Actuators for use in fast-acting safety systems

Information

  • Patent Grant
  • 7712403
  • Patent Number
    7,712,403
  • Date Filed
    Tuesday, July 2, 2002
    22 years ago
  • Date Issued
    Tuesday, May 11, 2010
    14 years ago
Abstract
Cutting machines with high-speed safety systems, and actuators used in high-speed safety systems, are disclosed. The cutting machines may include a detection system adapted to detect a dangerous condition between a cutting tool and a person. A reaction system performs a specified action, such as stopping the cutting tool, upon detection of the dangerous condition. An actuator may be used to trigger the reaction system to perform the specified action.
Description
FIELD

The invention relates to safety systems and more particularly to restraining members for use in high-speed safety systems for power equipment.


BACKGROUND

Safety systems are often employed with power equipment such as table saws, miter saws and other woodworking machinery, to minimize the risk of injury when using the equipment. Probably the most common safety feature is a guard that physically blocks an operator from making contact with dangerous components of machinery, such as belts, shafts or blades. In many cases, guards effectively reduce the risk of injury, however, there are many instances where the nature of the operations to be performed precludes using a guard that completely blocks access to hazardous machine parts.


Other safety systems try to prevent or minimize injury by detecting and reacting to an event. For instance, U.S. Pat. Nos. 3,953,770, 4,075,961, 4,470,046, 4,532,501 and 5,212,621, the disclosures of which are incorporated herein by reference, disclose radio-frequency safety systems which utilize radio-frequency signals to detect the presence of a user's hand in a dangerous area of the machine and thereupon prevent or interrupt operation of the machine. U.S. Pat. Nos. 3,785,230 and 4,026,177, the disclosures of which are herein incorporated by reference, disclose a safety system for use on circular saws to stop the blade when a user's hand approaches the blade. The system uses the blade as an antenna in an electromagnetic proximity detector to detect the approach of a user's hand prior to actual contact with the blade. Upon detection of a user's hand, the system engages a brake using a standard solenoid. Unfortunately, such a system is prone to false triggers and is relatively slow acting because of the solenoid and the way the solenoid is used.


U.S. Pat. No. 4,117,752, which is herein incorporated by reference, discloses a braking system for use with a band saw, where the brake is triggered by actual contact between the user's hand and the blade. However, the system described for detecting blade contact does not appear to be functional to accurately and reliably detect contact. Furthermore, the system relies on standard electromagnetic brakes operating off of line voltage to stop the blade and pulleys of the band saw. It is believed that such brakes would take 50 ms to 1 s to stop the blade. Therefore, the system is too slow to stop the blade quickly enough to avoid serious injury.


None of these existing systems have operated with sufficient speed and/or reliability to prevent serious injury with many types of commonly used power tools.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic block diagram of a machine with a fast-acting safety system.



FIG. 2 is a schematic diagram of an exemplary safety system in the context of a machine having a circular blade.



FIG. 3 shows a possible actuator for use in a safety system.



FIG. 4 shows a simplified view of the actuator shown in FIG. 3 from a different perspective.



FIG. 5 shows a plate used to construct a pivot arm used in the actuator of FIG. 3.



FIG. 6 shows how the plate of FIG. 5 is folded to construct the pivot arm.



FIG. 7 shows a plate used to construct another pivot arm used in the actuator of FIG. 3.



FIG. 8 shows how the plate of FIG. 7 is folded.



FIG. 9 shows a restraining plate used in the actuator of FIG. 3.



FIG. 10 shows the actuator of FIG. 3 in a fired or actuated state.



FIG. 11 shows an actuator using a voice coil.



FIG. 12 shows an actuator using a shape memory alloy.



FIG. 13 shows the actuator of FIG. 12 from another view.





DETAILED DESCRIPTION

A machine that may incorporate a firing subsystem according to the present invention is shown schematically in FIG. 1 and indicated generally at 10. Machine 10 may be any of a variety of different machines adapted for cutting workpieces, such as wood, including a table saw, miter saw (chop saw), radial arm saw, circular saw, band saw, jointer, planer, etc. Machine 10 includes an operative structure 12 having a cutting tool 14 and a motor assembly 16 adapted to drive the cutting tool. Machine 10 also includes a safety system 18 configured to minimize the potential of a serious injury to a person using machine 10. Safety system 18 is adapted to detect the occurrence of one or more dangerous conditions during use of machine 10. If such a dangerous condition is detected, safety system 18 is adapted to engage operative structure 12 to limit any injury to the user caused by the dangerous condition.


Machine 10 also includes a suitable power source 20 to provide power to operative structure 12 and safety system 18. Power source 20 may be an external power source such as line current, or an internal power source such as a battery. Alternatively, power source 20 may include a combination of both external and internal power sources. Furthermore, power source 20 may include two or more separate power sources, each adapted to power different portions of machine 10.


It will be appreciated that operative structure 12 may take any one of many different forms, depending on the type of machine 10. For example, operative structure 12 may include a stationary housing configured to support motor assembly 16 in driving engagement with cutting tool 14. Alternatively, operative structure 12 may include a movable structure configured to carry cutting tool 14 between multiple operating positions. As a further alternative, operative structure 12 may include one or more transport mechanisms adapted to convey a workpiece toward and/or away from cutting tool 14.


Motor assembly 16 includes one or more motors adapted to drive cutting tool 14. The motors may be either directly or indirectly coupled to the cutting tool, and may also be adapted to drive workpiece transport mechanisms. Cutting tool 14 typically includes one or more blades or other suitable cutting implements that are adapted to cut or remove portions from the workpieces. The particular form of cutting tool 14 will vary depending upon the various embodiments of machine 10. For example, in table saws, miter saws, circular saws and radial arm saws, cutting tool 14 will typically include one or more circular rotating blades having a plurality of teeth disposed along the perimetrical edge of the blade. For a jointer or planer, the cutting tool typically includes a plurality of radially spaced-apart blades. For a band saw, the cutting tool includes an elongate, circuitous tooth-edged band.


Safety system 18 includes a detection subsystem 22, a reaction subsystem 24 and a control subsystem 26. Control subsystem 26 may be adapted to receive inputs from a variety of sources including detection subsystem 22, reaction subsystem 24, operative structure 12 and motor assembly 16. The control subsystem may also include one or more sensors adapted to monitor selected parameters of machine 10. In addition, control subsystem 26 typically includes one or more instruments operable by a user to control the machine. The control subsystem is configured to control machine 10 in response to the inputs it receives.


Detection subsystem 22 is configured to detect one or more dangerous, or triggering, conditions during use of machine 10. For example, the detection subsystem may be configured to detect that a portion of the user's body is dangerously close to, or in contact with, a portion of cutting tool 14. As another example, the detection subsystem may be configured to detect the rapid movement of a workpiece due to kickback by the cutting tool, as is described in U.S. Provisional Patent Application Ser. No. 60/182,866, entitled “Fast-Acting Safety Stop,” filed Feb. 16, 2000 by SD3, LLC, the disclosure of which is herein incorporated by reference. In some embodiments, detection subsystem 22 may inform control subsystem 26 of the dangerous condition, which then activates reaction subsystem 24. In other embodiments, the detection subsystem may be adapted to activate the reaction subsystem directly.


Once activated in response to a dangerous condition, reaction subsystem 24 is configured to engage operative structure 12 quickly to prevent serious injury to the user. It will be appreciated that the particular action to be taken by reaction subsystem 24 will vary depending on the type of machine 10 and/or the dangerous condition that is detected. For example, reaction subsystem 24 may be configured to do one or more of the following: stop the movement of cutting tool 14, disconnect motor assembly 16 from power source 20, place a barrier between the cutting tool and the user, or retract the cutting tool from its operating position, etc. The reaction subsystem may be configured to take a combination of steps to protect the user from serious injury. Placement of a barrier between the cutting tool and teeth is described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,206, entitled “Cutting Tool Safety System,” filed Aug. 14, 2000 by SD3, LLC, the disclosure of which is herein incorporated by reference. Retraction of the cutting tool from its operating position is described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,089, entitled “Retraction System For Use In Power Equipment,” also filed Aug. 14, 2000 by SD3, LLC, the disclosure of which is herein incorporated by reference.


