1. Technical Field
The present disclosure relates to adapter assemblies for use in surgical systems. More specifically, the present disclosure relates to adapter assemblies for use with and to electrically and mechanically interconnect electromechanical surgical devices and surgical loading units, and to surgical systems including hand held electromechanical surgical devices and adapter assemblies for connecting surgical loading units to the hand held electromechanical surgical devices.
2. Background of Related Art
A number of surgical device manufacturers have developed product lines with proprietary drive systems for operating and/or manipulating electromechanical surgical devices. In many instances the electromechanical surgical devices include a handle assembly, which is reusable, and disposable loading units and/or single use loading units or the like that are selectively connected to the handle assembly prior to use and then disconnected from the handle assembly following use in order to be disposed of or in some instances sterilized for re-use.
In certain instances, an adapter assembly is used to interconnect an electromechanical surgical device with any one of a number of surgical loading units to establish a mechanical and/or electrical connection therebetween. By using an adapter assembly to interconnect the electromechanical surgical device with the surgical loading units, an overall length of this electromechanical surgical system tends to be relatively greater/longer as compared to an electromechanical surgical system not using an adapter assembly. This increased length of the electromechanical surgical system (including an adapter assembly) tends to move a center of gravity of the electromechanical surgical system (including an adapter assembly) relatively distal of a center of gravity of another electromechanical surgical system (not including an adapter assembly).
With the center of gravity being located at a more distal location of the electromechanical surgical system, a torque exerted on the hand, wrist and arm of the user is increased and thus renders use of the electromechanical surgical system tiresome or cumbersome.
Accordingly, a need exists for an adapter assembly that has a relatively shorter length and that reduces the distal displacement of a center of gravity of the electromechanical surgical system.
The present disclosure relates to adapter assemblies for use with and to electrically and mechanically interconnect electromechanical surgical devices and surgical loading units, and to surgical systems including hand held electromechanical surgical devices and adapter assemblies for connecting surgical loading units to the hand held electromechanical surgical devices.
According to an aspect of the present disclosure, an adapter assembly for selectively interconnecting a surgical loading unit that is configured to perform a function and a surgical device that is configured to actuate the loading unit, is provided. The loading unit may include at least one axially translatable drive member, and the surgical device may include at least one rotatable drive shaft. The adapter assembly may include a housing configured and adapted for connection with the surgical device and configured and adapted to be in operative communication with each rotatable drive shaft of the surgical device; an outer tube having a proximal end supported by the housing and a distal end configured and adapted for connection with the loading unit, wherein the distal end of the outer tube is in operative communication with each of the axially translatable drive member of the loading unit; and the force/rotation transmitting/converting assembly for interconnecting a respective one drive shaft of the surgical device and a respective one axially translatable drive member of the loading unit. The force/rotation transmitting/converting assembly may include a proximal rotation receiving member that is connectable to the respective drive shaft of the surgical device defining a threaded distal end; and a distal force transmitting member that is connectable to an articulation link of the axially translatable drive member of the loading unit. The distal force transmitting member may include a bearing assembly having an outer race threadably connected to the threaded distal end of the proximal drive shaft and an inner race; a distal articulation bar having a proximal end and a distal end, the distal end of the distal articulation bar being configured to selectively engage the axially translatable drive member of the loading unit; a proximal articulation bar having a proximal end and a distal end, the distal end of the proximal articulation bar being secured to the proximal end of the distal articulation bar; and a collar integrally supported at the proximal end of the proximal articulation bar, the collar having an outer diameter substantially equal to an outer diameter of the inner race of the bearing assembly; wherein the force/rotation transmitting/converting assembly converts and transmits a rotation of the rotatable drive shaft of the surgical device to an axial translation of the axially translatable drive member of the loading unit.
The proximal articulation bar may include a transition portion integrally supporting the collar at a proximal end thereof and a body portion at a distal end thereof, the transition portion defining an outer diameter that is greater than an outer diameter of the body portion.
The outer diameter of the collar may be greater than the outer diameter of the transition portion such that the distal articulation bar and the proximal articulation bar resist bending during use.
The distal end of the proximal articulation bar may define a cut-out configured for mating with the proximal end of the distal articulation bar.
The outer race of the bearing assembly may include a first through hole and a second through hole, the first and second through holes intersecting to define a cavity in the outer race configured for housing a ball having a threaded bore formed therein, the threaded bore configured for threadably connecting to the threaded distal end of the proximal drive shaft.
According to another aspect of the present disclosure, an adapter assembly for selectively interconnecting a surgical loading unit that is configured to perform a function and a surgical device that is configured to actuate the loading unit, is provided. The loading unit may include at least one axially translatable drive member, and the surgical device may include at least one rotatable drive shaft. The adapter assembly may include a housing configured and adapted for connection with the surgical device and configured and adapted to be in operative communication with each rotatable drive shaft of the surgical device; an outer tube having a proximal end supported by the housing and a distal end configured and adapted for connection with the loading unit, wherein the distal end of the outer tube is in operative communication with each of the axially translatable drive member of the loading unit; and the force/rotation transmitting/converting assembly for interconnecting a respective one drive shaft of the surgical device and a respective one axially translatable drive member of the loading unit. The force/rotation transmitting/converting assembly may include a proximal rotation receiving member that is connectable to a respective rotatable drive shaft of the surgical device, the proximal rotation receiving member defining a threaded distal end; and a distal force transmitting member that is connectable to an articulation link of the axially translatable drive member of the loading unit. The distal force transmitting member may include an articulation bar extending longitudinally between a proximal end and a distal end, the distal end of the articulation bar being configured to selectively engage the axially translatable drive member of the loading unit; a bearing assembly having an outer race threadably connected to the threaded distal end of the proximal drive shaft, and an inner race; and an inner sleeve supported in the inner race of the bearing assembly and extending axially from the inner race, the inner sleeve including an inner diameter and an outer diameter, the outer diameter defining a slot configured for disposal of the proximal end of the articulation bar such that the proximal end of the articulation bar is disposed between the inner race of the bearing assembly and the outer diameter of the inner sleeve; wherein the force/rotation transmitting/converting assembly converts and transmits a rotation of the rotatable drive shaft of the surgical device to an axial translation of the axially translatable drive member of the loading unit.
The housing may include a slip ring cannula disposed within the inner sleeve such that an outer diameter of the slip ring cannula engages the inner diameter of the inner sleeve utilizing an interference fit.
The outer race of the bearing assembly may include a first through hole and a second through hole, the first and second through holes intersecting to define a cavity in the outer race configured for housing a ball having a threaded bore formed therein, the threaded bore configured for threadably connecting to the threaded distal end of the proximal drive shaft.
According to another aspect of the present disclosure, an adapter assembly for selectively interconnecting a surgical loading unit that is configured to perform a function and a surgical device that is configured to actuate the loading unit, is provided. The loading unit may include at least one axially translatable drive member, and the surgical device may include at least one rotatable drive shaft. The adapter assembly may include a housing configured and adapted for connection with the surgical device and configured and adapted to be in operative communication with each rotatable drive shaft of the surgical device; an outer tube having a proximal end supported by the housing and a distal end configured and adapted for connection with the loading unit, wherein the distal end of the outer tube is in operative communication with each of the axially translatable drive member of the loading unit; and the force/rotation transmitting/converting assembly for interconnecting a respective one drive shaft of the surgical device and a respective one axially translatable drive member of the loading unit. The at least one force/rotation transmitting/converting assembly may include a proximal rotation receiving member that is connectable to a respective rotatable drive shaft of the surgical device, the proximal rotation receiving member defining at least one spur gear; a driver including an outer surface defining at least one spur gear configured for mating with the spur gear of the proximal rotation receiving member, the driver defining a bore therethrough, the bore having an inner surface defining at least one thread; and a distal force transmitting member that is connectable to an articulation link of the axially translatable drive member of the loading unit. The distal force transmitting member may include a sleeve having an outer surface defining at least one thread configured to mate with the inner surface of the driver; and an articulation bar having a proximal end secured to the sleeve and a distal end configured to selectively engage the axially translatable drive member of the loading unit; wherein the force/rotation transmitting/converting assembly converts and transmits a rotation of the rotatable drive shaft of the surgical device to a rotation of the driver such that the sleeve of the distal force transmitting member is axially translated resulting in an axial translation of the axially translatable drive member of the loading unit.
