Adapter assembly for surgical device

Information

  • Patent Grant
  • 10512466
  • Patent Number
    10,512,466
  • Date Filed
    Wednesday, October 19, 2016
    7 years ago
  • Date Issued
    Tuesday, December 24, 2019
    4 years ago
Abstract
An adapter assembly for connecting an end effector to a surgical instrument includes first and second drive assemblies configured for converting rotational motion into linear motion, and an actuation assembly. The second drive assembly includes a pair of push/pull cables for longitudinally advancing and retracting a drive member.
Description
BACKGROUND

1. Technical Field


The present disclosure relates generally to powered surgical devices. More specifically, the present disclosure relates to adapter assemblies for selectively connecting end effectors to actuation units of powered surgical devices.


2. Background of Related Art


Powered devices for use in surgical procedures typically convert rotational motion from a handle assembly to linear motion for effectuating one or more functions, e.g., clamping, stapling, cutting. To permit reuse of the handle assemblies of these powered surgical devices and so that the handle assembly may be used with a variety of end effectors, adapter assemblies have been developed for selective attachment to the handle assemblies and to a variety of end effectors. Following use, the adapter assembly may be disposed of along with the end effector.


It has been discovered that a need exists for an adapter assembly having a flexible or more flexible body portion, as compared to prior adapter assemblies having rigid or relatively more rigid body portions thereof.


SUMMARY

An adapter assembly for operably connecting an end effector to a powered surgical instrument is provided. The adapter assembly includes a drive coupling assembly, a first drive assembly, a second drive assembly, and an actuation assembly. The first drive assembly is operably connected to the drive coupling assembly and includes a first push/pull cable. The second drive assembly is operably connected to the drive coupling assembly and includes second and third push/pull cables. The actuation assembly includes a first pusher member. Retraction of the second and third push/pull cables effects advancement of the first pusher member.


In embodiments, the adapter assembly further includes a third drive assembly operably connected to the drive coupling assembly. The third drive assembly includes at least fourth and fifth push/pull cables. The actuation assembly may include a second pusher member. Retraction of the fourth and fifth push/pull cables may effect advancement of the second pusher member. The adapter assembly may further include a trocar member. The first push/pull cable may be secured to the trocar member. Each of the second and third push/pull cables and the fourth and fifth push/pull cables may include a corresponding sheath. The second, third, fourth, and fifth push/pull cables and the corresponding sheaths may each include service slack. Each of the second and third push/pull cables may be secured to a first pair of guide members and the fourth and fifth push/pull cables may be secured to a second pair of guide members.


The actuation assembly may include a cylindrical housing. Each guide member of the first and second pairs of guide members may be secured relative to the cylindrical housing. Each of the first, second, and third drive assemblies may include a transmission for converting high speed, low torque input to low speed, high torque output.


The coupling assembly may connect each of the first, second, and third drive assemblies with respective first, second, and third drive shafts of a handle assembly. The first drive assembly may include a first carriage assembly and the second drive assembly may include a second carriage assembly. The first push/pull cable may be secured to the first carriage assembly and the second and third push/pull cables may be secured to the second carriage assembly. The third drive assembly may include a third carriage assembly. The fourth and fifth push/pull cables may be secured to the third carriage assembly.


In embodiments, the adapter assembly further includes a trocar assembly. The trocar assembly may include a locking member and a releasable trocar member. The releasable trocar member may be configured for operable engagement with an anvil assembly.


Also provided is a surgical assembly for connection to and operation by a handheld electromechanical instrument. The surgical assembly includes a trocar assembly and an adapter assembly. The trocar assembly includes a locking member, and a trocar member releasably secured to the locking member. The adapter assembly is configured to be releasably secured to a handheld electromechanical instrument and includes a first drive cable. The locking member of the trocar assembly is secured to the first drive cable and is movable between a first position where the trocar member is releasable from the locking member and a second position were the trocar member is secured to the locking member.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present disclosure are described herein with reference to the accompanying drawings, wherein:



FIG. 1 is a perspective view of an adapter assembly, in accordance with an embodiment of the present disclosure, an exemplary handle assembly, and an exemplary tool assembly;



FIG. 2 is a perspective view of the adapter assembly of FIG. 1 including the exemplary tool assembly, with an outer sleeve removed;



