlet and a conduit outlet is arranged such that the conduit inlet is arranged within the chamber and the conduit outlet is arranged outside of the chamber. An adjustment system comprising an actuator member and first and second adjustment members is provided. The actuator member is arranged to define at least a portion of the conduit passageway. The first and second adjustment members are supported on the actuator member such that the conduit outlet is defined by a first surface of the first adjustment member and a second surface of the second adjustment member. The first and second adjustment members are moved relative to each other to alter a cross-sectional area of the conduit outlet and thereby vary a flow of stored material along the conduit passageway at the conduit outlet.
Referring initially to
The actuator 22 comprises a stem portion 30 and defines an actuator passageway 32. The actuator passageway 32 terminates in an outlet opening 34. The aerosol system 24 comprises a container system 40, a valve system 42, and a dip tube 44 and defines a dispensing passageway 46 from the interior of the container system 40 to the exterior of the aerosol system 24. The container system 40 and the valve system 42 are or may be conventional and will not be described herein beyond what is necessary for a complete understanding of the principles of the present invention.
The stem portion 30 of the actuator 22 engages the valve system 42 to support the actuator 22 relative to the aerosol system 24. The valve system 42 is operable in a normally closed configuration in which fluid is substantially prevented from flowing along the dispensing passageway 46 and an open configuration in which fluid is allowed to flow along the dispensing passageway 46. Displacing the actuator 22 relative to the container system 40 causes the valve system 42 to change from the normally closed configuration to the open configuration.
The contained material 26 comprises a propellant material and a texture material and defines a gas portion 50 and a liquid portion 52. The propellant material defines at least a portion of the gas portion 50, and the texture material defines at least a portion of the liquid portion 52. In one example, the propellant material is a compressed inert gas such as air or nitrogen, in which case the propellant material defines the gas portion 50 and the texture material defines the liquid portion 52. In another example, the propellant material is a bi-phase material that exists within the container system 40 in both liquid and gas phases. In this second example, the liquid phase of the propellant material defines the gas portion 50, and the liquid portion 52 comprises both the texture material and the liquid phase of the propellant material.
The gas portion 50 pressurizes the liquid portion 52 such that operation of the valve system 42 in the open configuration allows the gas portion 50 to force at least part of the liquid portion 52 out of the aerosol system 24 through the actuator 22 as the spray 28. The spray 28 comprises texture material and possibly some of the propellant material in liquid phase. If the spray 28 comprises propellant material in liquid phase, the propellant material within the spray gasifies when released from the container system 40. If the spray 28 contains gasifying propellant material, the expanding propellant material within the spray 28 can assist with atomization of the spray 28. In any event, the spray is deposited on a surface 60 to form a texture layer 62 having bumps and irregularities. The dimensions and/or shape of the cross-sectional area defined by the outlet opening 34 define the characteristics of the spray 28 and thus the bumps and irregularities of the texture layer 62.
Turning now to
The first plate 132 defines a first plate upper surface 160, a first plate lower surface 162, a first plate inner surface 164, a first plate outer surface 166, and a first plate end surface 168. The second plate 134 defines a second plate upper surface 170, a second plate lower surface 172, a second plate inner surface 174, a second plate outer surface 176, and a second plate end surface 178.
The first and second plates 132 and 134 are sized and dimensioned to fit snugly within the slot 146 such that the upper surfaces 160 and 170 engage the first opposing surface 152 and the lower surfaces 162 and 172 engage the second opposing surface 154. The first pin 136 extends through the first wall portion 142, the first plate 132, and the second wall portion 144 to movably attach the first plate 132 to the base member 130. The second pin 138 extends through the first wall portion 142, the second plate 134, and the second wall portion 144 to movably attach the second plate 134 to the base member 130.
The outlet opening 126 is defined by the first and second opposing surfaces 152 and 154 of the base member 130 and the first and second inner surfaces 164 and 174 of the first and second plates 132 and 134. By moving one or both of the plates 132 and 134 relative to the base member 130, a cross-sectional area of the outlet opening 126 may be changed as can be seen by a comparison of
Turning next to
The adjustment member 232 defines a first wall portion 260, a second wall portion 262, and a third wall portion 264. The first wall portion 260 defines an upper surface 270, the second wall portion 262 defines a lower surface 272, and the third wall portion 264 defines an outer surface 274. The adjustment member 232 further defines an end surface 276. In addition, the first wall portion 260 defines a first inner surface 280, the second wall portion 262 defines a second inner surface 282, and the third wall portion 264 defines a third inner surface 284.
The adjustment member 232 is sized and dimensioned to fit snugly within the slot 248 such that the upper surface 270 engages the first opposing surface 254 and the lower surface 272 engages the second opposing surface 256. The pin 234 extends through the second wall portion 244, the adjustment member 232, and the third wall portion 246 to movably attach the adjustment member 232 to the base member 230.