The housing may include a distal plate having a first through hole configured for locating a distal boss of the driver such that the driver is mounted co-axial to the longitudinal axis.
The distal plate may include a second through hole configured for locating a distal protrusion of the proximal rotation receiving member such that when the distal boss of the driver is located in the first through hole and the distal protrusion of the proximal rotation receiving member is located in the second through hole, the at least one spur gear of the driver is mated with the at least one spur gear of the proximal rotation receiving member.
The housing may define a proximal core portion configured for location a proximal boss of the driver such that the driver is mounted co-axial to the longitudinal axis.
The sleeve defines a bore therethrough which defines an inner surface, and wherein the proximal end of the articulation bar is secured to the inner surface of the sleeve.
Embodiments of the present disclosure are described herein with reference to the accompanying drawings, wherein:
Embodiments of the presently disclosed surgical devices, adapter assemblies, and loading unit detection assemblies for surgical devices and/or handle assemblies are described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein the term “distal” refers to that portion of the adapter assembly or surgical device, or component thereof, farther from the user, while the term “proximal” refers to that portion of the adapter assembly or surgical device, or component thereof, closer to the user.
A surgical device, in accordance with an embodiment of the present disclosure, is generally designated as 100, and is in the form of a powered hand held electromechanical instrument configured for selective attachment thereto of a plurality of different end effectors that are each configured for actuation and manipulation by the powered hand held electromechanical surgical instrument.
As illustrated in
As illustrated in
Handle housing 102 includes an upper housing portion 102a which houses various components of surgical device 100, and a lower hand grip portion 102b extending from upper housing portion 102a. Lower hand grip portion 102b may be disposed distally of a proximal-most end of upper housing portion 102a. The location of lower housing portion 102b relative to upper housing portion 102a is selected to balance a weight of a surgical device 100 that is connected to or supporting adapter assembly 200 and/or end effector 300.
Handle housing 102 provides a housing in which the drive mechanism is situated. The drive mechanism is configured to drive shafts and/or gear components in order to perform the various operations of surgical device 100. In particular, the drive mechanism is configured to drive shafts and/or gear components in order to selectively move a tool assembly 304 of loading unit 300 (see
As illustrated in
When adapter assembly 200 is mated to surgical device 100, each of rotatable drive connectors 118, 120, 122 of surgical device 100 couples with a corresponding rotatable connector sleeve 218, 220, 222 of adapter assembly 200. (see
The mating of drive connectors 118, 120, 122 of surgical device 100 with connector sleeves 218, 220, 222 of adapter assembly 200 allows rotational forces to be independently transmitted via each of the three respective connector interfaces. The drive connectors 118, 120, 122 of surgical device 100 are configured to be independently rotated by the drive mechanism of surgical device 100. In this regard, a function selection module (not shown) of the drive mechanism selects which drive connector or connectors 118, 120, 122 of surgical device 100 is to be driven by the motor of surgical device 100.
Since each of drive connectors 118, 120, 122 of surgical device 100 has a keyed and/or substantially non-rotatable interface with respective connector sleeves 218, 220, 222 of adapter assembly 200, when adapter assembly 200 is coupled to surgical device 100, rotational force(s) are selectively transferred from drive connectors of surgical device 100 to adapter assembly 200.
The selective rotation of drive connector(s) 118, 120 and/or 122 of surgical device 100 allows surgical device 100 to selectively actuate different functions of loading unit 300. For example, selective and independent rotation of first drive connector 118 of surgical device 100 corresponds to the selective and independent opening and closing of tool assembly 304 of loading unit 300, and driving of a stapling/cutting component of tool assembly 304 of loading unit 300. As an additional example, the selective and independent rotation of second drive connector 120 of surgical device 100 corresponds to the selective and independent articulation of tool assembly 304 of loading unit 300 transverse to longitudinal axis “X” (see
As illustrated in
Reference may be made to International Application No. PCT/US2008/077249, filed Sep. 22, 2008 (Inter. Pub. No. WO 2009/039506) and U.S. patent application Ser. No. 12/622,827, filed on Nov. 20, 2009, the entire content of each of which being incorporated herein by reference, for a detailed description of various internal components of and operation of exemplary electromechanical, hand-held, powered surgical instrument 100.
Turning now to
Adapter assembly 200 is configured to convert a rotation of either of drive connectors 118 and 120 of surgical device 100 into axial translation useful for operating a drive assembly 360 and an articulation link 366 of loading unit 300, as illustrated in
As described briefly above, inner housing assembly 204 of shaft assembly 200 is also configured to rotatably support first, second and third connector sleeves 218, 220 and 222, respectively, arranged in a common plane or line with one another. Each of connector sleeves 218, 220, 222 is configured to mate with respective first, second and third drive connectors 118, 120, 122 of surgical device 100, as described above. Each of connector sleeves 218, 220, 222 is further configured to mate with a proximal end of respective first, second and third proximal drive shafts 212, 214, 216.
Inner housing assembly 204 also includes, as illustrated in
In particular, first, second and third biasing members 224, 226 and 228 function to bias respective connector sleeves 218, 220 and 222 in a proximal direction. In this manner, during assembly of adapter assembly 200 to surgical device 100, if first, second and or third connector sleeves 218, 220 and/or 222 is/are misaligned with the drive connectors 118, 120, 122 of surgical device 100, first, second and/or third biasing member(s) 224, 226 and/or 228 are compressed. Thus, when surgical device 100 is operated, drive connectors 118, 120, 122 of surgical device 100 will rotate and first, second and/or third biasing member(s) 224, 226 and/or 228 will cause respective first, second and/or third connector sleeve(s) 218, 220 and/or 222 to slide back proximally, effectively coupling drive connectors 118, 120, 122 of surgical device 100 to first, second and/or third proximal drive shaft(s) 212, 214 and 216 of inner housing assembly 204.
Adapter assembly 200 includes a plurality of force/rotation transmitting/converting assemblies, each disposed within inner housing assembly 204 and outer tube 206. Each force/rotation transmitting/converting assembly is configured and adapted to transmit/convert a speed/force of rotation (e.g., increase or decrease) of first, second and third rotatable drive connectors 118, 120 and 122 of surgical instrument 100 before transmission of such rotational speed/force to loading unit 300.
Specifically, as illustrated in
As shown in
First force/rotation transmitting/converting assembly 240 further includes a drive coupling nut 244 rotatably coupled to threaded distal end portion 212b of first rotatable proximal drive shaft 212, and which is slidably disposed within outer tube 206. Drive coupling nut 244 is slidably keyed within proximal core tube portion of outer tube 206 so as to be prevented from rotation as first rotatable proximal drive shaft 212 is rotated. In this manner, as first rotatable proximal drive shaft 212 is rotated, drive coupling nut 244 is translated along threaded distal end portion 212b of first rotatable proximal drive shaft 212 and, in turn, through and/or along outer tube 206.
First force/rotation transmitting/converting assembly 240 further includes a distal drive member 248 that is mechanically engaged with drive coupling nut 244, such that axial movement of drive coupling nut 244 results in a corresponding amount of axial movement of distal drive member 248. The distal end portion of distal drive member 248 supports a connection member 247 configured and dimensioned for selective engagement with a drive member 374 of drive assembly 360 of loading unit 300 (
In operation, as first rotatable proximal drive shaft 212 is rotated, due to a rotation of first connector sleeve 218, as a result of the rotation of the first respective drive connector 118 of surgical device 100, drive coupling nut 244 is caused to be translated axially along first distal drive shaft 242. As drive coupling nut 244 is caused to be translated axially along first distal drive shaft 242, distal drive member 248 is caused to be translated axially relative to outer tube 206. As distal drive member 248 is translated axially, with connection member 247 connected thereto and engaged with drive member 374 of drive assembly 360 of loading unit 300 (
With reference to
Distal end portion 214b of proximal drive shaft 214 is threadably engaged with an articulation bearing housing 252a of an articulation bearing assembly 252. Articulation bearing assembly 252 includes a housing 252a supporting an articulation bearing 253 having an inner race 253b that is independently rotatable relative to an outer race 253a. Articulation bearing housing 252a has a non-circular outer profile, for example tear-drop shaped, that is slidably and non-rotatably disposed within a complementary bore 204c (
Second drive converter assembly 250 of adapter assembly 200 further includes an articulation bar 258 having a proximal portion 258a secured to inner race 253b of articulation bearing 253. A distal portion 258b of articulation bar 258 includes a slot 258c therein, which is configured to accept a portion 366, e.g., a flag, articulation link (
With further regard to articulation bearing assembly 252, articulation bearing assembly 252 is both rotatable and longitudinally translatable. Additionally, it is envisioned that articulation bearing assembly 252 allows for free, unimpeded rotational movement of loading unit 300 when its jaw members 306, 308 are in an approximated position and/or when jaw members 306, 308 are articulated.