The configuration of reaction subsystem 24 typically will vary depending on which action(s) are taken. In the exemplary embodiment depicted in FIG. 1, reaction subsystem 24 is configured to stop the movement of cutting tool 14 and includes a brake mechanism 28, a biasing mechanism 30, a restraining mechanism 32, and a release mechanism 34. Brake mechanism 28 is adapted to engage operative structure 12 under the urging of biasing mechanism 30. During normal operation of machine 10, restraining mechanism 32 holds the brake mechanism out of engagement with the operative structure. However, upon receipt of an activation signal by reaction subsystem 24, the brake mechanism is released from the restraining mechanism by release mechanism 34, whereupon, the brake mechanism quickly engages at least a portion of the operative structure to bring the cutting tool to a stop.


It will be appreciated by those of skill in the art that the exemplary embodiment depicted in FIG. 1 and described above may be implemented in a variety of ways depending on the type and configuration of operative structure 12. Turning attention to FIG. 2, one example of the many possible implementations of safety system 18 is shown. System 18 is configured to engage an operative structure having a cutting tool in the form of a circular blade 40 mounted on a rotating shaft or arbor 42. Blade 40 includes a plurality of cutting teeth (not shown) disposed around the outer edge of the blade. As described in more detail below, braking mechanism 28 is adapted to engage the teeth of blade 40 and stop the rotation of the blade. U.S. Provisional Patent Application Ser. No. 60/225,210, entitled “Translation Stop For Use In Power Equipment,” filed Aug. 14, 2000 by SD3, LLC, the disclosure of which is herein incorporated by reference, describes other systems for stopping the movement of the cutting tool. U.S. Provisional Patent Application Ser. No. 60/225,058, entitled “Table Saw With Improved Safety System,” filed Aug. 14, 2000 by SD3, LLC, and U.S. Provisional Patent Application Ser. No. 60/225,057, entitled “Miter Saw With Improved Safety System,” filed Aug. 14, 2000 by SD3, LLC, the disclosures of which are herein incorporated by reference, describe safety system 18 in the context of particular types of machines 10.


In the exemplary implementation, detection subsystem 22 is adapted to detect the dangerous condition of the user coming into contact with blade 40. The detection subsystem includes a sensor assembly, such as contact detection plates 44 and 46, capacitively coupled to blade 40 to detect any contact between the user's body and the blade. Typically, the blade, or some larger portion of cutting tool 14 is electrically isolated from the remainder of machine 10. Alternatively, detection subsystem 22 may include a different sensor assembly configured to detect contact in other ways, such as optically, resistively, etc. In any event, the detection subsystem is adapted to transmit a signal to control subsystem 26 when contact between the user and the blade is detected. Various exemplary embodiments and implementations of detection subsystem 22 are described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,200, entitled “Contact Detection System For Power Equipment,” filed Aug. 14, 2000 by SD3, LLC, and U.S. Provisional Patent Application Ser. No. 60/225,211, entitled “Apparatus And Method For Detecting Dangerous Conditions In Power Equipment,” filed Aug. 14, 2000 by SD3, LLC, the disclosures of which are herein incorporated by reference.


Control subsystem 26 includes one or more instruments 48 that are operable by a user to control the motion of blade 40. Instruments 48 may include start/stop switches, speed controls, direction controls, etc. Control subsystem 26 also includes a logic controller 50 connected to receive the user's inputs via instruments 48. Logic controller 50 is also connected to receive a contact detection signal from detection subsystem 22. Further, the logic controller may be configured to receive inputs from other sources (not shown) such as blade motion sensors, workpiece sensors, etc. In any event, the logic controller is configured to control operative structure 12 in response to the user's inputs through instruments 48. However, upon receipt of a contact detection signal from detection subsystem 22, the logic controller overrides the control inputs from the user and activates reaction subsystem 24 to stop the motion of the blade. Various exemplary embodiments and implementations of control subsystem 26 are described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,059, entitled “Logic Control For Fast Acting Safety System,” filed Aug. 14, 2000 by SD3, LLC, and U.S. Provisional Patent Application Ser. No. 60/225,094, entitled “Motion Detecting System For Use In Safety System For Power Equipment,” filed Aug. 14, 2000 by SD3, LLC, the disclosures of which are herein incorporated by reference.


In the exemplary implementation, brake mechanism 28 includes a pawl 60 mounted adjacent the edge of blade 40 and selectively moveable to engage and grip the teeth of the blade. Pawl 60 may be constructed of any suitable material adapted to engage and stop the blade. As one example, the pawl may be constructed of a relatively high strength thermoplastic material such as polycarbonate, ultrahigh molecular weight polyethylene (UHMW) or Acrylonitrile Butadiene Styrene (ABS), etc., or a metal such as aluminum, etc. It will be appreciated that the construction of pawl 60 will vary depending on the configuration of blade 40. In any event, the pawl is urged into the blade by a biasing mechanism in the form of a spring 66. In the illustrative embodiment shown in FIG. 2, pawl 60 is pivoted into the teeth of blade 40. It should be understood that sliding or rotary movement of pawl 60 might also be used. The spring is adapted to urge pawl 60 into the teeth of the blade with sufficient force to grip the blade and quickly bring it to a stop.


A restraining member 70 holds the pawl away from the edge of the blade. The restraining member may take different forms. For example, in some embodiments the restraining member is a fusible member. The fusible member is constructed of a suitable material and adapted to restrain the pawl against the bias of spring 66, and also adapted to melt under a determined electrical current density to release the pawl. Various exemplary embodiments and implementations of restraining members and fusible members are described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,056, entitled “Firing Subsystem for use in a Fast-Acting Safety System,” filed Aug. 14, 2000 by SD3, LLC, the disclosure of which is herein incorporated by reference. In other embodiments, the restraining member may include various mechanical linkages, or may be part of various actuators, and those linkages and/or actuators may be released or fired by solenoids, gas cylinders, electromagnets, and/or explosives. Preferably restraining member 70 holds the pawl relatively close to the edge of the blade to reduce the distance pawl 60 must travel to engage blade 40. Positioning the pawl relatively close to the edge of the blade reduces the time required for the pawl to engage and stop the blade. Typically, the pawl is held approximately 1/32-inch to ¼-inch from the edge of the blade by restraining member 70, however other pawl-to-blade spacings may also be used within the scope of the invention.


Pawl 60 is released from its unactuated, or cocked, position to engage blade 40 by a release mechanism in the form of a firing subsystem 76. The firing subsystem is configured to release the restraining member 70 so that the pawl can move into the blade. For example, firing subsystem 76 may melt a fusible member by passing a surge of electrical current through the fusible member, or the firing subsystem may trigger a solenoid, gas cylinder, electromagnet or explosive to release or move the pawl. Firing subsystem 76 is coupled to logic controller 50 and activated by a signal from the logic controller. When the logic controller receives a contact detection signal from detection subsystem 22, the logic controller sends an activation signal to firing subsystem 76, thereby releasing the pawl to stop the blade. Various exemplary embodiments and implementations of reaction subsystem 24 are described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,170, entitled “Spring-Biased Brake Mechanism for Power Equipment,” filed Aug. 14, 2000 by SD3, LLC, and U.S. Provisional Patent Application Ser. No. 60/225,169, entitled “Brake Mechanism For Power Equipment,” filed Aug. 14, 2000 by SD3, LLC, the disclosures of which are herein incorporated by reference.


It will be appreciated that activation of the brake mechanism will require the replacement of one or more portions of safety system 18. For example, pawl 60 and restraining member 70 typically must be replaced before the safety system is ready to be used again. Thus, it may be desirable to construct one or more portions of safety system 18 in a cartridge that can be easily replaced. For example, in the exemplary implementation depicted in FIG. 2, safety system 18 includes a replaceable cartridge 80 having a housing 82. Pawl 60, spring 66, restraining member 70 are all mounted within housing 82. Alternatively, other portions of safety system 18 may be mounted within the housing. In any event, after the reaction system has been activated, the safety system can be reset by replacing cartridge 80. The portions of safety system 18 not mounted within the cartridge may be replaced separately or reused as appropriate. Various exemplary embodiments and implementations of a safety system using a replaceable cartridge are described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,201, entitled “Replaceable Brake Mechanism For Power Equipment,” filed Aug. 14, 2000 by SD3, LLC, and U.S. Provisional Patent Application Ser. No. 60/225,212, entitled “Brake Positioning System,” filed Aug. 14, 2000 by SD3, LLC, the disclosures of which are herein incorporated by reference.


