Acute Kidney Injury in Diabetes

Information

  • Research Project
  • 10264830
  • ApplicationId
    10264830
  • Core Project Number
    R01DK058831
  • Full Project Number
    5R01DK058831-19
  • Serial Number
    058831
  • FOA Number
    PA-13-302
  • Sub Project Id
  • Project Start Date
    9/1/2001 - 22 years ago
  • Project End Date
    8/31/2022 - a year ago
  • Program Officer Name
    SCHULMAN, IVONNE HERNANDEZ
  • Budget Start Date
    9/1/2021 - 2 years ago
  • Budget End Date
    8/31/2022 - a year ago
  • Fiscal Year
    2021
  • Support Year
    19
  • Suffix
  • Award Notice Date
    8/2/2021 - 2 years ago
Organizations

Acute Kidney Injury in Diabetes

Project Summary Comorbid conditions, such as diabetes, increase the severity of acute kidney injury (AKI) and prevents injured kidneys from recovery, resulting in poor prognosis. However, the mechanism underlying the heightened AKI sensitivity in diabetes is largely unknown. We and others recently verified the AKI sensitivity in diabetes and suggested the involvement of inflammation and p53. In diabetic kidneys, our preliminary studies further demonstrated the inactivation of autophagy, a renoprotective mechanism. Mechanistically, we have identified the down-regulation of ULK1, a key autophagy initiator, as a common feature in diabetic kidneys and high glucose-treated kidney cells. ULK1 down-regulation is not associated with mRNA decrease or proteosomal degradation, suggesting the involvement of novel mechanisms. Bioinformatics analysis suggested the targeting of ULK1 by miR-214, a microRNA induced in diabetic kidneys. Notably, our preliminary data further suggested a role of p53 in miR-214 induction. Based on these findings, we hypothesize that: miR-214 is induced via p53 in diabetes and upon induction, miR-214 represses ULK1 resulting in autophagy impairment, which contributes to AKI sensitivity in diabetes. Specifically, we will determine the role of p53 in miR-214 induction in diabetic kidneys, delineate miR-214 targeting/repression of ULK1, and elucidate autophagy impairment as a key to AKI sensitivity in diabetes. Completion of this project will delineate a novel pathway of p53/miR- 214/ULK1 that leads to autophagy impairment and AKI sensitivity in diabetes. As a result, it may identify miR-214 and autophagy as novel therapeutic targets for AKI therapy and prevention in diabetic patients.

IC Name
NATIONAL INSTITUTE OF DIABETES AND DIGESTIVE AND KIDNEY DISEASES
  • Activity
    R01
  • Administering IC
    DK
  • Application Type
    5
  • Direct Cost Amount
    284149
  • Indirect Cost Amount
    147757
  • Total Cost
    431906
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    847
  • Ed Inst. Type
    SCHOOLS OF MEDICINE
  • Funding ICs
    NIDDK:431906\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    AUGUSTA UNIVERSITY
  • Organization Department
    ANATOMY/CELL BIOLOGY
  • Organization DUNS
    809593387; 966668691
  • Organization City
    AUGUSTA
  • Organization State
    GA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    309120004
  • Organization District
    UNITED STATES