In operation, as second proximal drive shaft 214 is rotated due to a rotation of second connector sleeve 220, as a result of the rotation of the second drive connector 120 of surgical device 100, articulation bearing assembly 252 is caused to be translated axially along threaded distal end portion 214b of second proximal drive shaft 214, which in turn causes articulation bar 258 to be axially translated relative to outer tube 206. As articulation bar 258 is translated axially, articulation bar 258, being coupled to articulation link 366 of loading unit 300, causes concomitant axial translation of articulation link 366 of loading unit 300 to effectuate an articulation of tool assembly 304. Articulation bar 258 is secured to inner race 253b of articulation bearing 253 and is thus free to rotate about the longitudinal axis X-X relative to outer race 253a of articulation bearing 253.
As illustrated in
Third force/rotation transmitting/converting assembly 260 further includes third rotatable proximal drive shaft 216 which, as described above, is rotatably supported within inner housing assembly 204. Third rotatable proximal drive shaft 216 includes a non-circular proximal end portion configured for connection with third connector 222 which is connected to respective third connector 122 of surgical device 100. Third rotatable proximal drive shaft 216 includes a spur gear 216a keyed to a distal end thereof. A reversing spur gear 264 inter-engages spur gear 216a of third rotatable proximal drive shaft 216 to gear teeth 266a of ring gear 266.
In operation, as third rotatable proximal drive shaft 216 is rotated, due to a rotation of third connector sleeve 222, as a result of the rotation of the third drive connector 122 of surgical device 100, spur gear 216a of third rotatable proximal drive shaft 216 engages reversing gear 264 causing reversing gear 264 to rotate. As reversing gear 264 rotates, ring gear 266 also rotates thereby causing outer knob housing 202 to rotate. As outer knob housing 202 is rotated, outer tube 206 is caused to be rotated about longitudinal axis “X” of adapter assembly 200. As outer tube 206 is rotated, loading unit 300, that is connected to a distal end portion of adapter assembly 200, is also caused to be rotated about a longitudinal axis of adapter assembly 200.
Adapter assembly 200 further includes, as seen in
With reference to
In operation, in order to lock the position and/or orientation of distal drive member 248, a user moves lock button 282 from a distal position to a proximal position (
Reference may be made to U.S. patent application Ser. No. 13/875,571, filed on May 2, 2013, the entire content of which is incorporated herein by reference, for a more detailed discussion of the construction and operation of lock mechanism 280.
With reference to
Electrical assembly 290 further includes a strain gauge 296 electrically connected to circuit board 294. Strain gauge 296 is provided with a notch 296a which is configured and adapted to receive stem 204d of hub 204a of inner housing assembly 204. Stem 204d of hub 204a functions to restrict rotational movement of strain gauge 296. As illustrated in
Electrical assembly 290 also includes a slip ring 298 disposed core tube of tube 206. Slip ring 298 is in electrical connection with circuit board 294. Slip ring 298 functions to permit rotation of first rotatable proximal drive shaft 212 and axial translation of drive coupling nut 244 while still maintaining electrical contact of electrical contact rings 298a thereof with at least another electrical component within adapter assembly 200, and while permitting the other electrical components to rotate about first rotatable proximal drive shaft 212 and drive coupling nut 244
Electrical assembly 290 may include a slip ring cannula or sleeve 299 positioned core tube of tube 206 to protect and/or shield any wires extending from slip ring 298.
Turning now to
Inner housing assembly 204 includes a ring plate 254a (
As illustrated in
With reference to
While plate bushing 230 has been shown and described as being a unitary monolithic piece, as illustrated in
Turning now to
First plate 254a′ is disposed adjacent to or in close proximity to ring gear 266 and defines an aperture 254d′ therethrough. Aperture 254d′ is sized and formed in first plate 254a′ so as to be aligned with second proximal drive shaft 214 and to permit second proximal drive shaft 214 to freely rotate therewithin. Second plate 254b′ is spaced from first plate 254a′ so as to be disposed at a distal free end of second proximal drive shaft 214. Second plate 254b′ defines an aperture 254e′ therethrough. Aperture 254e′ is sized and formed in second plate or flange 254b′ so as to be aligned with second proximal drive shaft 214 and to rotatably receive a distal tip 214c of second proximal drive shaft 214.
In this manner, distal tip 214c of second proximal drive shaft 214 is supported and prevented from moving radially away from a longitudinal rotational axis of second proximal drive shaft 214 as second proximal drive shaft 214 is rotated to axially translate articulation bearing assembly 252.
As illustrated in
Turning now to
With reference to
Distal force transmitting member 354 includes, an articulation bearing assembly 352, a distal articulation bar 358a, a proximal articulation bar 358b, and a collar 370. Articulation bearing assembly 352 includes a bearing housing 352a supporting an articulation bearing 353. In embodiments, bearing housing 352a has a non-circular outer profile, such as, for example, a tear-drop shape.
In embodiments such as the one shown in
With reference momentarily to
With reference back to
In embodiments as shown in
Proximal articulation bar 358b further includes a transition portion 359c extending proximally from proximal articulation bar 358b. Transition portion 359c includes an outer diameter “D5,” wherein outer diameter “D5” is greater than outer diameter “D3” and outer diameter “D4.” As shown in
As shown in
In some embodiments, collar 370 is affixed to articulation bearing 353 by welding second portion 370b of collar 370 to inner race 353b of articulation bearing 353. In embodiments, a washer 353c is welded to a proximal end 353d of the articulation bearing 353 to further secure collar 370 to articulation bearing 353. As shown in
Continuing with
FB=MR/I
where “M” is the moment, “R” is the radius of the object resisting the force, and “I” is the moment of inertia.
With reference to
Turning now to
With reference to
In some embodiments, bearing housing 452a has a non-circular outer profile, such as, for example, a tear-drop shape. In embodiments, the bearing housing 452a includes a racking assembly 380 (
Articulation bar 458 extends along longitudinal axis “X” between a distal portion 459a and a proximal portion 459b. Distal portion 459a of the articulation bar 458 is configured to connect to articulation link 366 (
Inner sleeve 460 extends axially beyond the articulation bearing 453. For example, the articulation bearing 453 may define a length “L1,” and inner sleeve 460 may define a length “L2,” wherein length “L1” is less than length “L2.” It is envisioned that the longer aspect ratio of the inner sleeve 460 relative to the articulation bearing 453 will reduce bending of the articulation bar 458 as it rotates about the longitudinal axis “X” relative to the articulation bearing 453. Though the figures show inner sleeve 460 extending distally from articulation bearing 453, it is envisioned that inner sleeve 460 may also extend proximally from articulation bearing 453.
As shown in
In embodiments, the outer surface 460a of inner sleeve 460 defines a slot 470 shaped for disposal of the proximal portion 459b of the articulation bar 458, e.g., proximal portion 459b of the articulation bar 458 is disposed in slot 470 between inner sleeve 460 and inner race 453b. To secure the proximal portion 459b of the articulation bar 458 to the articulation bearing 453, the proximal portion 459b of the articulation bar 458 is welded into the slot 470. However, in embodiments, any appropriate means, such as for example, adhesives may be used to secure the articulation bar 458 to the articulation bearing 453. In embodiments, there may be a gap (not shown) between the proximal portion 459b of the articulation bar 458 and a proximal face (not shown) of the slot 470 on the outer surface 460a of the inner sleeve 460. It is envisioned that the gap would enable a manufacturer to space the articulation bar 458 in relation to the articulation bearing 453 with greater accuracy and repeatability.