While one particular implementation of safety system 18 has been described, it will be appreciated that many variations and modifications are possible within the scope of the invention. Many such variations and modifications are described in U.S. Provisional Patent Application Ser. No. 60/157,340, entitled “Fast-Acting Safety Stop,” filed Oct. 1, 1999, and Ser. No. 60/182,866, also entitled “Fast-Acting Safety Stop,” filed Feb. 16, 2000, the disclosures of which are herein incorporated by reference.


As explained above, in some embodiments of safety system 18, a restraining member 70 is used to restrain some element or action, such as to hold a brake or pawl away from a blade. Such a restraining member may take different forms, for example, it may be an actuator or part of an actuator that applies a force to move a brake pawl into a blade. One possible embodiment of such an actuator is shown at 99 in FIGS. 3 and 4.


The depicted embodiment includes a solenoid 100 mounted in a housing 102. Solenoid 100 includes a wire helically coiled around a tube or cylinder. A metal core or plunger, often taking the form of a rod, is positioned adjacent the cylinder at least partially within the coiled wire. The solenoid creates a magnetic field when electric current flows through the coiled wire, and the magnetic field then causes the plunger to move, typically drawing the plunger into the cylinder. The plunger is often spring-biased out from the cylinder so that it extends from the cylinder when there is no current flowing through the coil, and then is drawn in when current is flowing through the coil. Thus, solenoids are used to move a plunger in and out depending on whether electricity flows through the coil. The in-and-out movement of the plunger can be used to trigger or cause some action to take place. The solenoid may be powered by firing circuit 76.


Solenoid 100 may be any one of various solenoids. For example, it may be TO-5 solenoid from Line Electric Company of South Glastonbury, Conn. Those solenoids may apply forces of 1 to 50 grams with response times of around 0.5 milliseconds, depending on the power supplied to the coil, the distance the plunger moves, and other variables. Of course, TO-5 solenoids are identified only as examples, and other solenoids may be used.


In the embodiment shown in FIGS. 3 and 4, a plunger 104 extends outwardly from solenoid 100. A spring or some other biasing means biases plunger 104 outwardly from the solenoid, and the plunger is drawn into the solenoid when current flows through the solenoid. The embodiment shown in FIGS. 3 and 4 uses the movement of plunger 104 to release brake pawl 60 to stop the blade of a saw, as described above.


The end of plunger 104 that extends outwardly from solenoid 100 passes into an aperture 106 in a first pivot arm 108. First pivot arm 108 may take many different forms. In FIGS. 3 and 4, first pivot arm 108 is made from a flat piece of metal, as shown in FIG. 5, and it includes ends 112 and 114, and first and second wing portions 116 and 118. A cut 120 is made between the wing portions and end 116. The wings and end 118 are then folded together into something like a “W” shape when viewed from end 118, as shown in FIG. 6. Cut 120 allows for the center section to be folded into the “W” shape. When folded, the wings provide rigidity and ends 116 and 118 extend outwardly, as shown in FIG. 3. A pivot pin 122 is supported by housing 102, and first pivot arm 108 is mounted to pivot around pivot pin 122. Pivot pin 122 extends through apertures 124 and 126 in wings 112 and 114. However, plunger 104 extends into aperture 106 in first pivot arm 108 and thereby prevents the first pivot arm from pivoting.


Actuator 99 also includes a second pivot arm 130. Second pivot arm 130, like the first pivot arm, may take many different forms. The form shown in FIGS. 3 and 4 is similar to the shape of the first pivot arm, and is also made from a flat piece of metal, as shown in FIG. 7. The flat piece of metal includes ends 131 and 132, and wings 134 and 136. A cut 138 is made in the metal, so that the wings and end 132 can be folded into a “W” shape when viewed from end 132, as shown in FIG. 8. A second pivot pin 140 is supported by housing 102, and second pivot arm 130 is mounted to pivot around pivot pin 140. Pivot pin 140 extends through apertures 142 and 144 in wings 134 and 136. However, end 114 of first pivot arm 108 extends over and against end 131 of the second pivot arm to prevent the second pivot arm from pivoting.


Second pivot arm 130, in turn, holds a plate 150 in place. Plate 150 is shown in FIGS. 3, 4 and 9. End 132 of second pivot arm 130 extends through an aperture 152 in plate 150 to hold the plate in place. Plate 150 extends out of housing 102 through a slot 154 in the housing, and a barb 156 on end 158 of the plate engages a slot 160 in brake pawl 60. In this manner, plate 150 holds brake pawl 60 in place. Of course, the plate may engage with the brake pawl in many different ways, such as by a hook, a simple friction fit, an abutment, etc., and barb 156 is only one example. Brake pawl 60 also may be positioned relative to actuator 99 in different ways. For example, the brake pawl may be oriented so that it extends approximately perpendicularly from the actuator (or out of or into the page when looking at FIG. 3).


Actuator 99 also includes a torsion spring 162, having a first arm 164 that extends through an aperture 166 in plate 150. Spring 162 also includes a second arm 168 that extends adjacent housing 102. Second arm 168 may pass through apertures in the housing to mount the spring to the housing, or the arm may be attached to the housing in some other way, such as with screws or mounting clips. When spring 162 is compressed, the spring force causes arms 164 and 168 to want to spread apart. Thus, when second arm 168 is attached to housing 102, and the housing is mounted in a saw, the spring wants to move first arm 164 in the direction of arrow 170. That spring arm 164, in turn, pushes plate 150 and brake pawl 60 in the direction of arrow 170, which would be toward the blade of a saw, as explained above. However, plate 150 is prevented from moving by second pivot arm 130, which is held in place by first pivot arm 108, which is held in place by plunger 104 in solenoid 100, as explained. Thus, spring 162 holds the parts of actuator 99 in tension. That tension helps hold plate 150 in place. Spring 162 is often a strong spring, capable of applying 100 pounds or more of force, so the tension on the components of actuator 99 is significant. That tension makes the actuator and components substantially stable and able to withstand the normal vibrations and jostling of a saw. Second arm 168 of spring 162 includes a bend 169 at its end to provide stability for the spring and to counter any twisting or torque of the spring when the spring is compressed.


When electric current is applied to solenoid 100, plunger 104 is retracted, allowing the first pivot arm to pivot around pin 122. When the first pivot arm is released, the second pivot arm and plate are also released and free to move. Spring 162 then forces plate 150 to move in the direction of arrow 170, and the first and second pivot arms pivot as shown in FIG. 10. Aperture 152 in plate 150 is sized and shaped to allow end 132 of the second pivot arm to move out of the aperture as the plate is pulled in the direction of arrow 170. Housing 102 is sized to provide the space necessary for the pivot arms to pivot sufficiently to release plate 150.


Thus, actuator 99 provides a mechanism that releases a force by using a solenoid. The force is then used to move a brake pawl into the teeth of a spinning saw blade, as explained above. Solenoid 100 must be sufficiently strong to overcome the friction between plunger 104 and aperture 106 caused by spring 162 putting tension on the parts of the actuator. Otherwise, the solenoid could not retract plunger 104. Often, as stated, a very strong spring is used to push the brake pawl into the saw blade as quickly as possible. However, the stronger the spring, the more tension on the system and the more friction between the plunger and the aperture. Actuator 99 accommodates strong springs by using multiple pivot arms. For example, the two pivot arms described above provide the mechanical advantage necessary to hold a strong spring. Two or more pivot arms are used to gain the advantage of multiple pivot points, rather than using a single pivot point with a longer moment arm. However, a single pivot arm may be used in some embodiments. In the embodiment shown in FIGS. 3 and 4, a solenoid that can retract a plunger with a force of approximately 50 grams can hold a spring force of around 100 Newtons, considering that first pivot arm 108 provides a mechanical advantage of a factor of 3 to 4, and second pivot arm 130 provides a mechanical advantage of a factor of around 6, and the solenoid would need to provide a retraction force to overcome the friction on the plunger of approximately 1/10th of the force on the plunger from the spring. Of course, the pivot arms can be sized differently to provide the mechanical advantage necessary for different springs, or different numbers of pivot arms can be used. One significant advantage of using a mechanical linkage like the two pivot arms discussed above, is that actuator 99 may use a solenoid that is physically small and relatively inexpensive to release the spring, resulting in an actuator that is effective, economical, and sized so that it is applicable to various types of saws.