The outlet opening 226 is defined by the first, second, and third inner surfaces 280, 282, and 284 of the adjustment member 232 and, in the first configuration illustrated in
Accordingly, by moving the adjustment member 232 relative to the base member 230, a cross-sectional area of the outlet opening 226 may be changed as can be seen by a comparison of
The adjustment member 332 defines a first wall portion 360, a second wall portion 362, and a third wall portion 364. The first wall portion 360 defines an upper surface 370, the second wall portion 362 defines a lower surface 372, and the third wall portion 364 defines an outer surface 374. The adjustment member 332 further defines an end surface 376. In addition, the first wall portion 360 defines a first inner surface 380, the second wall portion 362 defines a second inner surface 382, and the third wall portion 364 defines a third inner surface 384.
The adjustment member 332 is sized and dimensioned to fit snugly within the slot 348 such that the upper surface 370 engages the first opposing surface 354 and the lower surface 372 engages the second opposing surface 356. The pin 334 extends through the second wall portion 344, the adjustment member 332, and the third wall portion 346 to movably attach the adjustment member 332 to the base member 330.
The outlet opening 326 is defined by the first, second, and third inner surfaces 380, 382, and 384 of the adjustment member 332 and, in the first configuration illustrated in
Accordingly, by moving the adjustment member 332 relative to the base member 330, a cross-sectional area of the outlet opening 326 may be changed as can be seen by a comparison of
The adjustment member 432 is sized and dimensioned such that the threaded portion 454 engages the threaded opening 448 such that the end portion 452 is adjacent to the end opening 446 of the base member 430. The threaded portion 454 further engages the threaded opening 448 such that axial rotation of the adjustment member 432 causes movement of the adjustment member 432 relative to the base member 430.
The end portion 452 of the adjustment member 432 further defines an inner surface 460 and an outer surface 462. The inner surface 460 is shaped such that a diameter thereof becomes larger along a longitudinal axis of the adjustment member 432 from the shaft portion 450 to the end surface 462. In the example depicted in
The outlet opening 426 is defined by the inner surfaces 460 of the adjustment member 432 and by the end opening 446 of the base member 430. In particular, axial rotation of the adjustment member 432 causes the adjustment member 432 to move or be displaced relative to the base member 430 as shown by a comparison of
Accordingly, by moving the adjustment member 432 relative to the base member 430, a cross-sectional area of the outlet opening 426 may be changed as can be seen by a comparison of
The adjustment member 532 defines a front surface 560, a rear surface 562, and an edge surface 564. The adjustment member 532 further defines a plate opening 570 and a pin opening 572.
The adjustment member 532 is sized and dimensioned such that a portion thereof snugly fits within the groove 546. In particular, the front and rear surfaces 560 and 562 of the adjustment member 532 engage the main surface 550 and the opposing surface 552, respectively. The pin 534 extends through the pin opening 572 to movably attach the adjustment member 532 to the base member 530. The example pin 534 is offset from the inner opening 556 along an axis of the actuator passageway 524 as shown in
The outlet opening 526 is defined by the overlap of the plate opening 570 and the inner opening 556. In both the first and second configurations shown in
Accordingly, by moving the adjustment member 532 relative to the base member 530, both a shape and a cross-sectional area of the outlet opening 526 may be changed as can be seen by a comparison of
The adjustment member 632 defines a front surface 660, a rear surface 662, and an edge surface 664. The adjustment member 632 further defines a plate opening 670 and a pin opening 672.
The adjustment member 632 is sized and dimensioned such that a portion thereof snugly fits within the groove 646. In particular, the front and rear surfaces 660 and 662 of the adjustment member 632 engage the main surface 650 and the opposing surface 652, respectively. The pin 634 extends through the pin opening 672 to movably attach the adjustment member 632 to the base member 630. The example pin 634 is aligned with the inner opening 656 along an axis of the actuator passageway 624 as shown in
The outlet opening 626 is defined by the overlap of the plate opening 670 and the inner opening 656. In both the first and second configurations shown in
Accordingly, by moving the adjustment member 632 relative to the base member 630, both a shape and a cross-sectional area of the outlet opening 626 may be changed as can be seen by a comparison of
The adjustment member 732 is sized and dimensioned such that the perimeter wall surface 762 thereof frictionally engages the outer surface 744 of the base member 730 to detachably attach the adjustment member 732 to the base member 730 in either any of a continuum of positions between a first position as shown in
Accordingly, by moving the adjustment member 732 relative to the base member 730, a cross-sectional area of the outlet opening 726 may be changed as can be seen by a comparison of
The attachment portion 852 of the adjustment member 832 is sized and dimensioned to fit snugly within the groove 844 such that the adjustment portion is arranged to extend around the inner opening 846.
The outlet opening 826 is defined by the adjustment portion 852 of the adjustment member 832. In a first configuration as illustrated in
Accordingly, by pinching or otherwise altering the shape of the adjustment member 832 such that the overlapped portion 864 is made larger or smaller, a cross-sectional area of the outlet opening 826 may be changed as can be seen by a comparison of
This application, U.S. patent application Ser. No. 13/897,178 filed May 17, 2013, claims benefit of U.S. Provisional Patent Application Ser. No. 61/648,519 filed May 17, 2012.