With reference to
Turning now to
Force/rotation transmitting/converting assembly 550 includes a proximal rotation receiving member, such as, for example, a proximal drive shaft 514 engagable with a respective rotatable drive shaft (not shown) of the surgical device 100, a driver 560, and a distal force transmitting member 554. The proximal drive shaft 514 extends along longitudinal axis “X” between a distal portion 514a and a proximal portion 514b. The proximal drive shaft 514 member includes an outer surface 514c defining a plurality of spur gears 514d extending along the longitudinal axis “X.”
The driver 560 extends along longitudinal axis “X” between a distal portion and 560a and a proximal portion 560b. The driver 560 includes an outer surface 560c defining a plurality of spur gears 560d extending along the longitudinal axis “X” where the plurality of spur gears 560d of the driver 560 are configured to engage the plurality of spur gears 514d of the proximal drive shaft 514. Accordingly, when the proximal drive shaft 514 is rotated relative to the driver 560 about the longitudinal axis “X” in a direction given by arrow “A,” the driver 560 is rotated in the opposite direction relative to the proximal drive shaft 514 about the longitudinal axis “X” given by arrow “B.”
With continued reference to
An inner housing assembly (not shown) similar to inner housing assembly 312 and 412, includes a distal articulation plate 556 defining a first through hole 556a configured for locating the distal boss 564 of the driver 560. When distal boss 564 is mounted into the first through hole 556a of the distal articulation plate 556, the driver 560 is co-axial to the longitudinal axis “X.” Distal articulation plate 556 also includes a second through hole 556b configured for locating and supporting a distal protrusion 516 extending from the distal portion 514a of the proximal drive shaft 514.
When the distal boss 564 of the driver 560 is located in the first through hole 556a and the distal protrusion 516 of the proximal drive shaft 514 is located in the second through hole 556b, the plurality of spur gears 560d of the driver 560 are engageable with the plurality of spur gears 514d of the proximal drive shaft 514. The housing (not shown) also includes a proximal core portion 520 configured for locating the proximal boss 566 of the driver 560. The proximal core portion 520 includes a through hole 520a configured to locate the proximal boss 566 of the driver 560 such that the driver 560 is co-axial to longitudinal axis “X.”
Continuing with reference to
In operation, as the proximal drive shaft 514 is rotated about the longitudinal axis “X” in the direction given by arrow “A,” the plurality of spur gears 514d engages the plurality of spur gears 560d of the driver 560 to rotate driver 560 about the longitudinal axis “X” in the direction given by arrow “B.” As driver 560 rotates, the sleeve 552 of the distal force transmitting member 554 is axially translated, resulting in axial translation of the loading unit 300 of surgical device 100.
In accordance with the present disclosure, an overall length of adapter assembly 200 has been reduced as compared to prior adapter assemblies that have been developed to transmit/convert forces/rotations from surgical device 100 to loading unit 300. By reducing an overall length of adapter assembly 200, a center of gravity of an assembled surgical device 100, adapter assembly 200 and loading unit 300 has been shifted proximally as compared to a center of gravity of an assembled surgical device 100, a prior adapter assembly and a loading unit 300. As such, a level of comfort to the end user in using the electromechanical surgical system of the present disclosure has been increased, and a level of fatigue has been decreased.
In operation, when a button of surgical device 100 is activated by the user, the software checks predefined conditions. If conditions are met, the software controls the motors and delivers mechanical drive to the attached surgical stapler, which can then open, close, rotate, articulate or fire depending on the function of the pressed button. The software also provides feedback to the user by turning colored lights on or off in a defined manner to indicate the status of surgical device 100, adapter assembly 200 and/or loading unit 300.
Reference may be made to U.S. Patent Publication No. 2009/0314821, filed on Aug. 31, 2009, the entire contents of each of which are incorporated herein by reference, for a detailed discussion of the construction and operation of loading unit 300, as illustrated in
Any of the components described herein may be fabricated from either metals, plastics, resins, composites or the like taking into consideration strength, durability, wearability, weight, resistance to corrosion, ease of manufacturing, cost of manufacturing, and the like.
It will be understood that various modifications may be made to the embodiments of the presently disclosed adapter assemblies. Therefore, the above description should not be construed as limiting, but merely as exemplifications of embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the present disclosure.
The Present Application is a Continuation-in-Part Application which claims the benefit of and priority to each of U.S. patent application Ser. No. 14/550,071, filed on Nov. 21, 2014, which claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 61/913,550, filed on Dec. 9, 2013; and U.S. patent application Ser. No. 14/550,183, filed on Nov. 21, 2014, which claims the benefit of and priority to U.S. Provisional Application Ser. No. 61/913,572, filed on Dec. 9, 2013, the entire contents of each of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2777340 | Hettwer et al. | Jan 1957 | A |
2957353 | Babacz | Oct 1960 | A |
3111328 | Di Rito et al. | Nov 1963 | A |
3695058 | Keith, Jr. | Oct 1972 | A |
3734515 | Dudek | May 1973 | A |
3759336 | Marcovitz et al. | Sep 1973 | A |
4162399 | Hudson | Jul 1979 | A |
4504227 | Lohn | Mar 1985 | A |
4606343 | Conta et al. | Aug 1986 | A |
4705038 | Sjostrom et al. | Nov 1987 | A |
4722685 | de Estrada et al. | Feb 1988 | A |
4823807 | Russell et al. | Apr 1989 | A |
4874181 | Hsu | Oct 1989 | A |
5129118 | Walmesley | Jul 1992 | A |
5129570 | Schulze et al. | Jul 1992 | A |