Another significant benefit of the actuator shown in FIGS. 3 and 4 is that it completely releases a significant force with only a short, discrete movement of plunger 104. The plunger need only retract a specified and determined amount to disengage with first pivot arm 108, and the entire force of spring 162 is released. Thus, the speed at which the actuator can apply a force is maximized because time is not spent by the solenoid moving the plunger a significant distance. That results in being able to stop the blade of the saw quicker that otherwise would be possible, and stopping the blade as quickly as possible minimizes any injury to a person accidentally contacting the blade.


The solenoid also must be sufficiently strong to overcome the spring or other means that biases plunger 104 outwardly. The solenoid also must release the force quickly enough so that the brake can engage and stop the saw blade before a person who accidentally contacts the blade receives a serious injury under typical circumstances. The necessary release time will depend on the embodiment, but will usually not exceed around 5 milliseconds. Of course, the shorter the release time the better.


Housing 102 for actuator 99 is shaped to accommodate the solenoid, pivot arms and restraining plate. The housing typically would be sealed against the entry of sawdust, with the only opening being slot 154 through which plate 150 passes. The housing is compact, and is designed to work as a “drop-in” component or cartridge. For example, a saw can be constructed to accommodate a brake pawl and actuator, and then after the actuator has fired and the brake pawl has moved into the blade, the spent actuator and brake pawl can be removed and a new actuator and brake pawl dropped in.


Actuator 99 shown in FIGS. 3 and 4 is only one of various embodiments that can be used in the safety system described herein. Another embodiment is shown in FIG. 11, and is similar to the actuator shown in FIGS. 3 and 4 except that it uses a voice coil actuator 200 instead of a solenoid and plunger. Voice coil actuator 200 includes a wire coil 202 adjacent a magnet 204, similar to the construction of a speaker. When electric current from firing system 76 flows through coil 202, the coil is magnetized and either attracted to or repelled from magnet 204, which causes the coil to move. A pin 206 is attached to the coil and moves with the coil. That movement can be used to release a force, like in actuator 99 discussed above. Suitable voice coil actuators may be obtained from BEI Sensors & Systems Company, Kimco Magnetic Division, of San Marcos, Calif.


Another embodiment of an actuator uses a shape memory alloy to provide a movement to release a force, such as a Nitinol (nickel-titanium) actuator wire, or CuAlNi or TiNiPd alloys. Shape memory alloys are configured to contract when heated through a phase-change transition temperature, and can be restretched as they cool to ambient temperatures. One embodiment using a shape memory alloy is shown in FIG. 12, and it includes an actuator wire 210 connected to firing circuit 76 (which constitutes a source of electricity) and to a pin 212. Pin 212 engages a first pivot arm and restrains that pivot arm from moving, just as plunger 104 does in the embodiment disclosed above in connection with FIGS. 3 and 4. Pin 212 is mounted in the housing of the actuator so that it can pivot away from the pivot arm to release the arm, and also so that it can prevent the pivot arm from moving while the pin is engaged with the pivot arm, as shown in FIG. 13. A hinge joint 214 allows pin 212 to pivot. The hinge joint can be constructed to bias pin 212 toward the first pivot arm to help insure that the pin remains engaged with the pivot arm until pulled by wire 210. When electric current from firing circuit 76 flows through wire 210, the resistance of the wire heats the wire and causes the wire to contract, which pulls pin 212 free from the first pivot arm, releasing the spring force as described above. By way of example, actuator wires made of nickel-titanium and marketed by Dynalloy, Inc. under the trade name Flexinol may be used. A Flexinol wire having a diameter of approximately 0.01-inch and a resistance of 0.5-ohms per inch could provide approximately 930 grams of pull force, with an approximate current of 1000 milliamps and with a contraction of 4% of length over 1 second, where the contraction time is related to current input. Advantages of using a shape memory alloy include the relatively small size of an actuator wire, the ease of use, the low power consumption, and the relative low cost of the material. The retraction force and stroke can also be readily determined and selected. This embodiment has particular application to inexpensive hand-held circular saws, and other less expensive saws, because of the low cost and small size of shape memory alloys.


Some embodiments also may use integrated force arrays instead of solenoids or voice coil actuators to create the motion to release the force. Integrated force arrays are flexible metalized membranes that undergo deformation when voltage is applied to them. An integrated force array resembles a thin, flexible membrane, and it contracts by around 30% in one dimension when voltage is applied to it. An integrated force array may be configured to provide substantial force.


An advantage of actuators using solenoids, voice coil actuators, shape memory alloys, or integrated force arrays, is that they may be configured for multiple uses. After a movement is produced to release a force, the actuator may be “re-cocked” by compressing the spring or recreating the force, repositioning the mechanical linkage holding the force, and then reinserting a pin to restrain the linkage. Additionally, the advantages described above relating to solenoids, such a releasing a force with a short, discrete stroke, are also applicable to voice coil actuators, shape memory alloys, and integrated force arrays.


The solenoids, voice coil actuators, shape memory alloys and integrated force arrays discussed above can be connected to firing system 76 to produce the necessary electric current. As will be appreciated by those of skill in the art, there are many circuits suitable for supplying this current. A typical circuit would include one or more charge storage devices that are discharged in response to an output signal from the control subsystem. (The output signal from the control subsystem is dependant on detection of contact between the user and a blade, as explained above.) It will be appreciated, however, that a current supply may be used instead of charge storage devices. Alternatively, other devices may be used to supply the necessary current, including a silicon-controlled rectifier or triac connected to a power supply line. Transistors and/or SCRs (silicon controlled rectifiers) may be used to release the charge in the charge storage devices upon a signal from the control subsystem.


It will be appreciated by those of skill in the electrical arts that any suitable embodiment or configuration of the firing systems discussed generally above could be used. The control systems, power supplies, sense lines and other items related to or used with firing systems are discussed in more detail in U.S. Provisional Patent Application Ser. No. 60/225,200, titled “Contact Detection System for Power Equipment,” U.S. Provisional Patent Application Ser. No. 60/225,211, titled “Apparatus and Method for Detecting Dangerous Conditions in Power Equipment,” and U.S. Provisional Patent Application Ser. No. 60/225,059, titled “Logic Control for Fast-Acting Safety System,” all filed Aug. 14, 2000, the disclosures of which are herein incorporated by reference.


INDUSTRIAL APPLICABILITY

The safety systems and actuators described herein are applicable to power equipment, and specifically to power equipment wherein some action is triggered or released. The safety systems and actuators are particularly applicable to woodworking equipment such as table saws, miter saws, band saws, circular saws, jointers, etc. The safety systems and actuators described herein may be adapted for use on a variety of other saws and machines, and further descriptions may be found in the following references, the disclosures of which are herein incorporated by reference: PCT Patent Application Serial No. PCT/US00/26812, filed Sep. 29, 2000; U.S. patent application Ser. No. 09/676,190, filed Sep. 29, 2000; U.S. Provisional Patent Application Ser. No. 60/302,937, filed Jul. 2, 2001; U.S. Provisional Patent Application Ser. No. 60/298,207, filed Jun. 13, 2001; U.S. Provisional Patent Application Ser. No. 60/292,100, filed May 17, 2001; U.S. Provisional Patent Application Ser. No. 60/292,081, filed May 17, 2001; U.S. Provisional Patent Application Ser. No. 60/279,313, filed Mar. 27, 2001; U.S. Provisional Patent Application Ser. No. 60/275,595, filed Mar. 13, 2001; U.S. Provisional Patent Application Ser. No. 60/275,594, filed Mar. 13, 2001; U.S. Provisional Patent Application Ser. No. 60/275,583, filed Mar. 13, 2001; U.S. Provisional Patent Application Ser. No. 60/273,902, filed Mar. 6, 2001; U.S. Provisional Patent Application Ser. No. 60/273,178, filed Mar. 2, 2001; U.S. Provisional Patent Application Ser. No. 60/273,177, filed Mar. 2, 2001; U.S. Provisional Patent Application Ser. No. 60/270,942, filed Feb. 22, 2001; U.S. Provisional Patent Application Ser. No. 60/270,941, filed Feb. 22, 2001; U.S. Provisional Patent Application Ser. No. 60/270,011, filed Feb. 20, 2001; U.S. Provisional Patent Application Ser. No. 60/233,459, filed Sep. 18, 2000; U.S. Provisional Patent Application Ser. No. 60/225,212, filed Aug. 14, 2000; and U.S. Provisional Patent Application Ser. No. 60/225,201, filed Aug. 14, 2000.