Number | Name | Date | Kind |
---|---|---|---|
208330 | Palmer | Sep 1878 | A |
351968 | Derrick | Nov 1886 | A |
D25916 | Woods | Aug 1896 | S |
568876 | Regan | Oct 1896 | A |
579418 | Bookwalter | Mar 1897 | A |
582397 | Shone | May 1897 | A |
658586 | Reiling | Sep 1900 | A |
930095 | Seagrave | Aug 1909 | A |
931757 | Harmer | Aug 1909 | A |
941671 | Campbell | Nov 1909 | A |
1093907 | Birnbaum | Apr 1914 | A |
1154974 | Custer | Sep 1915 | A |
1486156 | Needham | Mar 1924 | A |
2127188 | Schellin et al. | Aug 1938 | A |
2149930 | Plastaras | Mar 1939 | A |
D134562 | Murphy | Dec 1942 | S |
2307014 | Becker et al. | Jan 1943 | A |
2320964 | Yates | Jun 1943 | A |
2353318 | Scheller | Jul 1944 | A |
2388093 | Smith | Oct 1945 | A |
2530808 | Cerasi | Nov 1950 | A |
2565954 | Dey | Aug 1951 | A |
2612293 | Michel | Sep 1952 | A |
2686652 | Carlson et al. | Aug 1954 | A |
2723200 | Pyenson | Nov 1955 | A |
2763406 | Countryman | Sep 1956 | A |
2764454 | Edelstein | Sep 1956 | A |
2785926 | Lataste | Mar 1957 | A |
2790680 | Rosholt | Apr 1957 | A |
2831618 | Soffer et al. | Apr 1958 | A |
2839225 | Soffer et al. | Jun 1958 | A |
2908446 | Strouse | Oct 1959 | A |
2932434 | Abplanalp | Apr 1960 | A |
2965270 | Soffer et al. | Dec 1960 | A |
2968441 | Holcomb | Jan 1961 | A |
2976897 | Beckworth | Mar 1961 | A |
2997243 | Kolb | Aug 1961 | A |
3083872 | Meshberg | Apr 1963 | A |
3107059 | Frechette | Oct 1963 | A |
3167525 | Thomas | Jan 1965 | A |
3191809 | Schultz et al. | Jun 1965 | A |
3196819 | Lechner et al. | Jul 1965 | A |
3198394 | Lefer | Aug 1965 | A |
3216628 | Fergusson | Nov 1965 | A |
3246850 | Bourke | Apr 1966 | A |
3258208 | Greenebaum, II | Jun 1966 | A |
3284007 | Clapp | Nov 1966 | A |
3314571 | Greenebaum, II | Apr 1967 | A |
3317140 | Smith | May 1967 | A |
3342382 | Huling | Sep 1967 | A |
3346195 | Groth | Oct 1967 | A |
3373908 | Crowell | Mar 1968 | A |
3377028 | Bruggeman | Apr 1968 | A |
3390121 | Burford | Jun 1968 | A |
3405845 | Cook et al. | Oct 1968 | A |
3414171 | Grisham et al. | Dec 1968 | A |
3415425 | Knight et al. | Dec 1968 | A |
3425600 | Abplanalp | Feb 1969 | A |
3428224 | Eberhardt et al. | Feb 1969 | A |
3433391 | Krizka et al. | Mar 1969 | A |
3450314 | Gross | Jun 1969 | A |
3467283 | Kinnavy | Sep 1969 | A |
3472457 | McAvoy | Oct 1969 | A |
3482738 | Bartels | Dec 1969 | A |
3513886 | Easter et al. | May 1970 | A |
3514042 | Freed | May 1970 | A |
3544258 | Presant et al. | Dec 1970 | A |
3548564 | Bruce et al. | Dec 1970 | A |
3550861 | Teson | Dec 1970 | A |
3575319 | Safianoff | Apr 1971 | A |
3592359 | Marraffino | Jul 1971 | A |
3596835 | Smith et al. | Aug 1971 | A |
3608822 | Berthoud | Sep 1971 | A |
3613954 | Bayne | Oct 1971 | A |
3648932 | Ewald et al. | Mar 1972 | A |
3653558 | Shay | Apr 1972 | A |
3698645 | Coffey | Oct 1972 | A |
3700136 | Ruekberg | Oct 1972 | A |
3703994 | Nigro | Nov 1972 | A |
3704811 | Harden, Jr. | Dec 1972 | A |
3704831 | Clark | Dec 1972 | A |
3705669 | Cox et al. | Dec 1972 | A |
3711030 | Jones | Jan 1973 | A |
3764067 | Coffey et al. | Oct 1973 | A |
3770166 | Marand | Nov 1973 | A |
3773706 | Dunn, Jr. | Nov 1973 | A |
3776470 | Tsuchiya | Dec 1973 | A |
3776702 | Chant | Dec 1973 | A |
3777981 | Probst et al. | Dec 1973 | A |
3788521 | Laauwe | Jan 1974 | A |
3795366 | McGhie et al. | Mar 1974 | A |