5152744 | Krause et al. | Oct 1992 | A |
5301061 | Nakada et al. | Apr 1994 | A |
5312023 | Green et al. | May 1994 | A |
5326013 | Green et al. | Jul 1994 | A |
5350355 | Sklar | Sep 1994 | A |
5383874 | Jackson et al. | Jan 1995 | A |
5383880 | Hooven | Jan 1995 | A |
5389098 | Tsuruta et al. | Feb 1995 | A |
5395033 | Byrne et al. | Mar 1995 | A |
5400267 | Denen et al. | Mar 1995 | A |
5411508 | Bessler et al. | May 1995 | A |
5413267 | Solyntjes et al. | May 1995 | A |
5427087 | Ito et al. | Jun 1995 | A |
5433721 | Hooven | Jul 1995 | A |
5467911 | Tsuruta et al. | Nov 1995 | A |
5476379 | Disel | Dec 1995 | A |
5487499 | Sorrentino et al. | Jan 1996 | A |
5518163 | Hooven | May 1996 | A |
5518164 | Hooven | May 1996 | A |
5526822 | Burbank et al. | Jun 1996 | A |
5529235 | Boiarski et al. | Jun 1996 | A |
5535934 | Boiarski et al. | Jul 1996 | A |
5535937 | Boiarski et al. | Jul 1996 | A |
5540375 | Bolanos et al. | Jul 1996 | A |
5540706 | Aust et al. | Jul 1996 | A |
5542594 | McKean et al. | Aug 1996 | A |
5549637 | Crainich | Aug 1996 | A |
5553675 | Pitzen et al. | Sep 1996 | A |
5562239 | Boiarski et al. | Oct 1996 | A |
5564615 | Bishop et al. | Oct 1996 | A |
5609560 | Ichikawa et al. | Mar 1997 | A |
5626587 | Bishop et al. | May 1997 | A |
5632432 | Schulze et al. | May 1997 | A |
5645209 | Green et al. | Jul 1997 | A |
5647526 | Green et al. | Jul 1997 | A |
5653374 | Young et al. | Aug 1997 | A |
5658300 | Bito et al. | Aug 1997 | A |
5662662 | Bishop et al. | Sep 1997 | A |
5667517 | Hooven | Sep 1997 | A |
5693042 | Boiarski et al. | Dec 1997 | A |
5704534 | Huitema et al. | Jan 1998 | A |
5713505 | Huitema | Feb 1998 | A |
5762603 | Thompson | Jun 1998 | A |
5779130 | Alesi et al. | Jul 1998 | A |
5782396 | Mastri et al. | Jul 1998 | A |
5782397 | Koukline | Jul 1998 | A |
5792573 | Pitzen et al. | Aug 1998 | A |
5797536 | Smith et al. | Aug 1998 | A |
5820009 | Melling et al. | Oct 1998 | A |
5863159 | Lasko | Jan 1999 | A |
5908427 | McKean et al. | Jun 1999 | A |
5954259 | Viola et al. | Sep 1999 | A |
5964774 | McKean et al. | Oct 1999 | A |
5993454 | Longo | Nov 1999 | A |
6010054 | Johnson et al. | Jan 2000 | A |
6017354 | Culp et al. | Jan 2000 | A |
6032849 | Mastri et al. | Mar 2000 | A |
6045560 | McKean et al. | Apr 2000 | A |
6090123 | Culp et al. | Jul 2000 | A |
6126651 | Mayer | Oct 2000 | A |
6129547 | Cise et al. | Oct 2000 | A |
6165169 | Panescu et al. | Dec 2000 | A |
6239732 | Cusey | May 2001 | B1 |
6241139 | Milliman et al. | Jun 2001 | B1 |
6264086 | McGuckin, Jr. | Jul 2001 | B1 |
6264087 | Whitman | Jul 2001 | B1 |
6302311 | Adams et al. | Oct 2001 | B1 |
6315184 | Whitman | Nov 2001 | B1 |
6321855 | Barnes | Nov 2001 | B1 |
6329778 | Culp et al. | Dec 2001 | B1 |
6343731 | Adams et al. | Feb 2002 | B1 |
6348061 | Whitman | Feb 2002 | B1 |
6368324 | Dinger et al. | Apr 2002 | B1 |
6371909 | Hoeg et al. | Apr 2002 | B1 |
6434507 | Clayton et al. | Aug 2002 | B1 |
6443973 | Whitman | Sep 2002 | B1 |
6461372 | Jensen et al. | Oct 2002 | B1 |
6488197 | Whitman | Dec 2002 | B1 |
6491201 | Whitman | Dec 2002 | B1 |
6533157 | Whitman | Mar 2003 | B1 |
6537280 | Dinger et al. | Mar 2003 | B2 |
6610066 | Dinger et al. | Aug 2003 | B2 |
6611793 | Burnside et al. | Aug 2003 | B1 |
6645218 | Cassidy et al. | Nov 2003 | B1 |
6654999 | Stoddard et al. | Dec 2003 | B2 |
6698643 | Whitman | Mar 2004 | B2 |
6699177 | Wang et al. | Mar 2004 | B1 |
6716233 | Whitman | Apr 2004 | B1 |
6743240 | Smith et al. | Jun 2004 | B2 |
6783533 | Green et al. | Aug 2004 | B2 |
6792390 | Burnside et al. | Sep 2004 | B1 |
6793652 | Whitman et al. | Sep 2004 | B1 |
6817508 | Racenet et al. | Nov 2004 | B1 |
6830174 | Hillstead et al. | Dec 2004 | B2 |
6846308 | Whitman et al. | Jan 2005 | B2 |
6846309 | Whitman et al. | Jan 2005 | B2 |
6849071 | Whitman et al. | Feb 2005 | B2 |
6860892 | Tanaka et al. | Mar 2005 | B1 |
6899538 | Matoba | May 2005 | B2 |
6905057 | Swayze et al. | Jun 2005 | B2 |
6959852 | Shelton, IV et al. | Nov 2005 | B2 |
6964363 | Wales et al. | Nov 2005 | B2 |
6981628 | Wales | Jan 2006 | B2 |
6981941 | Whitman et al. | Jan 2006 | B2 |
6986451 | Mastri et al. | Jan 2006 | B1 |
6988649 | Shelton, IV et al. | Jan 2006 | B2 |
7032798 | Whitman et al. | Apr 2006 | B2 |
RE39152 | Aust et al. | Jun 2006 | E |
7055731 | Shelton, IV et al. | Jun 2006 | B2 |
7059508 | Shelton, IV et al. | Jun 2006 | B2 |
7077856 | Whitman | Jul 2006 | B2 |
7111769 | Wales et al. | Sep 2006 | B2 |
7122029 | Koop et al. | Oct 2006 | B2 |
7140528 | Shelton, IV | Nov 2006 | B2 |
7141049 | Stern et al. | Nov 2006 | B2 |
7143923 | Shelton, IV et al. | Dec 2006 | B2 |
7143925 | Shelton, IV et al. | Dec 2006 | B2 |
7143926 | Shelton, IV et al. | Dec 2006 | B2 |
7147138 | Shelton, IV | Dec 2006 | B2 |
7172104 | Scirica et al. | Feb 2007 | B2 |
7225964 | Mastri et al. | Jun 2007 | B2 |
7238021 | Johnson | Jul 2007 | B1 |
7246734 | Shelton, IV | Jul 2007 | B2 |
7252660 | Kunz | Aug 2007 | B2 |
7328828 | Ortiz et al. | Feb 2008 | B2 |
7364061 | Swayze et al. | Apr 2008 | B2 |
7380695 | Doll et al. | Jun 2008 | B2 |
7380696 | Shelton, IV et al. | Jun 2008 | B2 |
7404508 | Smith et al. | Jul 2008 | B2 |
7407078 | Shelton, IV et al. | Aug 2008 | B2 |
7416101 | Shelton, IV et al. | Aug 2008 | B2 |
7419080 | Smith et al. | Sep 2008 | B2 |
7422139 | Shelton, IV et al. | Sep 2008 | B2 |
7431189 | Shelton, IV et al. | Oct 2008 | B2 |
7441684 | Shelton, IV et al. | Oct 2008 | B2 |
7448525 | Shelton, IV et al. | Nov 2008 | B2 |
7464846 | Shelton, IV et al. | Dec 2008 | B2 |
7464847 | Viola et al. | Dec 2008 | B2 |
7464849 | Shelton, IV et al. | Dec 2008 | B2 |
7481347 | Roy | Jan 2009 | B2 |
7481824 | Boudreaux et al. | Jan 2009 | B2 |
7487899 | Shelton, IV et al. | Feb 2009 | B2 |
7549564 | Boudreaux | Jun 2009 | B2 |
7565993 | Milliman et al. | Jul 2009 | B2 |
7568603 | Shelton, IV et al. | Aug 2009 | B2 |
7575144 | Ortiz et al. | Aug 2009 | B2 |
7588175 | Timm et al. | Sep 2009 | B2 |
7588176 | Timm et al. | Sep 2009 | B2 |
7637409 | Marczyk | Dec 2009 | B2 |
7641093 | Doll et al. | Jan 2010 | B2 |
7644848 | Swayze et al. | Jan 2010 | B2 |
7670334 | Hueil et al. | Mar 2010 | B2 |
7673780 | Shelton, IV et al. | Mar 2010 | B2 |
7699835 | Lee et al. | Apr 2010 | B2 |
7721931 | Shelton, IV et al. | May 2010 | B2 |
7738971 | Swayze et al. | Jun 2010 | B2 |
