The present invention relates to the field of surgical instruments to retract a body tissue and more specifically, to adaptable tissue retractors that may be adjusted in use to comply with a specific anatomy of a patient, or specific geometry of a surgical incision, body cavity or opening.
Current tissue retractors, especially in cardiac surgery, are typically of a fixed geometry. They are most commonly configured at the tissue-retracting end with either a “basket” type configuration made from spaced apart wire frame members, or with an uninterrupted and shaped tissue contacting surface or blade that engages the body tissue to be retracted. Consequently, the tissue-retracting end of these existing retractors is not adjustable or adaptable to suite the specific anatomy of the patient, but it is the patient's anatomy that is urged to adapt to the fixed geometry configuration of such existing tissue retractors. Tissue retractors with malleable tissue-retracting ends may be manually bent by the user, prior to engaging same with the body tissue to be retracted, but such manipulation is not selectively fine-tunable a predetermined amount while the tissue retractor is deployed in use, and the tissue-retracting end thereof is in contact with the body tissue being retracted. Usually, such malleable tissue retractors may only be grossly configured to approximate the most desirable configuration required. Increasing the malleability of the tissue-retracting end may result in insufficient retractor stiffness to be able to positively retract the body tissue under load.
In cardiac surgery requiring the retraction of heart tissue, for instance in a mitral valve surgery practiced via a left atrial approach, commonly used retractor platforms include the “Cosgrove-type” and “Carpentier-type” retractor platforms. In using the “Cosgrove-type” retractor platform (see
In-process re-adjustments of the plurality of tissue retractors with known valve surgery platforms may at times prove fastidious. For example, in a typical set-up with a Cosgrove-type retractor platform, two tissue retractors are generally mounted on a left sternal retractor spreader arm to retract cardiac tissue towards the patient's left side. A third tissue retractor is mounted on an extension rod or member to retract cardiac tissue towards the patient's feet. The extension rod is also mounted to the left sternal retractor spreader arm in a substantially perpendicular and generally horizontal orientation. If the surgeon wants to modify the orientation of the tissue-engaging or tissue-retracting end of the middle tissue retractor, for instance, the mounting clamp of the middle tissue retractor must be repositioned along the left sternal retractor spreader arm. Larger re-orientations generally require more translation of the mounting clamp along the left sternal retractor spreader arm. In certain cases, the re-orientation required is sufficiently great that the mounting clamp of the middle tissue retractor must be translated considerably along the left sternal retractor arm that it may interfere with the mounting clamp of an adjacent tissue retractor. This may lead to a major take town of the surgical set-up.
Recently, with the advent of minimally invasive cardiac surgery gaining in popularity, the size of the surgical access incision and the size of the retracted surgical access thoracic opening are being progressively reduced. Vacuum-assisted venous drainage has been developed to reduce the size of venous cannulae used in cardiopulmonary bypass. The smaller sizes of these cannulae tend to prevent them from being obstructive to the surgical procedure. However, the number of traction sutures and number of tissue retractors, either hand held or chest-retractor-mounted, currently used in existing approaches tends to be obstructive in certain areas given the relatively smaller size of the surgical window.
Thus, it is a first object of the present invention to provide a single, solitary tissue retractor configured with a plurality of tissue engaging blades (four or five blades), said tissue retractor being adaptable or adjustable in the relative positioning of the blades, and whereby, in use, the tissue retractor may be customized, or individually tailored to suit the specific anatomy of the patient or the specific geometry of a surgical incision with a desired spatial relationship of the plurality of blades.
It is a further object of the present invention to be able to mount one such multi-bladed tissue retractor to a stable surgical platform and obtain the proper access to the target tissue to be operated, said target tissue being located within the perimeter of the retracted surgical incision or body cavity, without the need to deploy multiple individually bladed tissue retractors, each individually or each independently mounted to a stable surgical platform.
It is a further object of the present invention to be able to retract tissue in a primary direction, and simultaneously by deploying blades from a blade closed to a blade open configuration, retract in a second retraction direction being substantially at (+90) degrees relative to this first primary direction, and also in a third retraction direction being substantially at (−90) degrees relative to this first primary direction and generally diametrically opposite to the second retraction direction.