FIG. 3 is a perspective end view of a proximal end of the adapter assembly of FIG. 1;



FIG. 4 is a perspective view of a distal end of the adapter assembly of FIG. 1, including the exemplary tool assembly;



FIG. 5 is a perspective end view of the proximal end of the adapter assembly of FIG. 3, with an outer housing removed;



FIG. 6 is another perspective view of the proximal end of the adapter assembly of FIG. 3;



FIG. 7 is a perspective end view of the proximal end of the adapter assembly of FIG. 3, with the outer housing and an inner housing removed;



FIG. 8 is another perspective view of the proximal end of the adapter assembly of FIG. 7;



FIG. 9 is a cross-sectional perspective end view of the proximal end of the adapter assembly of FIG. 8, taken along section line 9-9;



FIG. 10 is a side perspective view of the distal end of the adapter assembly shown in FIG. 4, with the outer sleeve removed;



FIG. 11 is a side perspective view of a pair of push/pull cables having a wave configuration;



FIG. 12 is a side perspective view of a push/pull cable having a looped configuration;



FIG. 13 is a side cross-sectional perspective view of a distal end of the adapter assembly of FIG. 1;



FIG. 14 is an enlarged view of the indicated area of detail in FIG. 13;



FIG. 15 is a perspective view of an actuation assembly of the adapter assembly of FIG. 1, with a housing, and first and second pusher members removed;



FIG. 16 is a side perspective view of the actuation assembly of the adapter assembly of FIG. 15, including the first and second pusher members in their first or proximal positions;



FIG. 17 is a side perspective view of the actuation assembly of the adapter assembly of FIG. 15, including the second pusher member;



FIG. 18 is a side perspective view of a locking member and a trocar member of a trocar assembly of the adapter assembly of FIG. 1, with parts separated;



FIG. 19 is a cross-sectional side view of the actuation assembly of the adapter assembly of FIG. 15, with the trocar assembly in an extended condition;



FIG. 20 is a cross-sectional side view of the actuation assembly of FIG. 19, with the trocar assembly in a retracted position;



FIG. 21 is a cross-sectional side view of the actuation assembly of FIG. 19 and the anvil assembly of FIG. 1, with the second pusher member in a first distal position;



FIG. 22 is a cross-sectional side view of the actuation assembly of FIG. 19, with the first pusher member in its distal-most position; and



FIG. 23 is a cross-sectional side view of the actuation assembly of FIG. 19, with the first and second pusher members in their distal-most position.





DETAILED DESCRIPTION OF EMBODIMENTS

Embodiments of the presently disclosed adapter assembly for surgical devices and/or handle assemblies are described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein the term “distal” refers to that portion of the adapter assembly or surgical device, or component thereof, farther from the user, while the term “proximal” refers to that portion of the adapter assembly or surgical device, or component thereof, closer to the user.


With reference to FIGS. 1 and 2, an adapter assembly in accordance with an embodiment of the present disclosure, shown generally as adapter assembly 100, is configured for selective connection to a powered handheld electromechanical instrument shown, generally as handle assembly 20. As illustrated in FIG. 1, the handle assembly 20 is configured for selective connection with the adapter assembly 100, and, in turn, the adapter assembly 100 is configured for selective connection with a tool assembly or end effector, e.g. tool assembly 30, which may, in exemplary embodiments, include a loading unit 40 and an anvil assembly 50, for applying a circular array of staples (not shown) to tissue (not shown). The handle assembly 20, along with the adapter assembly 100 and the tool assembly 30 form a surgical stapling device 10. Although shown and described for use with a circular stapling loading unit, it is envisioned that the aspects of the present disclosure may be modified for use with stapling assembly have alternative configurations.


For a detailed description of the structure and function of an exemplary handle assembly, please refer to commonly owned U.S. Pat. Appl. Publ. Nos. 2012/0253329, 2015/0157320, and 2015/0157321 (“the '329, '320, and '321 applications”), the content of each of which is incorporated by reference herein in its entirety.