7740159 | Shelton, IV et al. | Jun 2010 | B2 |
7743960 | Whitman et al. | Jun 2010 | B2 |
7758613 | Whitman | Jul 2010 | B2 |
7766210 | Shelton, IV et al. | Aug 2010 | B2 |
7770773 | Whitman et al. | Aug 2010 | B2 |
7770775 | Shelton, IV et al. | Aug 2010 | B2 |
7793812 | Moore et al. | Sep 2010 | B2 |
7799039 | Shelton, IV et al. | Sep 2010 | B2 |
7802712 | Milliman et al. | Sep 2010 | B2 |
7803151 | Whitman | Sep 2010 | B2 |
7822458 | Webster, III et al. | Oct 2010 | B2 |
7845534 | Viola et al. | Dec 2010 | B2 |
7845537 | Shelton, IV et al. | Dec 2010 | B2 |
7857185 | Swayze et al. | Dec 2010 | B2 |
7870989 | Viola et al. | Jan 2011 | B2 |
7900805 | Shelton, IV et al. | Mar 2011 | B2 |
7905897 | Whitman et al. | Mar 2011 | B2 |
7918230 | Whitman et al. | Apr 2011 | B2 |
7922061 | Shelton, IV et al. | Apr 2011 | B2 |
7922719 | Ralph et al. | Apr 2011 | B2 |
7947034 | Whitman | May 2011 | B2 |
7951071 | Whitman et al. | May 2011 | B2 |
7954682 | Giordano et al. | Jun 2011 | B2 |
7959051 | Smith et al. | Jun 2011 | B2 |
7963433 | Whitman et al. | Jun 2011 | B2 |
7967178 | Scirica et al. | Jun 2011 | B2 |
7967179 | Olson et al. | Jun 2011 | B2 |
7992758 | Whitman et al. | Aug 2011 | B2 |
8011550 | Aranyi et al. | Sep 2011 | B2 |
8016178 | Olson et al. | Sep 2011 | B2 |
8016855 | Whitman et al. | Sep 2011 | B2 |
8020743 | Shelton, IV | Sep 2011 | B2 |
8025199 | Whitman et al. | Sep 2011 | B2 |
8035487 | Malackowski | Oct 2011 | B2 |
8052024 | Viola et al. | Nov 2011 | B2 |
8114118 | Knodel et al. | Feb 2012 | B2 |
8127975 | Olson et al. | Mar 2012 | B2 |
8132705 | Viola et al. | Mar 2012 | B2 |
8152516 | Harvey et al. | Apr 2012 | B2 |
8157150 | Viola et al. | Apr 2012 | B2 |
8157151 | Ingmanson et al. | Apr 2012 | B2 |
8182494 | Yencho et al. | May 2012 | B1 |
8186555 | Shelton, IV et al. | May 2012 | B2 |
8186587 | Zmood et al. | May 2012 | B2 |
8220367 | Hsu | Jul 2012 | B2 |
8235273 | Olson et al. | Aug 2012 | B2 |
8241322 | Whitman et al. | Aug 2012 | B2 |
8272554 | Whitman et al. | Sep 2012 | B2 |
8292150 | Bryant | Oct 2012 | B2 |
8292888 | Whitman | Oct 2012 | B2 |
8342379 | Whitman et al. | Jan 2013 | B2 |
8348130 | Shah et al. | Jan 2013 | B2 |
8348855 | Hillely et al. | Jan 2013 | B2 |
8353440 | Whitman et al. | Jan 2013 | B2 |
8357144 | Whitman et al. | Jan 2013 | B2 |
8365633 | Simaan et al. | Feb 2013 | B2 |
8365972 | Aranyi et al. | Feb 2013 | B2 |
8371492 | Aranyi et al. | Feb 2013 | B2 |
8372057 | Cude et al. | Feb 2013 | B2 |
8391957 | Carlson et al. | Mar 2013 | B2 |
8403926 | Nobis et al. | Mar 2013 | B2 |
8418904 | Wenchell et al. | Apr 2013 | B2 |
8424739 | Racenet et al. | Apr 2013 | B2 |
8454585 | Whitman | Jun 2013 | B2 |
8505802 | Viola et al. | Aug 2013 | B2 |
8517241 | Nicholas et al. | Aug 2013 | B2 |
8523043 | Ullrich et al. | Sep 2013 | B2 |
8551076 | Duval et al. | Oct 2013 | B2 |
8561871 | Rajappa et al. | Oct 2013 | B2 |
8561874 | Scirica | Oct 2013 | B2 |
8602287 | Yates et al. | Dec 2013 | B2 |
8623000 | Humayun et al. | Jan 2014 | B2 |
8627995 | Smith et al. | Jan 2014 | B2 |
8632463 | Drinan et al. | Jan 2014 | B2 |
8636766 | Milliman et al. | Jan 2014 | B2 |
8647258 | Aranyi et al. | Feb 2014 | B2 |
8652121 | Quick et al. | Feb 2014 | B2 |
8657174 | Yates et al. | Feb 2014 | B2 |
8657177 | Scirica et al. | Feb 2014 | B2 |
8672206 | Aranyi et al. | Mar 2014 | B2 |
8696552 | Whitman | Apr 2014 | B2 |
8708213 | Shelton, IV et al. | Apr 2014 | B2 |
8715306 | Faller et al. | May 2014 | B2 |
8758391 | Swayze et al. | Jun 2014 | B2 |
8806973 | Ross et al. | Aug 2014 | B2 |
8808311 | Heinrich et al. | Aug 2014 | B2 |
8820605 | Shelton, IV | Sep 2014 | B2 |
8851355 | Aranyi et al. | Oct 2014 | B2 |
8858571 | Shelton, IV et al. | Oct 2014 | B2 |
8875972 | Weisenburgh, II et al. | Nov 2014 | B2 |
8888762 | Whitman | Nov 2014 | B2 |
8893946 | Boudreaux et al. | Nov 2014 | B2 |
8899462 | Kostrzewski et al. | Dec 2014 | B2 |
8905289 | Patel et al. | Dec 2014 | B2 |
8919630 | Milliman | Dec 2014 | B2 |
8931680 | Milliman | Jan 2015 | B2 |
8939344 | Olson et al. | Jan 2015 | B2 |
8950646 | Viola | Feb 2015 | B2 |
8960519 | Whitman et al. | Feb 2015 | B2 |
8961396 | Azarbarzin et al. | Feb 2015 | B2 |
8967443 | McCuen | Mar 2015 | B2 |
8968276 | Zemlok et al. | Mar 2015 | B2 |
8968337 | Whitfield et al. | Mar 2015 | B2 |
8992422 | Spivey et al. | Mar 2015 | B2 |
9016545 | Aranyi et al. | Apr 2015 | B2 |
9023014 | Chowaniec et al. | May 2015 | B2 |
9033868 | Whitman et al. | May 2015 | B2 |
9055943 | Zemlok et al. | Jun 2015 | B2 |
9064653 | Prest et al. | Jun 2015 | B2 |
9072515 | Hall et al. | Jul 2015 | B2 |
9113847 | Whitman et al. | Aug 2015 | B2 |
9113875 | Viola et al. | Aug 2015 | B2 |
9113876 | Zemlok et al. | Aug 2015 | B2 |
9113899 | Garrison et al. | Aug 2015 | B2 |
9216013 | Scirica et al. | Dec 2015 | B2 |
9282961 | Whitman et al. | Mar 2016 | B2 |
9282963 | Bryant | Mar 2016 | B2 |
9295522 | Kostrzewski | Mar 2016 | B2 |
9307986 | Hall et al. | Apr 2016 | B2 |
9351726 | Leimbach | May 2016 | B2 |
9713466 | Kostrzewski | Jul 2017 | B2 |
20010031975 | Whitman et al. | Oct 2001 | A1 |
20020049454 | Whitman | Apr 2002 | A1 |
20020165541 | Whitman | Nov 2002 | A1 |
20030038938 | Jung et al. | Feb 2003 | A1 |
20030165794 | Matoba | Sep 2003 | A1 |
20040111012 | Whitman | Jun 2004 | A1 |
20040133189 | Sakurai | Jul 2004 | A1 |
20040153124 | Whitman | Aug 2004 | A1 |
20040176751 | Weitzner et al. | Sep 2004 | A1 |
20040193146 | Lee et al. | Sep 2004 | A1 |
20050125027 | Knodel et al. | Jun 2005 | A1 |
20050131442 | Yachia et al. | Jun 2005 | A1 |
20060142656 | Malackowski et al. | Jun 2006 | A1 |
20060142740 | Sherman et al. | Jun 2006 | A1 |
20060142744 | Boutoussov | Jun 2006 | A1 |
20060259073 | Miyamoto et al. | Nov 2006 | A1 |
20060273135 | Beetel | Dec 2006 | A1 |
20060278680 | Viola et al. | Dec 2006 | A1 |
20060284730 | Schmid et al. | Dec 2006 | A1 |
20070023476 | Whitman et al. | Feb 2007 | A1 |
20070023477 | Whitman | Feb 2007 | A1 |
20070029363 | Popov | Feb 2007 | A1 |
20070084897 | Shelton et al. | Apr 2007 | A1 |
20070102472 | Shelton | May 2007 | A1 |
20070152014 | Gillum et al. | Jul 2007 | A1 |
20070175947 | Ortiz et al. | Aug 2007 | A1 |
20070175949 | Shelton et al. | Aug 2007 | A1 |
20070175950 | Shelton et al. | Aug 2007 | A1 |
20070175951 | Shelton et al. | Aug 2007 | A1 |
