The present invention relates generally to methods of die-cutting and particularly to the development of using back plate footprints that improve die-cutting precision and speed, while decreasing waste material, machine down time and equipment cost because.
In general within the art, descriptions of die-cutting methods and their various related elements can be found in U.S. Pat. Nos. 6,976,414 set forth by Li et al; and 6,772,661 by Mikkelsen et al. and International application PCT/SE/2006/000485 by Calvin; and U.S. Pat. No. 6,221,291 by Van Ert et al.
This invention relates to die-cutting methods that involve construction of a back plate footprint where said back plate footprint is a solid material that has impressions of a cutting surface from a die-cutting machine.
As pointed out in the previous die-cutting methods fail to provide the benefits that this invention provides. None of the above-referenced US patents provide a total solution that yields the same level of improvement in efficiency and cost savings revealed in the present invention. Previous methods of improving die-cutting fall short in various ways. First, allowing for the free sliding of sheet material still does not address the problems caused by imperfections on a cutting surface, thus, cutting knives will still be damaged by the increased friction caused by these imperfections when they come in contact with the cutting surface. Using different cutting angles also does not as easily and reliably improve the cutting process to account for imperfections in the cutting surface, so knives here will also wear quickly from friction. Finally, using areas marked by graphics for making precise cuts also does not account for imperfections found on a cutting surface which lead to friction, knife wear and then loss of efficiency.
What is needed is an improved method for die-cutting that is simple and easy to use that requires a relatively short setup time and increases the speed and accuracy of die cuts while decreasing the wear on cutting knives which keeps machine downtime to a minimum and lowers maintenance costs.
The instant invention, as illustrated herein, is clearly not anticipated, rendered obvious, or even present in any of the prior art mechanisms, either alone or in any combination thereof. A method of making and using a back plate foot print that contains an impression will allow cutting knives to perfectly align with the permutations on the cutting surface. Thus the several embodiments of the instant invention are illustrated herein.
The invention encompasses a process by which a back sheet footprint is made that contains all the imperfections of the cutting surface, and inserting it into a chase, thereby aligning the cutting knives of the die with the imperfections of the cutting surface.
The process features the creation of a back sheet footprint that includes first placing a layer of a depth providing material, such as paper or other material of necessary thickness, over the cutting die. Next, a layer of a solid material is placed over said depth providing layer that is thin enough to prevent damaging the machine when it is depressed by causing too much contact, but thick enough to supply sufficient force on the malleable material (described below) to leave impressions of imperfections in the cutting surface on the malleable material. This last step is followed by placing a layer of non-stick material over said solid layer to allow for easy extraction of the malleable material.
Next, place over the cutting surface a malleable material capable of holding an impression of the imperfections of the cutting surface over said cutting surface. The amount of malleable material must be thick enough to hold an imprint of the imperfections of the cutting surface. Then, over this malleable material add a layer of a non-stick material over the malleable material for easy extraction. After said malleable material layer is added, the sides of said malleable material should be labeled so as to allow for easy identification of which side to insert when the plate is ready to be sealed in above the chase for operation of the tool.
With all the layers in place, the chase or bottom section should be depressed so as to put enough pressure to leave impressions of the cutting surfaces imperfections on the malleable material. After making the impressions in the malleable material, the material must be removed from the bottom of the cutting machine but first removing the non-stick layer over the malleable material and then removing the material itself. When removing the malleable material, care should be taken so as to not cause changes to be made in the impressions of the cutting surface. Next, additional malleable material may be added to compensate for any difference in the dimensions of the malleable material layer and the dimensions of the chase so that the malleable material will fit when later sealed inside the chase. Later, the malleable material must be cured by a hardening process that will retain the imperfections of the cutting surface imprinted on the material after hardening. After curing, the back plate footprint is ready for use.
After the back plate footprint is ready, it may be placed into the chase on top of a patch sheet. Next, the footprint is sealed inside the chase. Sealing the footprint inside the chase causes pressure on the layers below so as to match the imperfections of the cutting surface. In this way the die-cutting knives realign to more closely match the cutting surface below them, resulting in near perfect cuts each time the chase is depressed.
In one embodiment the separator layer for providing depth may be comprised of paper. Further in this embodiment, the solid material layer, which is placed over the separator layer, is comprised of plexiglass. Also in this embodiment, both of the non-stick material layers, which are placed over the solid material layer and over the die, are comprised of vinyl. In addition, in this embodiment the malleable material placed under the non-stick layer may be comprised of a polymer clay or an other similar material. Finally, in this embodiment the polymer clay should be heated and cooled at room temperature to cool for proper hardening.
The detailed description set forth below in connection with the appended drawings is intended as a description of presently preferred embodiments of the invention and does not represent the only forms in which the present invention may be constructed and/or utilized. The description sets forth the functions and the sequence of steps for constructing the apparatus used in the invention and method of operating the invention in connection with the illustrated embodiments. However, it is to be understood that the same or equivalent functions and sequences may be accomplished by different embodiments that are also intended to be encompassed within the spirit and scope of the invention, such as apparatuses used in the method comprised of different materials and additional steps that may aid in facilitating the use of the method.
Previous methods used to improve die-cutting all ignore the inevitable problems that are associated with imperfections found on the cutting surface. These imperfections in the cutting surface cause more friction on the cutting knives, leading to more wear, which in turn leads to higher maintenance costs, excess machine down time, and slower cutting speeds.
The present invention provides a direct solution to the friction caused by the imperfections found in the cutting surface. By introducing a back plate footprint that mirrors the imperfections found on the cutting surface, the pressure from the footprint's permutations against the other layers in the chase and down into the die layer will force the cutting knives to align more perfectly with the imperfections on the cutting surface opposing them, leading to near perfect cuts each time. Further, the costs in time, labor and materials involved in making the back plate footprint are minimal. Also, of benefit is the fact that the implementation of this method is requires little additional equipment, materials and training. Thus, avoiding the need for expensive high tech scanning equipment, visits of highly paid specialists, or to train workers.
To further illustrate the features of the instant invention, referring to the figures,
In the process of creating the back plate footprint, a depth providing layer 13, a solid material layer 15 and a non-stick material layer 14 are added in that order, from the top down to the chase 1. The depth layer 13 is added so that the solid material layer 15 and the top non-stick layer 14 make enough contact with the bottom of the die-cutting machine 2. This depth providing layer 13 is necessary because the chase 1 or bottom section 2 would not normally depress far enough to make full contact with the bottom of the die-cutting machine 2 since the chase 1 normally extends to a point that enables a cutting knife 10 (of
Once the chase 1 as shown in
In another embodiment of the invention,
In other embodiments the chase 1 (in