3799398 | Morane et al. | Mar 1974 | A |
3806005 | Prussin et al. | Apr 1974 | A |
3811369 | Ruegg | May 1974 | A |
3813011 | Harrison et al. | May 1974 | A |
3814326 | Bartlett | Jun 1974 | A |
3819119 | Coffey et al. | Jun 1974 | A |
3828977 | Borchert | Aug 1974 | A |
3848778 | Meshberg | Nov 1974 | A |
3862705 | Beres et al. | Jan 1975 | A |
3871553 | Steinberg | Mar 1975 | A |
3891128 | Smrt | Jun 1975 | A |
3912132 | Stevens | Oct 1975 | A |
3913803 | Laauwe | Oct 1975 | A |
3913804 | Laauwe | Oct 1975 | A |
3913842 | Singer | Oct 1975 | A |
3932973 | Moore | Jan 1976 | A |
3936002 | Geberth, Jr. | Feb 1976 | A |
3938708 | Burger | Feb 1976 | A |
3975554 | Kummins et al. | Aug 1976 | A |
3982698 | Anderson | Sep 1976 | A |
3989165 | Shaw et al. | Nov 1976 | A |
3991916 | Del Bon | Nov 1976 | A |
3992003 | Visceglia et al. | Nov 1976 | A |
4010134 | Braunisch et al. | Mar 1977 | A |
4032064 | Giggard | Jun 1977 | A |
4036673 | Murphy et al. | Jul 1977 | A |
4045860 | Winckler | Sep 1977 | A |
4089443 | Zrinyi | May 1978 | A |
4096974 | Haber et al. | Jun 1978 | A |
4117951 | Winckler | Oct 1978 | A |
4129448 | Greenfield et al. | Dec 1978 | A |
4147284 | Mizzi | Apr 1979 | A |
4148416 | Gunn-Smith | Apr 1979 | A |
4154378 | Paoletti et al. | May 1979 | A |
4164492 | Cooper | Aug 1979 | A |
RE30093 | Burger | Sep 1979 | E |
4171757 | Diamond | Oct 1979 | A |
4173558 | Beck | Nov 1979 | A |
4185758 | Giggard | Jan 1980 | A |
4187959 | Pelton | Feb 1980 | A |
4187985 | Goth | Feb 1980 | A |
4198365 | Pelton | Apr 1980 | A |
4202470 | Fujii | May 1980 | A |
4238264 | Pelton | Dec 1980 | A |
4240940 | Vasishth et al. | Dec 1980 | A |
4258141 | Jarre et al. | Mar 1981 | A |
4275172 | Barth et al. | Jun 1981 | A |
4293353 | Pelton et al. | Oct 1981 | A |
4308973 | Irland | Jan 1982 | A |
4310108 | Motoyama et al. | Jan 1982 | A |
4322020 | Stone | Mar 1982 | A |
4346743 | Miller | Aug 1982 | A |
4354638 | Weinstein | Oct 1982 | A |
4358388 | Daniel et al. | Nov 1982 | A |
4370930 | Strasser et al. | Feb 1983 | A |
4372475 | Goforth et al. | Feb 1983 | A |
4401271 | Hansen | Aug 1983 | A |
4401272 | Merton et al. | Aug 1983 | A |
4411387 | Stern et al. | Oct 1983 | A |
4417674 | Giuffredi | Nov 1983 | A |
4438221 | Fracalossi et al. | Mar 1984 | A |
4442959 | Del Bon et al. | Apr 1984 | A |
4460719 | Danville | Jul 1984 | A |
4482662 | Rapaport et al. | Nov 1984 | A |
4496081 | Farrey | Jan 1985 | A |
4546905 | Nandagiri et al. | Oct 1985 | A |
4595127 | Stoody | Jun 1986 | A |
4609608 | Solc | Sep 1986 | A |
4641765 | Diamond | Feb 1987 | A |
4683246 | Davis et al. | Jul 1987 | A |
4702400 | Corbett | Oct 1987 | A |
4728007 | Samuelson et al. | Mar 1988 | A |
4744495 | Warby | May 1988 | A |
4761312 | Koshi et al. | Aug 1988 | A |
4792062 | Goncalves | Dec 1988 | A |
4793162 | Emmons | Dec 1988 | A |
4804144 | Denman | Feb 1989 | A |
4815414 | Duffy et al. | Mar 1989 | A |
4819838 | Hart, Jr. | Apr 1989 | A |
4830224 | Brison | May 1989 | A |
4839393 | Buchanan et al. | Jun 1989 | A |
4854482 | Bergner | Aug 1989 | A |
4870805 | Morane | Oct 1989 | A |
4878599 | Greenway | Nov 1989 | A |
4887651 | Santiago | Dec 1989 | A |
4893730 | Bolduc | Jan 1990 | A |
4896832 | Howlett | Jan 1990 | A |
D307649 | Henry | May 1990 | S |
4940171 | Gilroy | Jul 1990 | A |
4949871 | Flanner | Aug 1990 | A |
4953759 | Schmidt | Sep 1990 | A |