It is believed that the disclosure set forth above encompasses multiple distinct inventions with independent utility. While each of these inventions has been disclosed in its preferred form, the specific embodiments thereof as disclosed and illustrated herein are not to be considered in a limiting sense as numerous variations are possible. The subject matter of the inventions includes all novel and non-obvious combinations and subcombinations of the various elements, features, functions and/or properties disclosed herein. No single feature, function, element or property of the disclosed embodiments is essential to all of the disclosed inventions.


It is believed that the disclosure set forth above encompasses multiple distinct inventions with independent utility. While each of these inventions has been disclosed in its preferred form, the specific embodiments thereof as disclosed and illustrated herein are not to be considered in a limiting sense as numerous variations are possible. The subject matter of the inventions includes all novel and non-obvious combinations and subcombinations of the various elements, features, functions and/or properties disclosed herein. No single feature, function, element or property of the disclosed embodiments is essential to all of the disclosed inventions. Similarly, where the claims recite “a” or “a first” element or the equivalent thereof, such claims should be understood to include incorporation of one or more such elements, neither requiring nor excluding two or more such elements.


It is believed that the following claims particularly point out certain combinations and subcombinations that are directed to one of the disclosed inventions and are novel and non-obvious. Inventions embodied in other combinations and subcombinations of features, functions, elements and/or properties may be claimed through amendment of the present claims or presentation of new claims in this or a related application. Such amended or new claims, whether they are directed to a different invention or directed to the same invention, whether different, broader, narrower or equal in scope to the original claims, are also regarded as included within the subject matter of the inventions of the present disclosure.

Claims
  • 1. An actuator for use in a safety system for a power tool, where the power tool includes a moving cuffing element, and where the safety system includes a brake member configured to move into contact with the cutting element to stop movement of the cutting element, the actuator comprising: a spring adapted to expand to move the brake member into contact with the cutting element,a restraining mechanism adapted to hold the spring in compression so that the spring is constrained from moving the brake member into contact with the culling element, anda releasing mechanism configured to provide a movement to release the restraining member so the spring can expand to move the brake member into contact with the cutting element.
  • 2. The actuator of claim 1, where the spring is a torsion spring.
  • 3. The actuator of claim 1, where the releasing mechanism includes a solenoid.
  • 4. The actuator of claim 1, where the releasing mechanism includes a voice coil.
  • 5. The actuator of claim 1, where the releasing mechanism includes a shape memory alloy.
  • 6. The actuator of claim 1, where the releasing mechanism includes an integrated force array.
  • 7. The actuator of claim 1, where the restraining mechanism includes at least one pivot arm.
  • 8. The actuator of claim 1, where the restraining mechanism includes a plurality of pivot arms.
  • 9. The actuator of claim 1, where the releasing mechanism is within a housing.
  • 10. An actuator for use in a safety system for a power tool, where the power tool includes a moving cutting element, and where the safety system includes a brake member configured to move into contact with the cutting element to stop movement of the cutting element, the actuator comprising: stored force means for moving the brake member into the cutting element,restraining means for constraining the stored force means from moving the brake member into the cutting element, andrelease means for providing a movement to release the stored force means.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of and priority from U.S. Provisional Patent Application Ser. No. 60/302,916, filed Jul. 3, 2001, which is hereby incorporated by reference.

