1. Technical Field
The present invention relates generally to communication signal processing and more particularly to systems and methods for adaptative multi-carrier code division multiple access.
2. Description of Related Art
Code Division Multiple Access (CDMA) encodes data with a special code for each channel. CDMA provides greater capacity and security in a variety of communications systems such as radio systems, networking systems, and wireless communications systems. One limitation with CDMA is the difficulty in achieving high performance due to channel impairments. Orthogonal Frequency Division Multiplexing (OFDM) splits a datastream into multiple radio frequency channels, which are each sent over sub-carrier frequencies that are orthogonal to one another.
OFDM has been used in residential power line communications and in Asymmetric Digital Subscriber Line communications. One example of a power line communication system using OFDM uses a large number of carriers that is greater than 1000 to achieve 200 Mbps. Because of the large number of carriers, the OFDM communication system has a high peak-to-average ratio. This OFDM communication system is robust against delay spread (cyclic prefix) and has high throughput. One limitation with OFDM is the high cost to achieve this high throughput. This example of a residential power line communication system uses a 2-30 MHz band that has a high delay spread and is regulated for injection of high power spectral density (PSD). With a high PSD, dynamic notches or power suppression are typically implemented to avoid interferences over amateur radio communications. In this example, there is high spectral efficiency but increasing performance such as beyond 9 bit/Hz increases costs.
Combining the OFDM with the CDMA results in Multi-Carrier Code Division Multiple Access (MC-CDMA). In the MC-CDMA, each symbol is spread over multiple carriers with a special code, or each symbol is spread over the same frequency over time. One limitation is that high performance cannot be achieved due to channel impairments.
The invention addresses the above problems by performing adaptative multi-carrier code division multiple access. A system for performing adaptative multi-carrier code division multiple access (AMC-CDMA) includes first circuitry and modulator circuitry. The first circuitry determines a channel performance metric for each of a plurality of channels. The first circuitry determines at least one parameter of bit loading for each of the channels based on the channel performance metric. The modulator circuitry modulates AMC-CDMA signals using the parameters for bit loading in each of the channels for transmission over a wired connection.
The parameters of bit loading may be a number of code division multiple access sequences over a carrier, a length of a code division multiple access sequence, and a number of bits of a constellation of modulation. Some examples of the channel performance metric are signal-to-noise ratio and bit error rate. The wired connection may be a power line connection, where the frequencies of the AMC-CDMA signals are above 30 MHz.
A method for performing AMC-CDMA includes the steps of determining a channel performance metric for each of a plurality of channels and determining at least one parameter of bit loading for each of the channels based on the channel performance metric. The method also includes modulating AMC-CDMA signals using the parameters for each of the channels and transmitting the AMC-CDMA signals over a wired connection.
One advantage is that the AMC-CDMA provides adaptive modulation for multiple network nodes according to the channel quality. Another advantage is the low implementation cost of AMC-CDMA based on increasing the number of CDMA sequences, which increases the number of carriers but not the number of FFT points.
The embodiments discussed herein are illustrative of one example of the present invention. As these embodiments of the present invention are described with reference to illustrations, various modifications or adaptations of the methods and/or specific structures described may become apparent to those skilled in the art. All such modifications, adaptations, or variations that rely upon the teachings of the present invention, and through which these teachings have advanced the art, are considered to be within the scope of the present invention. Hence, these descriptions and drawings should not be considered in a limiting sense, as it is understood that the present invention is in no way limited to only the embodiments illustrated.
A system for performing adaptative multi-carrier code division multiple access (AMC-CDMA) includes first circuitry and modulator circuitry. The first circuitry determines a channel performance metric for each of a plurality of channels. The first circuitry determines at least one parameter of bit loading for each of the channels based on the channel performance metric. The modulator circuitry modulates AMC-CDMA signals using the parameters for bit loading in each of the channels for transmission over a wired connection.