With continued reference to FIGS. 2-4, the adapter assembly 100 includes a proximal portion 102 (FIG. 3) configured for operable connection to the handle assembly 20 (FIG. 1), a distal portion 104 configured for operable connection to the tool assembly 30 (FIG. 1), and an intermediate portion 106 operably connecting the proximal and distal portions 102, 104. The proximal portion 102 of the adapter assembly 100 includes a coupling assembly 110 receivable within the handle assembly 20 (FIG. 1) for operatively connecting first, second, and third drive shafts (not shown) of the handle assembly 20 with the adapter assembly 100, and a drive assembly 115 (FIG. 5) for transferring power from the handle assembly 20 to the tool assembly 30. For a detailed description of an exemplary adapter assembly including an exemplary coupling assembly, please refer to commonly owned U.S. patent application Ser. No. 14/875,766 (“the '766 application”), filed Oct. 21, 2014, the contents of which are incorporated herein by reference in their entirety, and the previously incorporated '329, '320, and '321 applications.


With reference to FIGS. 5-9, first, second, and third drive assemblies 120 (FIGS. 7 and 8), 130, 140 of the adapter assembly 100 extend from the coupling assembly 110, through an outer sleeve 108 (FIG. 1) of the intermediate portion 106 (FIG. 1), and to an actuation assembly 150 (FIG. 10) disposed in the distal portion 104 (FIG. 4) of the adapter assembly 100. As will be described in further detail below, the first drive assembly 120 operates to effect a first function, e.g., clamping of tissue, of the tool assembly 30 (FIG. 1). The second drive assembly 130 operates to effect a second function, e.g., stapling of tissue, of the tool assembly 30 (FIG. 1). The third drive assembly 140 operates to effect a third function, e.g., cutting of tissue, of the tool assembly 30 (FIG. 1).


The first drive assembly 120 extends through the proximal and intermediate portions 102, 106 (FIG. 2) of the adapter assembly 100 and includes a first elongate drive shaft 122 rotatably supported within the proximal portion 102 of the adapter assembly 100, a first carriage assembly 124 movably supported by the first elongate drive shaft 122, and a first push/pull cable 126 (FIG. 8) secured to the first carriage assembly 124. The first push/pull cable 126 extends from the first carriage assembly 124 through the intermediate portion 106 (FIG. 2) to the actuation assembly 150 (FIG. 10) in the distal portion 104 (FIG. 4) of the adapter assembly 100.


With particular reference to FIG. 9, the first carriage assembly 124 of the first drive assembly 120 is in threaded engagement (not shown) with the first elongate drive shaft 122 of the first drive assembly 120, such that rotation of the first elongate drive shaft 122 causes longitudinal movement, i.e., advancement and retraction, of the first carriage assembly 124. Longitudinal movement of the first carriage assembly 124 of the first drive assembly 120 pushes and pulls the first push/pull cable 126 to effect longitudinal movement, i.e., advancement and retraction, of a trocar member 174 (FIG. 18) of a trocar assembly 170 (FIG. 18) disposed in the distal portion 104 (FIG. 4) of the adapter assembly 100. The first push/pull cable 126 is adjustably secured to the first carriage assembly 124 by a set screw 125 (FIG. 9). The effective length of the first push/pull cable 126 may be adjusted using the set screw 125 to accommodate, for example, anvil assemblies of different sizes.


The second drive assembly 130 extends through the proximal and intermediate portions 102, 106 (FIG. 2) of the adapter assembly 100 and includes a second elongate drive shaft 132 rotatably supported within the proximal portion 102 of the adapter assembly 100, a second carriage assembly 134 movably supported along the second elongate drive shaft 132, and second and third push/pull cables 136, 138 secured to the second carriage assembly 134. Although shown including two (2) push/pull cables, the second carriage assembly 134 is configured to accommodate up to six (6) push/pull cables. It is envisioned that the second carriage assembly 134 may be configured to accommodate any number of push/pull cables. In some embodiments, the second and third push/pull cables 136, 138 are small coiled throttle cables which are capable of handling large compressive loads without buckling while remaining flexible. The second and third push/pull cables 136, 138 are adjustably secured to the second carriage assembly 134 by set screws 135. The effective length of the second and third push/pull cable 136, 138 may be adjusted using the set screws 135 to accommodate, for example, loading units having various sized pusher assemblies.