It is another object of the present invention to provide an adjustable multi-bladed tissue retractor capable of producing an incrementally variable or fine-tunable retracted opening or retraction perimeter through the application of a predetermined input to an actuator on the tissue retractor that results in a controlled, spaced apart spatial relationship of the plurality of tissue-retracting blades.
It is another object of the present invention to provide an adjustable tissue retractor configurable or adaptable to achieve a desired tissue retraction with a plurality of blades that may be selectively interspaced between a closed blade configuration and an open blade configuration, said open blade configuration resulting in a substantially circular or arcuate retraction span of 200+/−20 degrees (with 4 blades) or 320+/−40 degrees (with 5 blades).
These and other objects of the present invention will become apparent from the description of the present invention and its preferred embodiments which follows.
For better understanding of the present invention and to show more clearly how it may be carried into effect, reference will now be made by way of illustration and not of limitation to the accompanying drawings, which show a tissue retractor apparatus according to preferred embodiments of the present invention, and in which:
With reference to
Linkage assembly 30, as a whole, is pivotingly engaged and able to pivot relative to housing 20 about pivot axis 510, regardless of the blade configuration assumed by tissue-engaging blades 40 and by virtue of flexible cable 11 as will be described in greater detail below. Linkage assembly 30 is able to articulate in a multitude of different linkage configurations, and consequently able to transmit a multitude of blade 40 spatial geometries, relative to said housing. As such, tissue retractor 1 is adaptable or adjustable to the desired retraction geometry or configuration.
Actuator 10 is mechanically coupled to tubular housing 20, at a second or proximal end 23 thereof. More specifically, and with reference to
Actuator tubular part or member 18 extends beyond terminal end of housing 20 to expose an internal thread 15. Housing 20 is elongate and extends between first 21 and second 23 housing ends. Housing 20 is provided with an internal passageway or through bore 26 that extends between said first 21 and second 23 ends of tubular housing thus providing open communication therebetween. Said passageway is configured and sized to house or receive an actuating member therewithin, in the nature of a translating actuating cable 11. Cable 11 is preferably flexible, and fabricated from surgical grade braided stainless steel wire. Cable first end 112 is provided with a spherical or ball end 12 configured to be insertable into a receiving socket or depression 301 disposed on linkage assembly 30 so as to allow for a demountable mechanical interface between actuator cable 11 and said linkage assembly, said mechanical interface secured in its mounted state through latch or clasp member 302. Cable second proximal end 113 is provided with a threaded member or fitting 13 configured with an external thread portion 132 sized to engage internal thread 15 in actuator part 18 when said cable 11 is inserted in housing passageway 26. Fitting 13 is also provided with an elongated tongue or key member 131 which is configured and sized to engage a longitudinal slot, groove or keyway 27 in terminal end of housing 20. Keyway 27 communicates passageway 26 with the outer surface of tubular housing 20 and extends longitudinally along housing longitudinal axis at least as long as the length of tongue 131. When cable 11 is inserted into passageway 26, tongue 131 is first slidingly engaged with keyway 27, and subsequently external thread 132 engages internal thread 15 in actuator 10.
During actuation of actuator 10, applying an actuation input in the nature of a rotation to knob 19 results in a translation of cable 11 through housing 20 since tongue 131 and groove 27 cooperate to prevent said cable from rotating together with knob 19 as internal thread 15 urges or entrains cable external thread 132 to translate axially along with cable 11 relative to housing 20. The resulting translation of actuation cable 11 relative to tubular housing 20 results in the extension (or retraction) of said cable beyond said housing distal end 21, which in turn simultaneously entrains the articulation of linkage mechanism 30, as will be described in greater detail below.