Adaptative Multi Carrier Code Division Multiple Access (AMC-CDMA) is modulation of multi-carriers using CDMA that applies a different bit loading in each carrier according to channel performance metrics in every carrier. One example of a channel performance metric is SNR. CDMA is used to modulate and multiplex different bits per each carrier instead of using standard modulation such as M-QAM and M-DPSK.
One advantage is that the AMC-CDMA provides adaptive modulation for multiple network nodes according to the channel quality. Another advantage is the low implementation cost of AMC-CDMA based on increasing the number of CDMA sequences, which increases the number of carriers but not the number of FFT points. Some other advantages are the low Power Spectral Density (PSD) from spread spectrum systems and the robustness against frequency selective channels from OFDM modulations.
The AMC-CDMA also allows several users at the same time by advantageously using different frequencies and allows the same frequencies with different codes. By multiplexing several users at the same time, every user is either using different carriers in frequency or in code, having a different set of code per each user. In multipoint to multipoint applications, allowing several users at the same time can be important, where the latency is an important factor from the application and cost point of view. This advantage may be especially important in power line communications where the network topologies can be mesh/adhoc networks (where every node can be a repeater).
The embodiments in
The transmitter 105 is any device or system configured to encode signals by AMC-CDMA and transmit those signals. One example of the transmitter 105 is discussed in more detail below in
Graph 150 represents carriers and codes in the bit loading of AMC-CDMA. Codes 1, 2, and 3 from carrier 1 are respectively used in communications with the receiver 110, the receiver 120, and the receiver 130. Code 2 from carrier 2 is used in communications with the receiver 120. Codes 2 and 3 from carrier 3 are respectively used in communications with the receiver 120 and the receiver 130. Codes 1, 2, and 3 from carrier 4 are respectively used in communications with the receiver 110, the receiver 120, and the receiver 130. Code 1 from carrier 5 is used in communications with the receiver 110. Other codes and carriers are not shown for the sake of simplicity.
The graph 150 depicts the variables of AMC-CDMA that can be changed to optimize communications between the transmitter 110 and the receivers 120, 130, and 140. The first variable is a number of bits for each constellation in QAM. For example, in carrier 1, code 1 has a modulation of 8-QAM, code 2 has a modulation of 64-QAM, and code 3 has a modulation of 256-QAM. Another variable is the length of the CDMA sequence. The codes 1-3 in carrier 1 have a length of 8, while the code 2 in carrier 2 has a length of 4. The codes 1-3 in channel 4 have a length of 16.
The transmitter 200 provides adaptive CDMA modulation on top of each carrier. In order to adapt the transmission rate and modulation scheme to the channel conditions, the parameters of the bit loading for CDMA modulation can be changed based on the metrics of the channels' performance such as SNR. This AMC-CDMA increases immunity against delay spread and impulsive noise. The AMC-CDMA also allows multiple users. The AMC-CDMA modulation uses a multi-carrier that applies different bit loading over each carrier.
The bit loading memory 210 provides parameters for the AMC-CDMA modulation. The bit loading memory 210 may store these parameters of the AMC-CDMA modulation. In some embodiments, circuitry (not shown) executing firmware determines a channel performance metric for each of a plurality of channels through communications between the transmitter 200 and the receiver 300 discussed below in
A parameter of bit loading is any number or value that indicates how a bit of data is loaded in communications. In this example, the four adaptive parameters for bit loading are the number of CDMA sequences over the same frequency carrier, the length of the CDMA sequence, the number of bits of each constellation, and the length of the chip in a CDMA sequence. Varying these parameters can increase the bandwidth of each carrier and the total number of carriers. Some of these parameters may change while other parameters do not change.