US Referenced Citations (604)
Number Name Date Kind
146886 Doane et al. Jan 1874 A
162814 Graves et al. May 1875 A
261090 Grill Jul 1882 A
264412 Kuhlmann Sep 1882 A
299480 Kuhlmann et al. May 1884 A
302041 Sill Jul 1884 A
307112 Groff Oct 1884 A
509253 Shields Nov 1893 A
545504 Hoover Sep 1895 A
869513 Pfeil Oct 1907 A
941726 Pfalzgraf Nov 1909 A
982312 Swafford Jan 1911 A
997720 Troupenat Jul 1911 A
1037843 Ackley Sep 1912 A
1050649 Harrold et al. Jan 1913 A
1054558 Jones Feb 1913 A
1074198 Phillips Sep 1913 A
1082870 Humason Dec 1913 A
1101515 Adam Jun 1914 A
1126970 Folmer Feb 1915 A
1132129 Stevens Mar 1915 A
1148169 Howe Jul 1915 A
1154209 Rushton Sep 1915 A
1205246 Mowry Nov 1916 A
1228047 Reinhold May 1917 A
1240430 Erickson Sep 1917 A
1244187 Frisbie Oct 1917 A
1258961 Tattersall Mar 1918 A
1255886 Jones Dec 1918 A
1311508 Harrold Jul 1919 A
1324136 Turner Dec 1919 A
1381612 Anderson Jun 1921 A
1397606 Smith Nov 1921 A
RE15262 Gurgel Jan 1922 E
1427005 McMichael Aug 1922 A
1430983 Granberg Oct 1922 A
1450906 Anderson Apr 1923 A
1464924 Drummond Aug 1923 A
1465224 Lantz Aug 1923 A
1492145 Talley Apr 1924 A
1496212 French Jun 1924 A
1511797 Berghold Oct 1924 A
1526128 Flohr Feb 1925 A
1527587 Hutchinson Feb 1925 A
1551900 Morrow Sep 1925 A
1553996 Federer Sep 1925 A
1582483 Runyan Apr 1926 A
1590988 Campbell Jun 1926 A
1600604 Sorlien Sep 1926 A
1616478 Watson Feb 1927 A
1640517 Procknow Aug 1927 A
1662372 Ward Mar 1928 A
1668061 Falkins May 1928 A
1701948 Crowe Feb 1929 A
1711490 Drummond May 1929 A
1712828 Klehm May 1929 A
1774521 Neighbour Sep 1930 A
1807120 Lewis May 1931 A
1811066 Tannewitz Jun 1931 A
1879280 James Sep 1932 A
1896924 Ulrich Feb 1933 A
1902270 Tate Mar 1933 A
1904005 Masset Apr 1933 A
1910651 Tautz May 1933 A
1938548 Tautz Dec 1933 A
1938549 Tautz Dec 1933 A
1963688 Tautz Jun 1934 A
1988102 Woodward Jan 1935 A
1993219 Merrigan Mar 1935 A
2007887 Tautz Jul 1935 A
2010851 Drummond Aug 1935 A
2020222 Tautz Nov 1935 A
2038810 Tautz Apr 1936 A
2044481 Manley et al. Jun 1936 A
2075282 Hedgpeth Mar 1937 A
2095330 Hedgpeth Oct 1937 A
2106288 Tautz Jan 1938 A
2106321 Guertin Jan 1938 A
2121069 Collins Jun 1938 A
2131492 Ocenasek Sep 1938 A
2163320 Hammond Jun 1939 A
2168282 Tautz Aug 1939 A
2241556 MacMillin et al. May 1941 A
2261696 Ocenasek Nov 1941 A
2265407 Tautz Dec 1941 A
2286589 Tannewitz Jun 1942 A
2292872 Eastman Aug 1942 A
2299262 Uremovich Oct 1942 A
2312118 Neisewander Feb 1943 A
2313686 Uremovich Mar 1943 A
2328244 Woodward Aug 1943 A
2352235 Tautz Jun 1944 A
2377265 Rady Mar 1945 A
2392486 Larsen Jan 1946 A
2402232 Baker Jun 1946 A
2425331 Kramer Aug 1947 A
2434174 Morgan Jan 1948 A
2466325 Ocenasek Apr 1949 A
2496613 Woodward Feb 1950 A
2501134 Meckoski et al. Mar 1950 A
2509813 Dineen May 1950 A
2517649 Frechtmann Aug 1950 A
2518684 Harris Aug 1950 A
2530290 Collins Nov 1950 A
2554124 Salmont May 1951 A
2562396 Schutz Jul 1951 A
2572326 Evans Oct 1951 A
2590035 Pollak Mar 1952 A
2593596 Olson Apr 1952 A
2601878 Anderson Jul 1952 A
2623555 Eschenburg Dec 1952 A
2625966 Copp Jan 1953 A
2626639 Hess Jan 1953 A
2661777 Hitchcock Dec 1953 A
2661780 Morgan Dec 1953 A
2675707 Brown Apr 1954 A
2678071 Odlum et al. May 1954 A
2690084 Van Dam Sep 1954 A
2695638 Gaskell Nov 1954 A
2704560 Woessner Mar 1955 A
2711762 Gaskell Jun 1955 A
2719547 Gjerde Oct 1955 A
2722246 Arnoldy Nov 1955 A
2731049 Akin Jan 1956 A
2736348 Nelson Feb 1956 A
2758615 Mastriforte Aug 1956 A
2785710 Mowery, Jr. Mar 1957 A
2786496 Eschenburg Mar 1957 A
2804890 Fink Sep 1957 A
2810408 Boice et al. Oct 1957 A
2839943 Caldwell et al. Jun 1958 A
2844173 Gaskell Jul 1958 A
2850054 Eschenburg Sep 1958 A
2852047 Odlum et al. Sep 1958 A
2873773 Gaskell Feb 1959 A
2876809 Rentsch et al. Mar 1959 A
2894546 Eschenburg Jul 1959 A
2913025 Richards Nov 1959 A
2937672 Gjerde May 1960 A
2945516 Edgemond, Jr. et al. Jul 1960 A
2954118 Anderson Sep 1960 A
2978084 Vilkaitis Apr 1961 A
2984268 Vuichard May 1961 A
2991593 Cohen Jul 1961 A
3005477 Sherwen Oct 1961 A
3007501 Mundell et al. Nov 1961 A
3011529 Copp Dec 1961 A
3011610 Stiebel et al. Dec 1961 A
3013592 Ambrosio et al. Dec 1961 A
3021881 Edgemond, Jr. et al. Feb 1962 A
3047116 Stiebel et al. Jul 1962 A
3085602 Gaskell Apr 1963 A
3105530 Peterson Oct 1963 A
3129731 Tyrrell Apr 1964 A
3163732 Abbott Dec 1964 A
3184001 Reinsch et al. May 1965 A
3186256 Reznick Jun 1965 A
3207273 Jurin Sep 1965 A
3224474 Bloom Dec 1965 A
3232326 Speer et al. Feb 1966 A
3249134 Vogl et al. May 1966 A
3274876 Debus Sep 1966 A
3276497 Heer Oct 1966 A
3306149 John Feb 1967 A
3313185 Drake et al. Apr 1967 A
3315715 Mytinger Apr 1967 A
3323814 Phillips Jun 1967 A
3337008 Trachte Aug 1967 A
3356111 Mitchell Dec 1967 A
3368596 Comer Feb 1968 A
3386322 Stone et al. Jun 1968 A
3454286 Anderson et al. Jul 1969 A
3538964 Warrick et al. Nov 1970 A
3540338 McEwan et al. Nov 1970 A
3554067 Scutella Jan 1971 A
3566996 Crossman Mar 1971 A
3580376 Loshbough May 1971 A
3581784 Warrick Jun 1971 A
3593266 Van Sickle Jul 1971 A
3613748 De Pue Oct 1971 A
3621894 Niksich Nov 1971 A
3648126 Boos et al. Mar 1972 A
3670788 Pollak et al. Jun 1972 A
3675444 Whipple Jul 1972 A
3680609 Menge Aug 1972 A
3688815 Ridenour Sep 1972 A
3695116 Baur Oct 1972 A
3696844 Bernatschek Oct 1972 A
3716113 Kobayashi et al. Feb 1973 A
3719103 Steander Mar 1973 A
3740000 Takada Jun 1973 A
3745546 Struger et al. Jul 1973 A
3749933 Davidson Jul 1973 A
3754493 Niehaus et al. Aug 1973 A
3772590 Mikulecky et al. Nov 1973 A
3785230 Lokey Jan 1974 A
3793915 Huier Feb 1974 A
3805639 Peter Apr 1974 A
3805658 Scott et al. Apr 1974 A
3808932 Russell May 1974 A
3829850 Guetersloh Aug 1974 A
3829970 Anderson Aug 1974 A
3858095 Friemann et al. Dec 1974 A
3861016 Johnson et al. Jan 1975 A
3863208 Balban Jan 1975 A
3874747 Case et al. Apr 1975 A
3880032 Green Apr 1975 A
3882744 McCarroll May 1975 A
3886413 Dow et al. May 1975 A
3889567 Sato et al. Jun 1975 A
3905263 Smith Sep 1975 A
3922785 Fushiya Dec 1975 A
3924688 Cooper et al. Dec 1975 A
3931727 Luenser Jan 1976 A
3935777 Bassett Feb 1976 A
3945286 Smith Mar 1976 A
3946631 Malm Mar 1976 A
3947734 Fyler Mar 1976 A
3949636 Ball et al. Apr 1976 A
3953770 Hayashi Apr 1976 A
3960310 Nussbaum Jun 1976 A
3967161 Lichtblau Jun 1976 A