As illustrated in
When actuator 10 is actuated by applying a rotational actuation input 100, the extended portion of actuating cable 11 (
Pivot joint 59 acts as a fulcrum for carrier linkage member 37 which carries spaced apart blades 44, 43 from each other and from a fulcrum coincident with pivot axis 59. This spacing between the fulcrum 59 and each of the respective blade pivot axes 610, 620 may be designed such that the orientation assumed by said carrier linkage 37 relative to the rest of linkage mechanism 30 will be determined by the relative force exerted on each of blades 43, 44 by the body tissue being retracted, said latter forces being magnified as a function of the moment arm (or spacing) between fulcrum 59 and respective blade pivot axes 610, 620 to reach equilibrium of the force couple exerted on blades 43, 44. As such, the position of blades 43, 44 is set along direction “X” and “Y” as a function of the magnitude of translation of cable 11 along direction “Y”. The spacing between fulcrum 59 and each of respective blade pivot axes 610, 620 may be advantageously designed according to the type of incision or body cavity being retracted.
Additionally, mechanical stops or restraints 71 may also be included between cross linkage 36 and carrier linkage 37 to intentionally limit the range of articulation of one linkage member relative to the other, and override the equilibrium orientation that would otherwise be achieved without the implementation of said mechanical stops 71. Similar mechanical stops may also be incorporated between blades 41, 42, 43, and 44 and the respective linkage member pivoting coupled to said blades to limit the pivoting range of said blades about their respective pivot axes 550, 520, 620 and 610.
Cable 11 is preferably flexible so as to allow flexing of the exposed cable portion extending beyond housing 20. When blades 41, 42, 43, and 44 are engaged with a body tissue to be retracted, this provides adaptability by allowing the entire linkage mechanism 30 to articulate and reorient itself as an entire assembly relative to tubular housing 20, in any given linkage configuration (i.e blade closed, blade open, or intermediately therebetween). In addition, the adaptability of each of blades 41, 42, 43, and 44 to pivot and orient themselves optimally relative to the body tissue being retracted results in a less traumatic tissue retraction. This adaptability tends to provide substantially equal or equilibrated reaction loads being applied by each blade to the contacted portion of body tissue being retracted.
Blades 41, 42, 43, and 44 are configured and sized for a particular tissue to be retracted. For instance, as illustrated in
During deployment of tissue retractor 1, said actuator 10 may rotate relative to said housing 20 in order to effect or apply an actuation input 100 to said tissue retractor which will deploy, adjust, or adapt the plurality of tissue-contacting blades 40 into a desired spatial arrangement suitable for a surgical procedure. Incremental variations in the actuation input 100 will result in a similar incremental variation in said spatial arrangement of tissue-engaging blades 40. As such, a surgeon or user of said tissue retractor 1 may apply a predetermined actuation input to said actuator 10 to achieve a desired deployment or adjustment of said tissue-engaging blades 40, said spatial relationship of blades 40 being well suited for the retraction of a particular surgical incision, or the opening of an anatomical body cavity. Tubular housing 20 is advantageously provided with a seat 24 for mounting or engaging said tissue retractor 1 to a substantially stable surgical platform such as, for instance, a sternal retractor for cardiac surgery as described in U.S. Pat. No. 6,837,851. Mounting tissue retractor 1 to a sternal retractor for cardiac surgery as the one recited in U.S. Pat. No. 6,837,851 will tend to avoid the hereinabove described drawbacks associated with individually mounting each of a plurality of known fixed geometry, basket-type tissue retractors to a “Cosgrove-type” retractor platform, as illustrated in
We will now describe in greater detail the deployment configurations of tissue retractor 1. In a closed-blade configuration 400 as illustrated in
With reference to
Those skilled in the art of linkage mechanisms will appreciate that offset between pivot axes 560 and 510 as well as the offset between pivot axes 570 and 580 may be varied in the design of tissue retractor 1 in order to optimize a rate of displacement of blade 44 relative to other blades 41, 42 (or relative to the center of the retracted opening or VBGC). For instance, linkage mechanism 30 may be designed so that blade 44 moves laterally away from center of retracted opening or VBGC at a faster rate at the beginning of range of open-blade positions relative to the end of range of open-blade positions, for a given fixed rate of translation of action cable 11 relative to housing 20.
Alternatively, carrier linkage member 37 may be configured with an additional pivot joint (shown schematically as dashed line 630 in
This application claims the benefits of U.S. Provisional Patent Application 61/213,075 filed May 5, 2009.
Number | Date | Country | |
---|---|---|---|
61213075 | May 2009 | US |