The first parameter is the number of CDMA sequences per carrier. Each CDMA sequence is the result of the modulation of n-bits of information by one CDMA sequence. In every carrier, it can be multiplexed as a maximum (i.e. to maintain orthogonality among all codes) M-CDMA sequence, where M is the result of 2^L and L is the CDMA length or the number of multi-carrier symbols that are included in the CDMA sequence. Increasing the number of CDMA sequences increases the number of carriers but not the number of FFT points, which advantageously provides a low implementation cost of AMC-CDMA. Thus, AMC-CDMA provides a low cost implementation of a multi-carrier system with a variable number of carriers. The equation below is for the final number of carriers, K:
Mj is the number of CDMA sequences that the frequency j is transmitting at the same time. Therefore, the system is able to change the total number of carriers according to the SNR of the channel.
The second parameter is the length of the CDMA sequence. Changing the length of the CDMA sequence improves robustness versus noise. This parameter can change the modulation in real time to adapt the transmitter 200 to the channels' performance. The time to transmit data and the latency increase, while the processing gain of the system also increases. Thus, the spreading factor of the CDMA sequence can increase, which increases the robustness versus noise and channel delay spread or inter-symbol interference (ISI).
The third parameter is the number of bits of each constellation or constellation size. By varying the three parameters, the transmitter 200 using AMC-CDMA can adapt by increasing or decreasing the latency or overhead according to the channel conditions. Thus, AMC-CDMA can provide a multi-carrier system with a high number of carriers but with an implementation cost similar to one with a much lower number of carriers. One possible constraint may be that the robustness versus ISI/delay spread of the channel may be mainly limited by the number of the core multi-carrier modulation. However, CDMA sequences help to reduce the impact of the ISI.
A fourth parameter is the length of the chip in the CDMA sequence. When all the chips have the same length, and the length of the chip is 1, one of the chips of the CDMA in one OFDM symbol is transmitted. The chip length can be varied in integer numbers in order to achieve more robustness against the delay spread and other channel impairments, where the chip of the CDMA is shared during several OFDM symbols. This parameter may be chosen independently for every FFT frequency or point.
The following equation is for bits/carrier:
Bits/carrier=n*M/(L*chiplength)
where
In operation, the serial to parallel converter 220 receives a gigabit incoming bit stream over link 218. The serial to parallel converter 220 also receives the number of virtual carriers, K, from the bit loading memory 210. The number of virtual carriers, K, is calculated based on the total number of CDMA sequences and the number of physical carriers. The serial to parallel converter 220 divides the gigabit incoming bit stream into K carriers. In one example, the number of carriers is 250, which is over 200 MHz. This example also has a low constellation size. This example advantageously is robust against the delay spread, has a relatively low peak-to-average ratio (PAR), and has low complexity for an analog front end and a digital front end.
The modulator 230 then modulates the carriers based on the Modulator(i) input to result in the modulated carrier signals, ak. Each ak signal is a point in the constellation. The Modulator(i) input indicates the type of modulation and the constellation size of each carrier. Some examples of the modulation schemes are Binary Phase Shifting Key (BPSK), Quaternary Phase Shift Keying (QPSK), and Differential Phase Shift Keying (DPSK).
The PN generator 215 generates the PN codes, Cj(u). The multipliers 235 multiply the modulated carrier signals, ak with the PN codes, Cj(u). The summarizer 240 sums up the dot products of the modulated carrier signals, ak and the PN codes, Cj(u) based on the M(i) input. The summarizer 240 groups the virtual carriers for each frequency. The M(i) input is the number of CDMA sequences for a frequency. The summarizer 240 generates the XN(u) signals for the physical carriers.
The IFFT 250 then performs an inverse fast fourier transform function on the XN(u) to change from the frequency domain to the time domain. A cyclix prefix insertion block may then append cyclix prefixes to the resulting signal. The resulting signal can then be converted with a digital to analog converter (not shown). The cyclix prefix or guard period may also be not included in the transmitter 200. In other embodiments, FFT can be used to implement the multicarrier modulation on top of the AMC-CDMA. Cordics may also be used instead of FFT to modulate and demodulate each carrier individually.