With particular reference to FIG. 9, the second carriage assembly 134 of the second drive assembly 130 is in threaded engagement (not shown) with the second elongate drive shaft 132 of the second drive assembly 130, such that rotation of the second elongate drive shaft 132 causes longitudinal movement, i.e., advancement and retraction, of the second carriage assembly 134. Longitudinal movement of the second carriage assembly 134 pushes and pulls the second and third push/pull cables 136, 138 to effect longitudinal movement, i.e., advancement and retraction, of a first pusher member 154 (FIG. 16) of the actuation assembly 150 (FIG. 10) disposed in the distal portion 104 of the adapter assembly 100.


The third drive assembly 140 extends through the proximal and intermediate portions 102, 106 (FIG. 2) of the adapter assembly 100 and includes a third elongate drive shaft 142 rotatably supported within the proximal portion 102 of the adapter assembly 100, a third carriage assembly 144 movably supported along the third elongate drive shaft 142, and fourth and fifth push/pull cables 146, 148 secured to the third carriage assembly 144. Although shown including only two (2) push/pull cables 146, 148, the third carriage assembly 144 is configured to accommodate up to four (4) push/pull cables. It is envisioned that the third carriage assembly 144 may be configured to accommodate any number of push/pull cables. In some embodiments, the fourth and fifth push/pull cables 146, 148 are small coiled throttle cables which are capable of handling large compressive loads without buckling while remaining flexible. The fourth and fifth push/pull cables 146, 148 are adjustably secured to the second carriage assembly 144 by set screws 145. The effective length of the fourth and fifth push/pull cables 146, 148 may be adjusted using the set screws 145 to accommodate, for example, loading units having various sized pusher assemblies.


With particular reference to FIG. 9, the third carriage assembly 144 of the third drive assembly 140 is in threaded engagement (not shown) with the third elongate drive shaft 142 of the third drive assembly 140, such that rotation of the third elongate drive shaft 142 causes longitudinal movement, i.e., advancement and retraction, of the third carriage assembly 144. Longitudinal movement of the third carriage assembly 144 pushes and pulls the fourth and fifth push/pull cables 146, 148 to effect longitudinal movement, i.e., advancement and retraction, of a second pusher member 156 (FIG. 17) of the actuation assembly 150 (FIG. 10) disposed in the distal portion 104 of the adapter assembly 100.


With particular reference to FIGS. 7 and 8, disposed between the coupling assembly 110 of the adapter assembly 100 and the first elongate drive shaft 122 of the first drive assembly 120 of the adapter assembly 100 is a first high ratio transmission assembly “T1”. Disposed between the coupling assembly 110 of the adapter assembly 100 and the second elongate drive shaft 132 of the second drive assembly 130 of the adapter assembly 100 is a second high ratio transmission assembly “T2”. A third high ratio transmission assembly “T3” is disposed between the coupling assembly 110 of the adapter assembly 100 and the third elongate drive shaft 142 of the adapter assembly 100. The first, second, and third high ratio transmission assemblies “T1”, “T2”, “T3” convert the high speed, low torque rotary input from the handle assembly 20 (FIG. 1) to lower speed, higher torque output for use in effecting actuation of the tool assembly 30 (FIG. 1). Although shown as planetary gear systems, each of the first, second, and third high ratio transmission assemblies “T1”, “T2”, “T3”, may be any type of suitable high ratio transmission assembly, e.g., orbital gear system, yoked sun orbital gear system, compound gear system. For a detailed description of an exemplary planetary gear system, please refer to the '766 application, the content of which was previously incorporated by reference herein.


With continued reference to FIGS. 5-9, the second and third push/pull cables 136, 138 of the second drive assembly 130 extend through a first opening 113a in a frame member 112 of the proximal portion 104 of the adapter assembly 100, and the fourth and fifth push/pull cables 146, 148 extend through a second opening 113b in the frame member 112. Each of the second, third, fourth, and fifth push/pull cables 136, 138, 146, 148 includes an outer sheath or service conduit 137, 139, 147, 149, respectively. As noted above, proximal ends of the second and third cables 136, 138 are secured to the second carriage assembly 134 and proximal ends of the fourth and fifth cables 146, 148 are secured to the third carriage assembly 144. Similarly, proximal ends of the respective second, third, fourth, and fifth outer sheaths 137, 139, 147, 149 of the respective second, third, fourth, and fifth push/pull cables 136, 138, 146, 148 are secured to the frame member 112.