20070175955 | Shelton et al. | Aug 2007 | A1 |
20070175956 | Swayze | Aug 2007 | A1 |
20070175961 | Shelton et al. | Aug 2007 | A1 |
20070270784 | Smith et al. | Nov 2007 | A1 |
20080029570 | Shelton et al. | Feb 2008 | A1 |
20080029573 | Shelton et al. | Feb 2008 | A1 |
20080029574 | Shelton et al. | Feb 2008 | A1 |
20080029575 | Shelton et al. | Feb 2008 | A1 |
20080058801 | Taylor et al. | Mar 2008 | A1 |
20080109012 | Falco et al. | May 2008 | A1 |
20080110958 | McKenna et al. | May 2008 | A1 |
20080147089 | Loh et al. | Jun 2008 | A1 |
20080167736 | Swayze et al. | Jul 2008 | A1 |
20080185419 | Smith et al. | Aug 2008 | A1 |
20080188841 | Tomasello et al. | Aug 2008 | A1 |
20080197167 | Viola et al. | Aug 2008 | A1 |
20080208195 | Shores et al. | Aug 2008 | A1 |
20080237296 | Boudreaux et al. | Oct 2008 | A1 |
20080251561 | Eades et al. | Oct 2008 | A1 |
20080255413 | Zemlok | Oct 2008 | A1 |
20080255607 | Zemlok | Oct 2008 | A1 |
20080262654 | Omori et al. | Oct 2008 | A1 |
20080308603 | Shelton et al. | Dec 2008 | A1 |
20090012533 | Barbagli et al. | Jan 2009 | A1 |
20090090763 | Zemlok | Apr 2009 | A1 |
20090099876 | Whitman | Apr 2009 | A1 |
20090108048 | Zemlok | Apr 2009 | A1 |
20090138006 | Bales et al. | May 2009 | A1 |
20090171147 | Lee et al. | Jul 2009 | A1 |
20090182193 | Whitman et al. | Jul 2009 | A1 |
20090206131 | Weisenburgh, II | Aug 2009 | A1 |
20090209990 | Yates et al. | Aug 2009 | A1 |
20090254094 | Knapp et al. | Oct 2009 | A1 |
20090299141 | Downey et al. | Dec 2009 | A1 |
20090314821 | Racenet | Dec 2009 | A1 |
20100023022 | Zeiner et al. | Jan 2010 | A1 |
20100069942 | Shelton, IV | Mar 2010 | A1 |
20100193568 | Scheib et al. | Aug 2010 | A1 |
20100211053 | Ross et al. | Aug 2010 | A1 |
20100225073 | Porter et al. | Sep 2010 | A1 |
20110017801 | Zemlok | Jan 2011 | A1 |
20110071508 | Duval et al. | Mar 2011 | A1 |
20110077673 | Grubac et al. | Mar 2011 | A1 |
20110121049 | Malinouskas | May 2011 | A1 |
20110125138 | Malinouskas et al. | May 2011 | A1 |
20110139851 | McCuen | Jun 2011 | A1 |
20110155783 | Rajappa et al. | Jun 2011 | A1 |
20110155786 | Shelton, IV | Jun 2011 | A1 |
20110172648 | Jeong | Jul 2011 | A1 |
20110174099 | Ross | Jul 2011 | A1 |
20110184245 | Xia et al. | Jul 2011 | A1 |
20110204119 | McCuen | Aug 2011 | A1 |
20110218522 | Whitman | Sep 2011 | A1 |
20110276057 | Conlon et al. | Nov 2011 | A1 |
20110290851 | Shelton, IV | Dec 2011 | A1 |
20110290854 | Timm | Dec 2011 | A1 |
20110295242 | Spivey | Dec 2011 | A1 |
20110295269 | Swensgard | Dec 2011 | A1 |
20120000962 | Racenet et al. | Jan 2012 | A1 |
20120074199 | Olson et al. | Mar 2012 | A1 |
20120089131 | Zemlok | Apr 2012 | A1 |
20120104071 | Bryant | May 2012 | A1 |
20120116368 | Viola | May 2012 | A1 |
20120138660 | Shelton, IV | Jun 2012 | A1 |
20120143002 | Aranyi et al. | Jun 2012 | A1 |
20120172924 | Allen, IV | Jul 2012 | A1 |
20120211542 | Racenet | Aug 2012 | A1 |
20120223121 | Viola et al. | Sep 2012 | A1 |
20120245428 | Smith et al. | Sep 2012 | A1 |
20120253329 | Zemlok | Oct 2012 | A1 |
20120310220 | Malkowski et al. | Dec 2012 | A1 |
20120323226 | Chowaniec | Dec 2012 | A1 |
20120330285 | Hartoumbekis et al. | Dec 2012 | A1 |
20130018361 | Bryant | Jan 2013 | A1 |
20130093149 | Saur et al. | Apr 2013 | A1 |
20130098970 | Racenet | Apr 2013 | A1 |
20130181035 | Milliman | Jul 2013 | A1 |
20130184704 | Beardsley et al. | Jul 2013 | A1 |
20130200131 | Racenet | Aug 2013 | A1 |
20130214025 | Zemlok et al. | Aug 2013 | A1 |
20130274722 | Kostrzewski et al. | Oct 2013 | A1 |
20130282052 | Aranyi et al. | Oct 2013 | A1 |
20130292451 | Viola et al. | Nov 2013 | A1 |
20130313304 | Shelton, IV et al. | Nov 2013 | A1 |
20130317486 | Nicholas et al. | Nov 2013 | A1 |
20130319706 | Nicholas et al. | Dec 2013 | A1 |
20130324978 | Nicholas | Dec 2013 | A1 |
20130324979 | Nicholas | Dec 2013 | A1 |
20130334281 | Williams | Dec 2013 | A1 |
20140012236 | Williams et al. | Jan 2014 | A1 |
20140012237 | Pribanic et al. | Jan 2014 | A1 |
20140012289 | Snow et al. | Jan 2014 | A1 |
20140025046 | Williams et al. | Jan 2014 | A1 |
20140110455 | Ingmanson et al. | Apr 2014 | A1 |
20140207125 | Applegate et al. | Jul 2014 | A1 |
20140207182 | Zergiebel et al. | Jul 2014 | A1 |
20140207185 | Goble et al. | Jul 2014 | A1 |
20140236173 | Scirica et al. | Aug 2014 | A1 |
20140236174 | Williams et al. | Aug 2014 | A1 |
20140263542 | Leimbach | Sep 2014 | A1 |
20140263554 | Leimbach | Sep 2014 | A1 |
20140263564 | Leimbach | Sep 2014 | A1 |
20140263565 | Lytle, IV | Sep 2014 | A1 |
20140276932 | Williams et al. | Sep 2014 | A1 |
20140277017 | Leimbach | Sep 2014 | A1 |
20140299647 | Scirica et al. | Oct 2014 | A1 |
20140303668 | Nicholas et al. | Oct 2014 | A1 |
20140358129 | Zergiebel et al. | Dec 2014 | A1 |
20140361068 | Aranyi et al. | Dec 2014 | A1 |
20140365235 | DeBoer et al. | Dec 2014 | A1 |
20140373652 | Zergiebel et al. | Dec 2014 | A1 |
20150014392 | Williams | Jan 2015 | A1 |
20150048144 | Whitman | Feb 2015 | A1 |
20150076205 | Zergiebel | Mar 2015 | A1 |
20150080912 | Sapre | Mar 2015 | A1 |
20150112381 | Richard | Apr 2015 | A1 |
20150122870 | Zemlok et al. | May 2015 | A1 |
20150133224 | Whitman et al. | May 2015 | A1 |
20150133957 | Kostrzewski | May 2015 | A1 |
20150150547 | Ingmanson et al. | Jun 2015 | A1 |
20150150574 | Richard et al. | Jun 2015 | A1 |
20150157320 | Zergiebel et al. | Jun 2015 | A1 |
20150157321 | Zergiebel | Jun 2015 | A1 |
20150164502 | Richard et al. | Jun 2015 | A1 |
20150201931 | Zergiebel et al. | Jul 2015 | A1 |
20150272577 | Zemlok et al. | Oct 2015 | A1 |
20150297199 | Nicholas et al. | Oct 2015 | A1 |
20150303996 | Calderoni | Oct 2015 | A1 |
20150320420 | Penna et al. | Nov 2015 | A1 |
20150327850 | Kostrzewski | Nov 2015 | A1 |
20150342601 | Williams et al. | Dec 2015 | A1 |
20150342603 | Zergiebel | Dec 2015 | A1 |
20150374366 | Zergiebel | Dec 2015 | A1 |
20150374370 | Zergiebel | Dec 2015 | A1 |
20150374371 | Richard et al. | Dec 2015 | A1 |
20150374372 | Zergiebel et al. | Dec 2015 | A1 |
20150374449 | Chowaniec et al. | Dec 2015 | A1 |
20150380187 | Zergiebel et al. | Dec 2015 | A1 |
20160095585 | Zergiebel et al. | Apr 2016 | A1 |
20160095596 | Scirica et al. | Apr 2016 | A1 |
20160106406 | Cabrera et al. | Apr 2016 | A1 |
20160113648 | Zergiebel et al. | Apr 2016 | A1 |