One advantage of this embodiment in
The ADC 320 receives an incoming signal from the transmitter 200 of
The PN generator 315 generates the PN codes, Cj(u). The multipliers 352 multiply the carrier signals from the converter 350 with the PN codes, Cj(u). The summarizer 354 performs a calculation of
The switch 356 switches the signal resulting in signal ãK(m). The demodulator 360 then demodulates the signals ãK(m) based on the input Modulator(i). Some examples of demodulation use QPSK and Differential Quadrature Phase Shift Keying (DQPSK). The parallel to serial converter 370 then performs a parallel to serial conversion. The synchronization module 380 performs synchronization functions to ensure synchronicity with a clock for the receiver 300.
The above description is illustrative and not restrictive. Many variations of the invention will become apparent to those of skill in the art upon review of this disclosure. The scope of the invention should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the appended claims along with their full scope of equivalents.
Number | Name | Date | Kind |
---|---|---|---|
3379973 | Walton | Apr 1968 | A |
3445763 | Harris, Jr. | May 1969 | A |
4096361 | Crawford | Jun 1978 | A |
4224483 | Neigh et al. | Sep 1980 | A |
4430731 | Gimple et al. | Feb 1984 | A |
4636711 | Freymuth | Jan 1987 | A |
4636771 | Ochs | Jan 1987 | A |
4772870 | Reyes | Sep 1988 | A |
4922534 | Gorniak et al. | May 1990 | A |
5287065 | Allfather | Feb 1994 | A |
5574748 | Vander Mey et al. | Nov 1996 | A |
5732223 | Moore et al. | Mar 1998 | A |
5777544 | Vander Mey et al. | Jul 1998 | A |
5880631 | Sahota | Mar 1999 | A |
5929750 | Brown | Jul 1999 | A |
5929896 | Goodman et al. | Jul 1999 | A |
5933071 | Brown | Aug 1999 | A |
5978371 | Mason | Nov 1999 | A |
6014386 | Abraham | Jan 2000 | A |
6215987 | Fujita | Apr 2001 | B1 |
6243413 | Beukema | Jun 2001 | B1 |
6353628 | Wallace et al. | Mar 2002 | B1 |
6373377 | Sacca et al. | Apr 2002 | B1 |
6407987 | Abraham | Jun 2002 | B1 |
6411163 | Enriquez | Jun 2002 | B1 |
6593868 | Clara et al. | Jul 2003 | B2 |
6957086 | Bahl et al. | Oct 2005 | B2 |
6985715 | Lee | Jan 2006 | B2 |
7005943 | Cern | Feb 2006 | B2 |
7042351 | Kline | May 2006 | B2 |
7053756 | Mollenkopf et al. | May 2006 | B2 |
7075414 | Giannini et al. | Jul 2006 | B2 |
7079537 | Kanuri et al. | Jul 2006 | B1 |
7221196 | Shirani | May 2007 | B2 |
7248148 | Kline et al. | Jul 2007 | B2 |
7269403 | Miao | Sep 2007 | B1 |
7391317 | Abraham et al. | Jun 2008 | B2 |
7602220 | Bonfill-Petit et al. | Oct 2009 | B1 |
7725096 | Riveiro et al. | May 2010 | B2 |
20020010870 | Gardner | Jan 2002 | A1 |
20020026528 | Lo | Feb 2002 | A1 |
20020145996 | Robinson et al. | Oct 2002 | A1 |
20020154000 | Kline | Oct 2002 | A1 |
20020174423 | Fifield et al. | Nov 2002 | A1 |
20020181437 | Ohkubo et al. | Dec 2002 | A1 |