4954544 | Chandaria | Sep 1990 | A |
4955545 | Stern et al. | Sep 1990 | A |
4961537 | Stern | Oct 1990 | A |
4969577 | Werding | Nov 1990 | A |
4969579 | Behar | Nov 1990 | A |
4988017 | Schrader et al. | Jan 1991 | A |
4991750 | Moral | Feb 1991 | A |
5007556 | Lover | Apr 1991 | A |
5009390 | McAuliffe, Jr. et al. | Apr 1991 | A |
5037011 | Woods | Aug 1991 | A |
5038964 | Bouix | Aug 1991 | A |
5052585 | Bolduc | Oct 1991 | A |
5059187 | Sperry et al. | Oct 1991 | A |
5065900 | Scheindel | Nov 1991 | A |
5069390 | Stern et al. | Dec 1991 | A |
5083685 | Amemiya et al. | Jan 1992 | A |
5100055 | Rokitenetz et al. | Mar 1992 | A |
5115944 | Nikolich | May 1992 | A |
5126086 | Stoffel | Jun 1992 | A |
5169037 | Davies et al. | Dec 1992 | A |
5182316 | DeVoe et al. | Jan 1993 | A |
5188263 | Woods | Feb 1993 | A |
5188295 | Stern et al. | Feb 1993 | A |
5211317 | Diamond et al. | May 1993 | A |
5219609 | Owens | Jun 1993 | A |
5250599 | Swartz | Oct 1993 | A |
5277336 | Youel | Jan 1994 | A |
5297704 | Stollmeyer | Mar 1994 | A |
5307964 | Toth | May 1994 | A |
5310095 | Stern et al. | May 1994 | A |
5312888 | Nafziger et al. | May 1994 | A |
5314097 | Smrt et al. | May 1994 | A |
5323963 | Ballu | Jun 1994 | A |
5341970 | Woods | Aug 1994 | A |
5342597 | Tunison, III | Aug 1994 | A |
5368207 | Cruysberghs | Nov 1994 | A |
5374434 | Clapp et al. | Dec 1994 | A |
5405051 | Miskell | Apr 1995 | A |
5409148 | Stern et al. | Apr 1995 | A |
5417357 | Yquel | May 1995 | A |
D358989 | Woods | Jun 1995 | S |
5421519 | Woods | Jun 1995 | A |
5425824 | Marwick | Jun 1995 | A |
5450983 | Stern et al. | Sep 1995 | A |
5467902 | Yquel | Nov 1995 | A |
5476879 | Woods et al. | Dec 1995 | A |
5489048 | Stern et al. | Feb 1996 | A |
5498282 | Miller et al. | Mar 1996 | A |
5501375 | Nilson | Mar 1996 | A |
5505344 | Woods | Apr 1996 | A |
5523798 | Hagino et al. | Jun 1996 | A |
5524798 | Stern et al. | Jun 1996 | A |
5544783 | Conigliaro | Aug 1996 | A |
5548010 | Franer | Aug 1996 | A |
5549228 | Brown | Aug 1996 | A |
5558247 | Caso | Sep 1996 | A |
5562235 | Cruysberghs | Oct 1996 | A |
5570813 | Clark, II | Nov 1996 | A |
5573137 | Pauls | Nov 1996 | A |
5583178 | Oxman et al. | Dec 1996 | A |
5597095 | Ferrara, Jr. | Jan 1997 | A |
5615804 | Brown | Apr 1997 | A |
5639026 | Woods | Jun 1997 | A |
5641095 | de Laforcade | Jun 1997 | A |
5645198 | Stern et al. | Jul 1997 | A |
5655691 | Stern et al. | Aug 1997 | A |
5695788 | Woods | Dec 1997 | A |
5715975 | Stern et al. | Feb 1998 | A |
5727736 | Tryon | Mar 1998 | A |
5752631 | Yabuno et al. | May 1998 | A |
5775432 | Burns et al. | Jul 1998 | A |
5792465 | Hagarty | Aug 1998 | A |
5799879 | Ottl et al. | Sep 1998 | A |
5865351 | De Laforcade | Feb 1999 | A |
5868286 | Mascitelli | Feb 1999 | A |
5887756 | Brown | Mar 1999 | A |
5894964 | Barnes et al. | Apr 1999 | A |
5915598 | Yazawa et al. | Jun 1999 | A |
5921446 | Stern | Jul 1999 | A |
5934518 | Stern et al. | Aug 1999 | A |
5941462 | Sandor | Aug 1999 | A |
5957333 | Losenno et al. | Sep 1999 | A |
5975356 | Yquel et al. | Nov 1999 | A |
5988575 | Lesko | Nov 1999 | A |
6000583 | Stern et al. | Dec 1999 | A |
6027042 | Smith | Feb 2000 | A |
6032830 | Brown | Mar 2000 | A |
6039306 | Pericard et al. | Mar 2000 | A |
6062494 | Mills | May 2000 | A |
6070770 | Tada et al. | Jun 2000 | A |