With additional reference to FIG. 10, the first push/pull cable 126 of the first drive assembly 120, and each of the second, third, fourth, and fifth push/pull cables 136, 138, 146, 148 with respective outer sheaths 137, 139, 147, 149 of the second and third drive assemblies 130, 140, respectively, extend through the intermediate portion 106 (FIG. 1) of the adapter assembly 100 and operably engage the actuation assembly 150 disposed in the distal portion 104 of the adapter assembly 100.


As shown in FIG. 10, the second, third, fourth, and fifth push/pull cables 136, 138, 146, 148 are arranged in a helical pattern within the intermediate portion 106 of the adapter assembly 100. It is envisioned that the second, third, fourth, and fifth push/pull cables 136, 138, 146, 148 may instead be arranged in a wave pattern (FIG. 11), an offset wave pattern, or simple loop pattern (FIG. 12). These arrangements provide service slack, i.e., extra length, in the second, third, fourth, and fifth push/pull cables 136, 138, 146, 148 of the respective second and third drive assemblies 130, 140 within the intermediate portion 106 of the adapter assembly 100. In addition to accommodating the shortening and lengthening of the intermediate portion 106 of the adapter assembly during flexing of the adapter assembly 100, the service slack allows for migration during cycling operation of the second and third drive assemblies 130, 140.


As will be described in further detail below, the inclusion of the service slack in each of the second, third, fourth, and fifth push/pull cables 136, 138, 146, 148 and the respective second, third, fourth, and fifth outer sheaths 137, 139, 147, 149 within the intermediate portion 106 of the adapter assembly 100 changes the relative frame of reference of the second, third, fourth, and fifth push/pull cables 136, 138, 146, 148 and the respective second, third, fourth, and fifth outer sheaths 137, 139, 147, 149. The configuration of the adapter assembly 100 is such that when the second, third, fourth, and fifth push/pull cables 136, 138, 146, 148 are pulled within the proximal portion 102 of the adapter assembly 100, the second, third, fourth, and fifth outer sheaths 137, 139, 147, 149 of the respective second, third, fourth, and fifth push/pull cables 136, 138, 146, 148 are pushed within the distal portion 104 of the adapter assembly 100.


With reference now to FIGS. 13-17, the actuation assembly 150 of the adapter assembly 100 includes a cylindrical housing 152 received within an inner sleeve 108a of the distal portion 104 of the adapter assembly 100, the first and second pusher members 154, 156 slidably supported within the cylindrical housing 152, first and second pairs of guide members 158a, 158b, 160a, 160b secured relative to the cylindrical housing 152, and first and second pairs of guide tubes 162a, 162b, 164a, 164b (FIG. 10) extending from respective first and second pusher members 154, 156 and about respective free ends of the first and second pairs of guide members 158a, 158b, 160a, 160b.


With particular reference to FIG. 13, a proximal end of the cylindrical housing 152 of the actuation assembly 150 extends from a distal end of the inner sleeve 108a and both the cylindrical housing 152 and the inner sleeve 108a are received within a distal end of the outer sleeve 108 (FIG. 1). A distal end of the cylindrical housing 152 releasably receives the loading unit 40 of the tool assembly 30 (FIG. 2).


With continued reference to FIGS. 13-17, the first pusher member 154 of the actuation assembly 150 is movably supported within the cylindrical housing 152 (FIG. 13) of the actuation assembly 150 and the second pusher member 156 is moveably supported within the first pusher member 154. The second and third outer sheaths 137, 139 (FIG. 16) of the respective second and third push/pull cables 136, 138 (FIG. 9) engage the first pusher member 154 (FIG. 16) and the fourth and fifth outer sheaths 147, 149 (FIG. 17) of the respective fourth and fifth push/pull cables 136, 148 (FIG. 9) engage the second pusher member 156 (FIG. 17). The first and second pusher members 154, 156 each define a plurality of slots 153 (FIG. 16), 155 (FIG. 17), respectively, for accommodating the first and second pairs of guide members 158a, 158b, 160a, 160b.