20030016123 | Tager et al. | Jan 2003 | A1 |
20030062990 | Schaeffer, Jr. et al. | Apr 2003 | A1 |
20030114153 | Shaver et al. | Jun 2003 | A1 |
20030129978 | Akiyama et al. | Jul 2003 | A1 |
20030133473 | Manis et al. | Jul 2003 | A1 |
20030169155 | Mollenkopf et al. | Sep 2003 | A1 |
20030184433 | Zalitzky et al. | Oct 2003 | A1 |
20030203721 | Berezdivin et al. | Oct 2003 | A1 |
20030224728 | Heinonen et al. | Dec 2003 | A1 |
20040003338 | Kostoff et al. | Jan 2004 | A1 |
20040022304 | Santhoff et al. | Feb 2004 | A1 |
20040032320 | Zalitzky et al. | Feb 2004 | A1 |
20040047427 | Dostert et al. | Mar 2004 | A1 |
20040056734 | Davidow | Mar 2004 | A1 |
20040077353 | Mahany | Apr 2004 | A1 |
20040107588 | Pu | Jun 2004 | A1 |
20040113756 | Mollenkopf | Jun 2004 | A1 |
20040113757 | White, II et al. | Jun 2004 | A1 |
20040174851 | Zalitzky et al. | Sep 2004 | A1 |
20040213237 | Yasue et al. | Oct 2004 | A1 |
20040220766 | Harbord et al. | Nov 2004 | A1 |
20040246107 | Kline | Dec 2004 | A1 |
20050018668 | Cheriton | Jan 2005 | A1 |
20050020227 | Kumagawa et al. | Jan 2005 | A1 |
20050031047 | Maltsev et al. | Feb 2005 | A1 |
20050089061 | Logvinov et al. | Apr 2005 | A1 |
20050094647 | Hata et al. | May 2005 | A1 |
20050141473 | Lim et al. | Jun 2005 | A1 |
20050143973 | Taniguchi et al. | Jun 2005 | A1 |
20050157670 | Tang et al. | Jul 2005 | A1 |
20050174950 | Ayyagari | Aug 2005 | A1 |
20050190826 | Van Bruyssel et al. | Sep 2005 | A1 |
20050213874 | Kline | Sep 2005 | A1 |
20050249245 | Hazani et al. | Nov 2005 | A1 |
20060038662 | White, II et al. | Feb 2006 | A1 |
20060045066 | Choi et al. | Mar 2006 | A1 |
20060097574 | Gidge et al. | May 2006 | A1 |
20060106961 | Ebata et al. | May 2006 | A1 |
20060120399 | Claret et al. | Jun 2006 | A1 |
20060126617 | Cregg et al. | Jun 2006 | A1 |
20060146866 | Horvath et al. | Jul 2006 | A1 |
20060176898 | Chan et al. | Aug 2006 | A1 |
20060291575 | Berkman et al. | Dec 2006 | A1 |
20070002771 | Berkman et al. | Jan 2007 | A1 |
20070008972 | Sifnatsch et al. | Jan 2007 | A1 |
20070025386 | Riedel et al. | Feb 2007 | A1 |
20070060151 | Lee et al. | Mar 2007 | A1 |
20070076595 | Lee et al. | Apr 2007 | A1 |
20070268124 | Berkman | Nov 2007 | A1 |
20080001801 | Nhuyen | Jan 2008 | A1 |
20090022175 | Logvinov et al. | Jan 2009 | A1 |
Number | Date | Country |
---|---|---|
0580457 | Jan 1994 | EP |
1134909 | Sep 2001 | EP |
1351408 | Oct 2003 | EP |
1388954 | Feb 2004 | EP |
1531568 | May 2005 | EP |
1531568 | May 2005 | EP |
1388954 | Jun 2005 | EP |
1548974 | Jun 2005 | EP |
1432138 | Sep 2005 | EP |
0195518 | Dec 2001 | WO |
03015291 | Feb 2003 | WO |
03077443 | Sep 2003 | WO |
03092212 | Nov 2003 | WO |
2004100392 | Nov 2004 | WO |
2005039070 | Apr 2005 | WO |
2006017743 | Feb 2006 | WO |
2006074174 | Jul 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20080008081 A1 | Jan 2008 | US |