3974565 Ellis Aug 1976 A
3975600 Marston Aug 1976 A
3994192 Faig Nov 1976 A
4007679 Edwards Feb 1977 A
4016490 Weckenmann et al. Apr 1977 A
4026174 Fierro May 1977 A
4026177 Lokey May 1977 A
4029159 Nymann Jun 1977 A
4047156 Atkins Sep 1977 A
4048886 Zettler Sep 1977 A
4060160 Lieber Nov 1977 A
4070940 McDaniel et al. Jan 1978 A
4075961 Harris Feb 1978 A
4077161 Wyle et al. Mar 1978 A
4085303 McIntyre et al. Apr 1978 A
4090345 Harkness May 1978 A
4091698 Obear et al. May 1978 A
4106378 Kaiser Aug 1978 A
4117752 Yoneda Oct 1978 A
4145940 Woloveke et al. Mar 1979 A
4152833 Phillips May 1979 A
4161649 Klos et al. Jul 1979 A
4175452 Idel Nov 1979 A
4184394 Gjerde Jan 1980 A
4190000 Shaull et al. Feb 1980 A
4195722 Anderson et al. Apr 1980 A
4199930 Lebet et al. Apr 1980 A
4200002 Takahashi Apr 1980 A
4206666 Ashton Jun 1980 A
4206910 Biesemeyer Jun 1980 A
4249117 Leukhardt et al. Feb 1981 A
4249442 Fittery Feb 1981 A
4251599 McCormick Feb 1981 A
4255995 Connor Mar 1981 A
4262278 Howard et al. Apr 1981 A
4267914 Saar May 1981 A
4270427 Colberg et al. Jun 1981 A
4276459 Willett et al. Jun 1981 A
4276799 Muehling Jul 1981 A
4291794 Bauer Sep 1981 A
4305442 Currie Dec 1981 A
4319146 Wires, Sr. Mar 1982 A
4321841 Felix Mar 1982 A
4334450 Benuzzi Jun 1982 A
4372202 Cameron Feb 1983 A
4374552 Dayen Feb 1983 A
4385539 Meyerhoefer et al. May 1983 A
4391358 Haeger Jul 1983 A
4418597 Krusemark et al. Dec 1983 A
4427042 Mitchell et al. Jan 1984 A
4466170 Davis Aug 1984 A
4466233 Thesman Aug 1984 A
4470046 Betsill Sep 1984 A
4492291 Chometon et al. Jan 1985 A
4503739 Konieczka Mar 1985 A
4510489 Anderson, III et al. Apr 1985 A
4512224 Terauchi Apr 1985 A
4518043 Anderson et al. May 1985 A
4532501 Hoffman Jul 1985 A
4532844 Chang et al. Aug 1985 A
4557168 Tokiwa Dec 1985 A
4559858 Laskowski et al. Dec 1985 A
4560033 DeWoody et al. Dec 1985 A
4566512 Wilson Jan 1986 A
4573556 Andreasson Mar 1986 A
4576073 Stinson Mar 1986 A
4589047 Gaus et al. May 1986 A
4589860 Brandenstein et al. May 1986 A
4599597 Rotbart Jul 1986 A
4599927 Eccardt et al. Jul 1986 A
4606251 Boileau Aug 1986 A
4615247 Berkeley Oct 1986 A
4621300 Summerer Nov 1986 A
4625604 Handler et al. Dec 1986 A
4637188 Crothers Jan 1987 A
4637289 Ramsden Jan 1987 A
4644832 Smith Feb 1987 A
4653189 Andreasson Mar 1987 A
4657428 Wiley Apr 1987 A
4661797 Schmall Apr 1987 A
4672500 Tholome et al. Jun 1987 A
4679719 Kramer Jul 1987 A
4694721 Brickner, Jr. Sep 1987 A
4718229 Riley Jan 1988 A
4721023 Bartlett et al. Jan 1988 A
4722021 Hornung et al. Jan 1988 A
4751603 Kwan Jun 1988 A
4757881 Jonsson et al. Jul 1988 A
4774866 Dehari et al. Oct 1988 A
4792965 Morgan Dec 1988 A
4805504 Fushiya et al. Feb 1989 A
4831279 Ingraham May 1989 A
4840135 Yamauchi Jun 1989 A
4864455 Shimomura et al. Sep 1989 A
4875398 Taylor et al. Oct 1989 A
4888869 Leatherman Dec 1989 A
4896607 Hall et al. Jan 1990 A
4906962 Duimstra Mar 1990 A
4907679 Menke Mar 1990 A
4934233 Brundage et al. Jun 1990 A
4936876 Reyes Jun 1990 A
4937554 Herman Jun 1990 A
4962685 Hagstrom Oct 1990 A
4964450 Hughes et al. Oct 1990 A
4965909 McCullough et al. Oct 1990 A
4969063 Scott et al. Nov 1990 A
4975798 Edwards et al. Dec 1990 A
5020406 Sasaki et al. Jun 1991 A
5025175 Dubois, III Jun 1991 A
5042348 Brundage et al. Aug 1991 A
5046426 Julien et al. Sep 1991 A
5052255 Gaines Oct 1991 A
5074047 King Dec 1991 A
5081406 Hughes et al. Jan 1992 A
5082316 Wardlaw Jan 1992 A
5083973 Townsend Jan 1992 A
5086890 Turczyn et al. Feb 1992 A
5094000 Becht et al. Mar 1992 A
5116249 Shiotani et al. May 1992 A
5119555 Johnson Jun 1992 A
5122091 Townsend Jun 1992 A
5123317 Barnes, Jr. et al. Jun 1992 A
5146714 Luber Sep 1992 A
5174349 Svetlik et al. Dec 1992 A
5184534 Lee Feb 1993 A
5198702 McCullough et al. Mar 1993 A
5199343 OBanion Apr 1993 A
5201110 Bane Apr 1993 A
5201684 DeBois, III Apr 1993 A
5206625 Davis Apr 1993 A
5207253 Hoshino et al. May 1993 A
5212621 Panter May 1993 A
5218189 Hutchison Jun 1993 A
5230269 Shiotani et al. Jul 1993 A
5231359 Masuda et al. Jul 1993 A
5231906 Kogej Aug 1993 A
5239978 Plangetis Aug 1993 A
5245879 McKeon Sep 1993 A
5257570 Shiotani et al. Nov 1993 A
5265510 Hoyer-Ellefsen Nov 1993 A
5272946 McCullough et al. Dec 1993 A
5276431 Piccoli et al. Jan 1994 A
5285708 Bosten et al. Feb 1994 A
5293802 Shiotani et al. Mar 1994 A
5320382 Goldstein et al. Jun 1994 A
5321230 Shanklin et al. Jun 1994 A
5331875 Mayfield Jul 1994 A
5353670 Metzger, Jr. Oct 1994 A
5377554 Reulein et al. Jan 1995 A
5377571 Josephs Jan 1995 A
5392678 Sasaki et al. Feb 1995 A
5401928 Kelley Mar 1995 A
5411221 Collins et al. May 1995 A
5423232 Miller et al. Jun 1995 A
5447085 Gochnauer Sep 1995 A
5451750 An Sep 1995 A
5453903 Chow Sep 1995 A
5471888 McCormick Dec 1995 A
5480009 Wieland et al. Jan 1996 A
5503059 Pacholok Apr 1996 A
5510587 Reiter Apr 1996 A
5510685 Grasselli Apr 1996 A
5513548 Garuglieri May 1996 A
5531147 Serban Jul 1996 A
5534836 Schenkel et al. Jul 1996 A
5572916 Takano Nov 1996 A
5587618 Hathaway Dec 1996 A
5592353 Shinohara et al. Jan 1997 A
5606889 Bielinski et al. Mar 1997 A
5619896 Chen Apr 1997 A
5623860 Schoene et al. Apr 1997 A
5647258 Brazell et al. Jul 1997 A
5648644 Nagel Jul 1997 A
5659454 Vermesse Aug 1997 A
5667152 Mooring Sep 1997 A
5671633 Wagner Sep 1997 A
5695306 Nygren, Jr. Dec 1997 A
5700165 Harris et al. Dec 1997 A
5720213 Sberveglieri Feb 1998 A
5722308 Ceroll et al. Mar 1998 A
5724875 Meredith et al. Mar 1998 A
5730165 Philipp Mar 1998 A
5741048 Eccleston Apr 1998 A
5755148 Stumpf et al. May 1998 A
5768786 Kane et al. Jun 1998 A
5771742 Bokaie et al. Jun 1998 A
5782001 Gray Jul 1998 A
5787779 Garuglieri Aug 1998 A
5791057 Nakamura et al. Aug 1998 A
5791223 Lanzer Aug 1998 A
5791224 Suzuki et al. Aug 1998 A
5791441 Matos et al. Aug 1998 A
5797307 Horton Aug 1998 A
5819619 Miller et al. Oct 1998 A
5819625 Sberveglieri Oct 1998 A
5852951 Santi Dec 1998 A
5857507 Puzio et al. Jan 1999 A
5861809 Eckstein et al. Jan 1999 A
5875698 Ceroll et al. Mar 1999 A
5880954 Thomson et al. Mar 1999 A
5921367 Kashioka et al. Jul 1999 A
5927857 Ceroll et al. Jul 1999 A
5930096 Kim Jul 1999 A
5937720 Itzov Aug 1999 A
5942975 Sorensen Aug 1999 A
5943932 Sberveglieri Aug 1999 A
5950514 Benedict et al. Sep 1999 A
5963173 Lian et al. Oct 1999 A