As noted above, each of the first pair of guide members 158a, 158b is integrally formed with, or securely connected to, the respective second and third push/pull cable 136, 138 (FIG. 9), of the second drive assembly 130 of the adapter assembly 100. Each guide member 158a, 158b of the first pair of guide members engages the cylindrical housing 152 of the actuation assembly 150 (see, for example, FIG. 14) to fix the second and third push/pull cables 136, 138 relative to the actuation assembly 150. A free end of each of guide member 158a, 158b of the first pair of guide members is received within the respective tubular guide 162a, 162b extending from the first pusher member 154. As noted above, the second drive assembly 130 includes two (2) push/pull cables 136, 138, however, the second drive assembly 130 is capable of accommodating up to six (6) push/pull cables (not shown). In some embodiments, any or all of the tubular guides 162a, 162b may be replaced with additional push/pull cables (not shown) and accompanying outer sheaths (not shown).


During actuation of the second drive assembly 130, each of the second and third push/pull cables 136, 138 are retracted through longitudinal movement of the second carriage assembly 134 of the second drive assembly 130. As described in detail above, the configuration of the second and third push/pull cables 136, 138 of the second drive assembly 130, and the accompanying second and third sheaths 137, 139, respectively, facilitated by the service slack provided by, for example, the helical pattern of the second and third push/pull cables 136, 138 within the intermediate portion 106 of the adapter assembly 100, is such that when the second and third push/pull cables 136, 138 are pulled, i.e., retracted, the second and third sheaths 137, 139 move distally, i.e., advance. Advancement of the second and third sheaths 137, 139 of the second drive assembly 130 causes distal movement of the first pusher member 154 of the actuation assembly 150, as indicated by arrow “A” in FIG. 16.


As noted above, each guide member 160a, 160b of the second pair of guide members is integrally formed with, or securely connected to, the respective fourth and fifth push/pull cable 146, 148, of the third drive assembly 140 of the adapter assembly 100. Each guide member 160a, 160b of the second pair of guide members engages the cylindrical housing 152 of the actuation assembly 150 to fix the fourth and fifth push/pull cables 146, 148 relative to the actuation assembly 150. The free end of each guide member 160a, 160b of the second pair of guide members is received within the respective tubular guide 164a, 164b extending for the second pusher member 156. As noted above, the third drive assembly 140 includes two (2) push/pull cables 146, 148; however, the third drive assembly 140 is capable of accommodating up to four (4) push/pull cables. In some embodiments, any or all of the tubular guides 164a, 164b may be replaced with additional push/pull cables (not shown) and accompanying outer sheaths (not shown).


During actuation of the third drive assembly 140, each of the fourth and fifth push/pull cables 146, 148 are retracted through longitudinal movement of the third carriage assembly 144 of the third drive assembly 140. As described in detail above, the configuration of the fourth and fifth push/pull cables 146, 148, and the accompanying fourth and fifth sheaths 147, 149, respectively, facilitated by the service slack provided by the, for example, helical pattern (FIG. 2) of the fourth and fifth push/pull cables 146, 148 within the intermediate portion 106 of the adapter assembly 100, is such that when the fourth and fifth push/pull cables 146, 148 are pulled, i.e., retracted, the fourth and fifth sheaths 147, 149 are moved distally, i.e., advanced. Advancement of the fourth and fifth sheaths 147, 149 of the third drive assembly 140 causes distal movement of the second pusher member 156 of the actuation assembly 150, as indicated by arrow “B” in FIG. 16.


Springs “S” received about the second, third, fourth, and fifth sheaths 137, 139, 147, 149 of the respective second, third, fourth, and fifth push/pull cables 136, 138, 146, 148 facilitate the return of the second, third, fourth, and fifth sheaths 137, 139, 147, 149 to their initial positions when the respective second, third, fourth, and fifth push/pull cables 136, 138, 146, 148 are advanced, i.e., pushed distally. As the second, third, fourth, and fifth sheaths 137, 139, 147, 149 move proximally, the respective first and second pusher members 154, 156 are moved distally, i.e., retracted.


When the loading unit 40 is secured to the cylindrical housing 152 of the actuation assembly 150, the first pusher member 154 engages a staple pusher member 42 of the loading unit 40 and the second pusher member 156 engages a knife pusher member 44 of the loading unit 40. The first and second pusher members 154, 156 are moveably supported within the cylindrical housing 152 to effect longitudinal movement of the respective stapler pusher member 42 and the knife pusher member 44.