6092698 | Bayer | Jul 2000 | A |
6095435 | Greer, Jr. et al. | Aug 2000 | A |
6112945 | Woods | Sep 2000 | A |
6113070 | Holzboog | Sep 2000 | A |
6116473 | Stern et al. | Sep 2000 | A |
6129247 | Thomas et al. | Oct 2000 | A |
6131777 | Warby | Oct 2000 | A |
6139821 | Fuerst et al. | Oct 2000 | A |
6152335 | Stern et al. | Nov 2000 | A |
6161735 | Uchiyama et al. | Dec 2000 | A |
6168093 | Greer, Jr. et al. | Jan 2001 | B1 |
6170717 | Di Giovanni et al. | Jan 2001 | B1 |
D438111 | Woods | Feb 2001 | S |
6225393 | Woods | May 2001 | B1 |
6254015 | Abplanalp | Jul 2001 | B1 |
6257503 | Baudin | Jul 2001 | B1 |
6261631 | Lomasney et al. | Jul 2001 | B1 |
6265459 | Mahoney et al. | Jul 2001 | B1 |
6276570 | Stern et al. | Aug 2001 | B1 |
6283171 | Blake | Sep 2001 | B1 |
6284077 | Lucas et al. | Sep 2001 | B1 |
6290104 | Bougamont et al. | Sep 2001 | B1 |
6291536 | Taylor | Sep 2001 | B1 |
6296155 | Smith | Oct 2001 | B1 |
6296156 | Lasserre et al. | Oct 2001 | B1 |
6299679 | Montoya | Oct 2001 | B1 |
6299686 | Mills | Oct 2001 | B1 |
6315152 | Kalisz | Nov 2001 | B1 |
6325256 | Liljeqvist et al. | Dec 2001 | B1 |
6328185 | Stern et al. | Dec 2001 | B1 |
6328197 | Gapihan | Dec 2001 | B1 |
6333365 | Lucas et al. | Dec 2001 | B1 |
6352184 | Stern et al. | Mar 2002 | B1 |
6362302 | Boddie | Mar 2002 | B1 |
6375036 | Woods | Apr 2002 | B1 |
6382474 | Woods et al. | May 2002 | B1 |
6386402 | Woods | May 2002 | B1 |
6394321 | Bayer | May 2002 | B1 |
6394364 | Abplanalp | May 2002 | B1 |
6395794 | Lucas et al. | May 2002 | B2 |
6398082 | Clark et al. | Jun 2002 | B2 |
6399687 | Woods | Jun 2002 | B2 |
6414044 | Taylor | Jul 2002 | B2 |
6415964 | Woods | Jul 2002 | B2 |
6439430 | Gilroy, Sr. et al. | Aug 2002 | B1 |
6446842 | Stern et al. | Sep 2002 | B2 |
D464395 | Huang | Oct 2002 | S |
6474513 | Burt | Nov 2002 | B2 |
6478198 | Haroian | Nov 2002 | B2 |
6478561 | Braun et al. | Nov 2002 | B2 |
6482392 | Zhou et al. | Nov 2002 | B1 |
D468980 | Woods | Jan 2003 | S |
6510969 | Di Giovanni et al. | Jan 2003 | B2 |
6520377 | Yquel | Feb 2003 | B2 |
6531528 | Kurp | Mar 2003 | B1 |
6536633 | Stern et al. | Mar 2003 | B2 |
6581807 | Mekata | Jun 2003 | B1 |
6588628 | Abplanalp et al. | Jul 2003 | B2 |
6595393 | Loghman-Adham et al. | Jul 2003 | B1 |
6607106 | Henry et al. | Aug 2003 | B2 |
6613186 | Johnson | Sep 2003 | B2 |
6615827 | Greenwood et al. | Sep 2003 | B2 |
6637627 | Liljeqvist et al. | Oct 2003 | B1 |
6641005 | Stern et al. | Nov 2003 | B1 |
6641864 | Woods | Nov 2003 | B2 |
6652704 | Green | Nov 2003 | B2 |
6659312 | Stern et al. | Dec 2003 | B1 |
6666352 | Woods | Dec 2003 | B1 |
6688492 | Jaworski et al. | Feb 2004 | B2 |
6712238 | Mills | Mar 2004 | B1 |
6726066 | Woods | Apr 2004 | B2 |
6736288 | Green | May 2004 | B1 |
6758373 | Jackson et al. | Jul 2004 | B2 |
6797051 | Woods | Sep 2004 | B2 |
6802461 | Schneider | Oct 2004 | B2 |
6831110 | Ingold et al. | Dec 2004 | B2 |
6832704 | Smith | Dec 2004 | B2 |
6837396 | Jaworski et al. | Jan 2005 | B2 |
6843392 | Walker | Jan 2005 | B1 |
D501538 | Zeng | Feb 2005 | S |
D501914 | Chen | Feb 2005 | S |
6848601 | Greer, Jr. | Feb 2005 | B2 |
6851575 | van't Hoff | Feb 2005 | B2 |
D502533 | Chen | Mar 2005 | S |
6880733 | Park | Apr 2005 | B2 |
6883688 | Stern et al. | Apr 2005 | B1 |
6894095 | Russo et al. | May 2005 | B2 |
6905050 | Stern et al. | Jun 2005 | B1 |