5974927 Tsune Nov 1999 A
5989116 Johnson et al. Nov 1999 A
6009782 Tajima et al. Jan 2000 A
6018284 Rival et al. Jan 2000 A
6037729 Woods et al. Mar 2000 A
6052884 Steckler et al. Apr 2000 A
6062121 Ceroll et al. May 2000 A
6070484 Sakamaki Jun 2000 A
6095092 Chou Aug 2000 A
6112785 Yu Sep 2000 A
6119984 Devine Sep 2000 A
6133818 Hsieh et al. Oct 2000 A
6141192 Garzon Oct 2000 A
6148504 Schmidt et al. Nov 2000 A
6148526 Kirn et al. Nov 2000 A
6148703 Ceroll et al. Nov 2000 A
6150826 Hokodate et al. Nov 2000 A
6161459 Ceroll et al. Dec 2000 A
6170370 Sommerville Jan 2001 B1
6244149 Ceroll et al. Jun 2001 B1
6250190 Ceroll et al. Jun 2001 B1
6257061 Nonoyama et al. Jul 2001 B1
6283002 Chiang Sep 2001 B1
6295910 Childs et al. Oct 2001 B1
6312028 Wilkosz Nov 2001 B1
6325195 Doherty Dec 2001 B1
6336273 Nilsson et al. Jan 2002 B1
6352137 Stegall et al. Mar 2002 B1
6357328 Ceroll et al. Mar 2002 B1
6361092 Eagle et al. Mar 2002 B1
6366099 Reddi Apr 2002 B1
6376939 Suzuki et al. Apr 2002 B1
6404098 Kayama et al. Jun 2002 B1
6405624 Sutton Jun 2002 B2
6418829 Pilchowski Jul 2002 B1
6420814 Bobbio Jul 2002 B1
6427570 Miller et al. Aug 2002 B1
6430007 Jabbari Aug 2002 B1
6431425 Moorman et al. Aug 2002 B1
6450077 Ceroll et al. Sep 2002 B1
6453786 Ceroll et al. Sep 2002 B1
6460442 Talesky et al. Oct 2002 B2
6471106 Reining Oct 2002 B1
6479958 Thompson et al. Nov 2002 B1
6484614 Huang Nov 2002 B1
D466913 Ceroll et al. Dec 2002 S
6492802 Bielski Dec 2002 B1
D469354 Curtsinger Jan 2003 S
6502493 Eccardt et al. Jan 2003 B1
6530303 Parks et al. Mar 2003 B1
6536536 Gass et al. Mar 2003 B1
6543324 Dils Apr 2003 B2
6546835 Wang Apr 2003 B2
6564909 Razzano May 2003 B1
6575067 Parks et al. Jun 2003 B2
6578460 Sartori Jun 2003 B2
6578856 Kahle Jun 2003 B2
6581655 Huang Jun 2003 B2
6595096 Ceroll et al. Jul 2003 B2
D478917 Ceroll et al. Aug 2003 S
6601493 Crofutt Aug 2003 B1
6607015 Chen Aug 2003 B1
D479538 Welsh et al. Sep 2003 S
6617720 Egan, III et al. Sep 2003 B1
6619348 Wang Sep 2003 B2
6640683 Lee Nov 2003 B2
6644157 Huang Nov 2003 B2
6647847 Hewitt et al. Nov 2003 B2
6659233 DeVlieg Dec 2003 B2
6684750 Yu Feb 2004 B2
6722242 Chuang Apr 2004 B2
6734581 Griffis May 2004 B1
6736042 Behne et al. May 2004 B2
6742430 Chen Jun 2004 B2
6800819 Sato et al. Oct 2004 B2
6826988 Gass et al. Dec 2004 B2
6826992 Huang Dec 2004 B1
6840144 Huang Jan 2005 B2
6854371 Yu Feb 2005 B2
6857345 Gass et al. Feb 2005 B2
6874397 Chang Apr 2005 B2
6874399 Lee Apr 2005 B2
6883397 Kimizuka Apr 2005 B2
6889585 Harris et al. May 2005 B1
6922153 Pierga et al. Jul 2005 B2
6968767 Yu Nov 2005 B2
6986370 Schoene et al. Jan 2006 B1
6994004 Gass et al. Feb 2006 B2
6997090 Gass et al. Feb 2006 B2
7000514 Gass et al. Feb 2006 B2
7024975 Gass et al. Apr 2006 B2
7055417 Gass Jun 2006 B1
7077039 Gass et al. Jul 2006 B2
7098800 Gass Aug 2006 B2
7100483 Gass et al. Sep 2006 B2
7137326 Gass et al. Nov 2006 B2
20010032534 Ceroll et al. Oct 2001 A1
20020017175 Gass et al. Feb 2002 A1
20020017176 Gass et al. Feb 2002 A1
20020017178 Gass et al. Feb 2002 A1
20020017179 Gass et al. Feb 2002 A1
20020017180 Gass et al. Feb 2002 A1
20020017181 Gass et al. Feb 2002 A1
20020017182 Gass et al. Feb 2002 A1
20020017183 Gass et al. Feb 2002 A1
20020017184 Gass et al. Feb 2002 A1
20020017336 Gass et al. Feb 2002 A1
20020020261 Gass et al. Feb 2002 A1
20020020262 Gass et al. Feb 2002 A1
20020020263 Gass et al. Feb 2002 A1
20020020265 Gass et al. Feb 2002 A1
20020020271 Gass et al. Feb 2002 A1
20020043776 Chuang Apr 2002 A1
20020050201 Lane et al. May 2002 A1
20020056348 Gass et al. May 2002 A1
20020056349 Gass et al. May 2002 A1
20020056350 Gass et al. May 2002 A1
20020059853 Gass et al. May 2002 A1
20020059854 Gass et al. May 2002 A1
20020059855 Gass et al. May 2002 A1
20020066346 Gass et al. Jun 2002 A1
20020069734 Gass et al. Jun 2002 A1
20020088325 Talesky et al. Jul 2002 A1
20020096030 Wang Jul 2002 A1
20020096591 Tanji Jul 2002 A1
20020109036 Denen et al. Aug 2002 A1
20020134212 Ceroll et al. Sep 2002 A1
20020170399 Gass et al. Nov 2002 A1
20020170400 Gass Nov 2002 A1
20020174755 Behne et al. Nov 2002 A1
20020190581 Gass et al. Dec 2002 A1
20030000359 Eccardt et al. Jan 2003 A1
20030002942 Gass et al. Jan 2003 A1
20030005588 Gass et al. Jan 2003 A1
20030019341 Gass et al. Jan 2003 A1
20030020336 Gass et al. Jan 2003 A1
20030037651 Gass et al. Feb 2003 A1
20030037655 Chin-Chin Feb 2003 A1
20030056853 Gass et al. Mar 2003 A1
20030074873 Freiberg et al. Apr 2003 A1
20030089212 Parks et al. May 2003 A1
20030101857 Chuang Jun 2003 A1
20030109798 Kermani Jun 2003 A1
20030213349 Chang Nov 2003 A1
20040011177 Huang Jan 2004 A1
20040060404 Metzger, Jr. Apr 2004 A1
20040104085 Lang et al. Jun 2004 A1
20040159198 Peot et al. Aug 2004 A1
20040194594 Dils et al. Oct 2004 A1
20040200329 Sako Oct 2004 A1
20040226424 O'Banion et al. Nov 2004 A1
20040226800 Pierga et al. Nov 2004 A1
20040255745 Peot et al. Dec 2004 A1
20050057206 Uneyama Mar 2005 A1
20050092149 Hartmann May 2005 A1
20050139051 Gass et al. Jun 2005 A1
20050139056 Gass et al. Jun 2005 A1
20050139057 Gass et al. Jun 2005 A1
20050139058 Gass et al. Jun 2005 A1
20050139459 Gass et al. Jun 2005 A1
20050211034 Sasaki et al. Sep 2005 A1
20050235793 O'Banion et al. Oct 2005 A1
20050274432 Gass et al. Dec 2005 A1
20060000337 Gass Jan 2006 A1
20060032352 Gass et al. Feb 2006 A1
20060123960 Gass et al. Jun 2006 A1
20060123964 Gass et al. Jun 2006 A1
20060179983 Gass et al. Aug 2006 A1
20060219076 Gass et al. Oct 2006 A1
20060225551 Gass Oct 2006 A1
20060230896 Gass Oct 2006 A1
20060247795 Gass et al. Nov 2006 A1
20060254401 Gass et al. Nov 2006 A1
20060272463 Gass Dec 2006 A1
Foreign Referenced Citations (20)
Number Date Country
2140991 Jan 1995 CA
297525 Jun 1954 CH
76186 Aug 1921 DE
2800403 Jul 1979 DE
3427733 Jan 1986 DE
3427733 Jan 1986 DE
4205965 Feb 1992 DE
4235161 May 1993 DE
4326313 Feb 1995 DE
19609771 Jun 1998 DE
20102704 Feb 2001 DE
146460 Nov 1988 EP
0362937 Apr 1990 EP
2152184 Jan 2001 ES
2556643 Jun 1985 FR
2570017 Mar 1986 FR
598204 Feb 1948 GB
2096844 Oct 1982 GB
2142571 Jan 1985 GB
06328359 Nov 1994 JP
Related Publications (1)
Number Date Country
20030005588 A1 Jan 2003 US
Provisional Applications (1)
Number Date Country
60302916 Jul 2001 US