20160113649 | Zergiebel et al. | Apr 2016 | A1 |
20170128069 | Richard | May 2017 | A1 |
20170143337 | Nicholas | May 2017 | A1 |
20170164946 | Williams | Jun 2017 | A1 |
20170175852 | Nicholas | Jun 2017 | A1 |
Number | Date | Country |
---|---|---|
2451558 | Jan 2003 | CA |
2824590 | Apr 2014 | CA |
102247182 | Nov 2011 | CN |
102008053842 | May 2010 | DE |
0705571 | Apr 1996 | EP |
1769754 | Apr 2007 | EP |
2044890 | Apr 2009 | EP |
2055243 | May 2009 | EP |
2316345 | May 2011 | EP |
2329773 | Jun 2011 | EP |
2333509 | Jun 2011 | EP |
2446834 | May 2012 | EP |
2581055 | Apr 2013 | EP |
2612609 | Jul 2013 | EP |
2668910 | Dec 2013 | EP |
2722011 | Apr 2014 | EP |
2823771 | Jan 2015 | EP |
2881046 | Jun 2015 | EP |
2333509 | Feb 2010 | ES |
08-038488 | Feb 1996 | JP |
2005-125075 | May 2005 | JP |
20120022521 | Mar 2012 | KR |
2008121234 | Oct 2008 | WO |
2009039506 | Mar 2009 | WO |
2011108840 | Sep 2011 | WO |
2012040984 | Apr 2012 | WO |
Entry |
---|
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 16 18 3520.2 dated May 3, 2017. |
European Office Action corresponding to counterpart Int'l Appln. No. EP 14 19 6704.2 dated Oct. 28, 2016. |
Extended European Search Report corresponding to counterpart International Application No. EP 14 18 4882.0 dated May 12, 2015. |
Canadian Office Action corresponding to counterpart International Application No. CA 2640399 dated May 7, 2015. |
Japanese Office Action corresponding to counterpart International Application No. JP 2011-197365 dated Mar. 23, 2015. |
Japanese Office Action corresponding to counterpart International Application No. JP 2011-084092 dated May 20, 2015. |
Japanese Office Action corresponding to counterpart International Application No. JP 2014-148482 dated Jun. 2, 2015. |
Extended European Search Report corresponding to counterpart International Application No. EP 14 18 9358.6 dated Jul. 8, 2015. |
Extended European Search Report corresponding to counterpart International Application No. EP 14 19 6148.2 dated Apr. 23, 2015. |
Partial European Search Report corresponding to counterpart International Application No. EP 14 19 6704.2 dated May 11,2015. |
Australian Office Action corresponding to counterpart International Application No. AU 2010241367 dated Aug. 20, 2015. |
Partial European Search Report corresponding to counterpart International Application No. EP 14 19 9783.3 dated Sep. 3, 2015. |
Extended European Search Report corresponding to counterpart International Application No. EP 15 16 9962.6 dated Sep. 14, 2015. |
Extended European Search Report corresponding to International Application No. EP 14 19 6704.2 dated Sep. 24, 2015; (11 pp.). |
Extended European Search Report corresponding to International Application No. EP 15 15 1076.5 dated Apr. 22, 2015. |
Japanese Office Action corresponding to International Application No. JP 2011-084092 dated Jan. 14, 2016. |
Extended European Search Report corresponding to International Application No. EP 12 19 7970.2 dated Jan. 28, 2016. |
Chinese Office Action corresponding to International Application No. CN 201210560638.1 dated Oct. 21, 2015. |
European Office Action corresponding to International Application No. EP 14 15 9056.2 dated Oct. 26, 2015. |
Australian Examination Report No. 1 corresponding to International Application No. AU 2015200153 dated Dec. 11, 2015. |
Australian Examination Report No. 1 corresponding to International Application No. AU 2014204542 dated Jan. 7, 2016. |
Chinese Office Action corresponding to International Application No. CN 201310125449.6 dated Feb. 3, 2016. |
Extended European Search Report corresponding to International Application No. EP 15 19 0245.9 dated Jan. 28, 2016. |
Extended European Search Report corresponding to International Application No. EP 15 16 7793.7 dated Apr. 5, 2016. |
European Office Action corresponding to International Application No. EP 14 18 4882.0 dated Apr. 25, 2016. |
Extended European Search Report corresponding to International Application No. EP 14 19 6704.2 dated Sep. 24, 2015. |
International Search Report and Written Opinion corresponding to Int'l Appln. No. PCT/US2015/051837, dated Dec. 21, 2015. |
Extended European Search Report corresponding to International Application No. EP 14 19 7563.1 dated Aug. 5, 2015. |
Partial European Search Report corresponding to International Application No. EP 15 19 0643.5 dated Feb. 26, 2016. |
Extended European Search Report corresponding to International Application No. EP 15 16 6899.3 dated Feb. 3, 2016. |
Extended European Search Report corresponding to International Application No. EP 14 19 9783.3 dated Dec. 22, 2015. |
Extended European Search Report corresponding to International Application No. EP 15 17 3807.7 dated Nov. 24, 2015. |
Extended European Search Report corresponding to International Application No. EP 15 19 0760.7 dated Apr. 1, 2016. |
Extended European Search Report corresponding to International Application No. EP 15 17 3803.6 dated Nov. 24, 2015. |
Extended European Search Report corresponding to International Application No. EP 15 17 3804.4 dated Nov. 24, 2015. |
Extended European Search Report corresponding to International Application No. EP 15 18 8539.9 dated Feb. 17, 2016. |
Extended European Search Report corresponding to International Application No. EP 15 17 3910.9 dated Nov. 13, 2015. |
European Office Action corresponding to International Application No. EP 14 15 2236.7 dated Aug. 11, 2015. |
Extended European Search Report corresponding to International Application No. EP 15 18 4915.5 dated Jan. 5, 2016. |
Partial European Search Report corresponding to counterpart Int'l Appln. No. EP 16 18 3520.2 dated Dec. 13, 2016. |
Extended European Search Report corresponding to counterpart Patent Appln. EP 17 17 1082.5 dated Oct. 5, 2017. |
Chinese First Office Action corresponding to counterpart Chinese patent application CN 2014107508838 dated Feb. 24, 2018. |
Chinese First Office Action corresponding to counterpart Patent Appln. CN 2014107511525 dated Apr. 4, 2018. |
Number | Date | Country | |
---|---|---|---|
20150342603 A1 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
61913550 | Dec 2013 | US | |
61913572 | Dec 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14550183 | Nov 2014 | US |
Child | 14822970 | US | |
Parent | 14550071 | Nov 2014 | US |
Child | 14550183 | US |