6910608 | Greer, Jr. et al. | Jun 2005 | B2 |
6913407 | Greer et al. | Jul 2005 | B2 |
6926178 | Anderson | Aug 2005 | B1 |
6929154 | Grey et al. | Aug 2005 | B2 |
6932244 | Meshberg | Aug 2005 | B2 |
6966467 | Di Giovanni et al. | Nov 2005 | B2 |
D512309 | Geier | Dec 2005 | S |
6971353 | Heinze et al. | Dec 2005 | B2 |
6971553 | Brennan et al. | Dec 2005 | B2 |
6978916 | Smith | Dec 2005 | B2 |
6978947 | Jin | Dec 2005 | B2 |
6981616 | Loghman-Adham et al. | Jan 2006 | B2 |
7014073 | Stern et al. | Mar 2006 | B1 |
7014127 | Valpey, III et al. | Mar 2006 | B2 |
7036685 | Green | May 2006 | B1 |
7045008 | Langford | May 2006 | B2 |
7059497 | Woods | Jun 2006 | B2 |
7059546 | Ogata et al. | Jun 2006 | B2 |
7063236 | Greer, Jr. et al. | Jun 2006 | B2 |
7104424 | Kolanus | Sep 2006 | B2 |
7104427 | Pericard et al. | Sep 2006 | B2 |
7121434 | Caruso | Oct 2006 | B1 |
7163962 | Woods | Jan 2007 | B2 |
7182227 | Poile et al. | Feb 2007 | B2 |
7189022 | Greer, Jr. et al. | Mar 2007 | B1 |
7192985 | Woods | Mar 2007 | B2 |
7204393 | Strand | Apr 2007 | B2 |
7226001 | Stern et al. | Jun 2007 | B1 |
7226232 | Greer, Jr. et al. | Jun 2007 | B2 |
7232047 | Greer, Jr. et al. | Jun 2007 | B2 |
7237697 | Dunne | Jul 2007 | B2 |
7240857 | Stern et al. | Jul 2007 | B1 |
7249692 | Walters et al. | Jul 2007 | B2 |
7261225 | Rueschhoff et al. | Aug 2007 | B2 |
7267248 | Yerby et al. | Sep 2007 | B2 |
7278590 | Greer, Jr. et al. | Oct 2007 | B1 |
7303152 | Woods | Dec 2007 | B2 |
7307053 | Tasz et al. | Dec 2007 | B2 |
7337985 | Greer, Jr. et al. | Mar 2008 | B1 |
7341169 | Bayer | Mar 2008 | B2 |
7350676 | Di Giovanni et al. | Apr 2008 | B2 |
7374068 | Greer, Jr. | May 2008 | B2 |
7383968 | Greer, Jr. et al. | Jun 2008 | B2 |
7383970 | Anderson | Jun 2008 | B2 |
7445166 | Williams | Nov 2008 | B2 |
7448517 | Shieh et al. | Nov 2008 | B2 |
7481338 | Stern et al. | Jan 2009 | B1 |
7487891 | Yerby et al. | Feb 2009 | B2 |
7487893 | Greer, Jr. et al. | Feb 2009 | B1 |
7494075 | Schneider | Feb 2009 | B2 |
7500621 | Tryon et al. | Mar 2009 | B2 |
7510102 | Schmitt | Mar 2009 | B2 |
7556841 | Kimball et al. | Jul 2009 | B2 |
D600119 | Sweeton | Sep 2009 | S |
7588171 | Reedy et al. | Sep 2009 | B2 |
7597274 | Stern et al. | Oct 2009 | B1 |
7600659 | Greer, Jr. et al. | Oct 2009 | B1 |
7624932 | Greer, Jr. et al. | Dec 2009 | B1 |
7631785 | Paas et al. | Dec 2009 | B2 |
7641079 | Lott et al. | Jan 2010 | B2 |
7673816 | Stern et al. | Mar 2010 | B1 |
7677420 | Greer, Jr. et al. | Mar 2010 | B1 |
7699190 | Hygema | Apr 2010 | B2 |
7721920 | Ruiz De Gopegui et al. | May 2010 | B2 |
7744299 | Greer, Jr. et al. | Jun 2010 | B1 |
7748572 | Althoff et al. | Jul 2010 | B2 |
7757905 | Strand et al. | Jul 2010 | B2 |
7766196 | Sugano et al. | Aug 2010 | B2 |
7775408 | Yamamoto et al. | Aug 2010 | B2 |
7784647 | Tourigny | Aug 2010 | B2 |
7784649 | Greer, Jr. | Aug 2010 | B2 |
7789278 | Ruiz de Gopegui et al. | Sep 2010 | B2 |
7845523 | Greer, Jr. et al. | Dec 2010 | B1 |
7854356 | Eberhardt | Dec 2010 | B2 |
7861894 | Walters et al. | Jan 2011 | B2 |
7886995 | Togashi | Feb 2011 | B2 |
7891529 | Paas et al. | Feb 2011 | B2 |
7913877 | Neuhalfen | Mar 2011 | B2 |
7922041 | Gurrisi et al. | Apr 2011 | B2 |
7926741 | Laidler et al. | Apr 2011 | B2 |
8840038 | Lehr | Sep 2014 | B2 |
20020003147 | Corba | Jan 2002 | A1 |
20020100769 | McKune | Aug 2002 | A1 |
20030134973 | Chen et al. | Jul 2003 | A1 |
20030205580 | Yahav | Nov 2003 | A1 |
20040141797 | Garabedian et al. | Jul 2004 | A1 |
20040154264 | Colbert | Aug 2004 | A1 |
20040157960 | Rowe | Aug 2004 | A1 |
20050121474 | Lasserre et al. | Jun 2005 | A1 |
20050236436 | Woods | Oct 2005 | A1 |
20050256257 | Betremieux et al. | Nov 2005 | A1 |
20060049205 | Green | Mar 2006 | A1 |
20060180616 | Woods | Aug 2006 | A1 |
20060219808 | Woods | Oct 2006 | A1 |
20060219811 | Woods | Oct 2006 | A1 |
20060273207 | Woods | Dec 2006 | A1 |
20070117916 | Anderson et al. | May 2007 | A1 |
20070119984 | Woods | May 2007 | A1 |
20070125879 | Khamenian | Jun 2007 | A1 |
20070155892 | Gharapetian et al. | Jul 2007 | A1 |
20070178243 | Houck et al. | Aug 2007 | A1 |
20070194040 | Tasz et al. | Aug 2007 | A1 |
20070219310 | Woods | Sep 2007 | A1 |
20070228086 | Delande et al. | Oct 2007 | A1 |
20070260011 | Woods | Nov 2007 | A1 |
20070272765 | Kwasny | Nov 2007 | A1 |
20070272768 | Williams et al. | Nov 2007 | A1 |
20080008678 | Wyers | Jan 2008 | A1 |
20080017671 | Shieh et al. | Jan 2008 | A1 |
20080029551 | Lombardi | Feb 2008 | A1 |
20080033099 | Bosway | Feb 2008 | A1 |
20080041887 | Scheindel | Feb 2008 | A1 |
20080164347 | Leuliet et al. | Jul 2008 | A1 |
20090020621 | Clark et al. | Jan 2009 | A1 |
20090283545 | Kimball | Nov 2009 | A1 |
20100108716 | Bilko | May 2010 | A1 |
20100155432 | Christianson | Jun 2010 | A1 |
20100200612 | Smith | Aug 2010 | A1 |
20100322892 | Burke | Dec 2010 | A1 |
20110021675 | Shigemori et al. | Jan 2011 | A1 |
20110101025 | Walters et al. | May 2011 | A1 |
Number | Date | Country |
---|---|---|
770467 | Oct 1967 | CA |
976125 | Oct 1975 | CA |
1191493 | Aug 1985 | CA |
1210371 | Aug 1986 | CA |
2145129 | Sep 1995 | CA |
2090185 | Oct 1998 | CA |
2224042 | Jun 1999 | CA |
2291599 | Jun 2000 | CA |
2381994 | Feb 2001 | CA |
2327903 | Jun 2001 | CA |
2065534 | Aug 2003 | CA |
2448794 | Dec 2004 | CA |
2504509 | Oct 2005 | CA |
2504513 | Oct 2005 | CA |
680849 | Nov 1992 | CH |
1926796 | Mar 1970 | DE |
3808438 | Apr 1989 | DE |
3806991 | Sep 1989 | DE |
2130788 | Dec 2009 | EP |
463476 | Feb 1914 | FR |
84727 | Sep 1965 | FR |
1586067 | Feb 1970 | FR |
2659847 | Sep 1991 | FR |
867713 | May 1961 | GB |
970766 | Sep 1964 | GB |
977860 | Dec 1964 | GB |
1144385 | Mar 1969 | GB |
2418959 | Dec 2006 | GB |
461392 | Jan 1971 | JP |
55142073 | Nov 1980 | JP |
8332414 | Dec 1996 | JP |
9418094 | Aug 1994 | WO |
2005087617 | Sep 2005 | WO |
2005108240 | Nov 2005 | WO |
2006090229 | Aug 2006 | WO |
2008060157 | May 2008 | WO |
Entry |
---|
ATSM, “Standard Test Method for Conducting Cyclic Potentiodynamic Polarization Measurements for Localized Corrosion Susceptibility of Iron-Nickel, or Cobalt-Based Alloys,” 1993, 5 pages. |
Chadwick, “Controlling Particle Size in Self-Pressurized Aerosol Packages,” Metal Finishing, Aug. 2004, 3 pages, vol. 102, No. 7/8. |
Homax Products, Inc., “Easy Touch Spray Texture Brochure”, Mar. 1992, 1 page. |
Newman-Green, Inc., “Aerosol Valves, Sprayheads & Accessories Catalog”, Apr. 1, 1992, pp. 14, 20, and 22. |
Tait, “An Introduction to Electrochemical Corrosion Testing for Practicing Engineers and Scientists,” 1994, 17 pages, PairODocs Publications, Racine, Wisconsin. |
Number | Date | Country | |
---|---|---|---|
61648519 | May 2012 | US |