With reference now to FIGS. 18-23, the trocar assembly 170 of the adapter assembly 100 is operably connected to the first drive assembly 120 and is operably received through the first and second pusher members 154, 156 of the actuation assembly 150. More particularly, the trocar assembly 170 includes a locking member 172, and a trocar member 174 releasably secured to the locking member 172. The trocar member 174 may be formed of proximal and distal portions 174a, 174b, as shown, or may be integrally formed, e.g., monolithic.


A proximal end of the locking member 172 is securely connected to the first push/pull cable 126 of the first drive assembly 120 (FIG. 8). A distal end of the locking member 172 includes a plurality of fingers 172a configured for releasably engaging the trocar member 174. The plurality of fingers 172a are movable between a first position (FIG. 18) in which the plurality of fingers 172a are splayed apart to facilitate the receipt of the trocar member 174 therein, and a second position (FIG. 21) in which the plurality of fingers 172a are compressed about the trocar member 174 to secure the trocar member 174 therein. As will be described in further detail below, the plurality of fingers 172a are in the first position when the second pusher member 156 of the actuation assembly 150 is in a proximal-most position, thereby allowing the plurality of fingers 172a to splay outwardly.


Each of the plurality of fingers 172a includes a locking feature, e.g., a pair of teeth 173, and the proximal portion 174a of the trocar member 174 defines a corresponding locking feature, e.g., a pair of annular grooves 175. The annular grooves 175 are positioned to receive the pairs of teeth 173 of the plurality of fingers 172a when the trocar member 174 is in engagement with the locking member 172 and the plurality of fingers 172a are in their second position.


With particular reference to FIG. 19, the first drive assembly 120 is shown with the first push/pull cable 126 in a distal-most position. When in the distal-most position, a tissue piercing tip of the distal portion 174b of the trocar member 174 facilitates penetration of tissue (not shown) by the trocar member 174. As shown, the second pusher assembly 156 of the actuation assembly 150 is in its proximal-most position. In this manner, the plurality of fingers 172a of the locking member 172 of the trocar assembly 170 is in its second position.


Turning to FIG. 20, actuation of the first drive assembly 120 causes pulling, i.e., retraction, of the first push/pull cable 126, as indicated by arrow “C” in FIG. 19, to retract the trocar member 174 within the plurality of fingers 172a of the locking member 172 of the trocar assembly 170. Prior to, or simultaneously with the retraction of the first push/pull cable 126, the third drive assembly 140 (FIG. 7) is actuated to cause the retraction of the second pusher member 156, as indicated by arrow “D” in FIG. 19, to its proximal-most position, in the manner described above. Alternatively, the adapter assembly 100 is provided to a clinician with the second pusher member 156 of the actuation assembly 150 in its proximal-most position, thereby eliminating the need to retract the second pusher member 156 prior to securing the trocar member 174 to the locking member 172.


Turning to FIG. 21, upon receipt of the trocar member 174 of the trocar assembly 170 within the locking member 172 of the trocar assembly 170, the second pusher member 156 of the actuation assembly 150 is returned to its initial position, i.e., advanced, through operation of the third drive assembly 140. As the second pusher member 156 advances relative to the locking member 172, engagement between the second pusher member 156 and the plurality of fingers 172a of the locking member 172 causes the plurality of fingers 172a to flex radially inwardly about the proximal portion 174a of the trocar member 174 such that the pairs of teeth 173 of the plurality of fingers 172a of the locking member 172 are received within the annular grooves 175 of the trocar member 174. In this manner, the trocar member 174 is secured to the locking member 172.


With reference to FIG. 22, during operation of the surgical stapling device 10, actuation of the first drive assembly 120 (FIG. 8), in the manner described above, effects movement of the trocar assembly 170, as indicated by arrow “D”. When the anvil assembly 50 is secured to the distal portion 174b of the trocar member 174 of the trocar assembly 170, movement of the trocar assembly 170 causes a clamping of tissue between, for example, the anvil assembly 50 (FIG. 1) and the loading unit 40 of the tool assembly 30 (FIG. 1).


Subsequent to the clamping of tissue (not shown), actuation of the second drive assembly 130 (FIG. 8), in the manner described above, effects movement of the first pusher member 154 of the actuation assembly 150, as indicated by arrow “E” in FIG. 21. As noted above, the first pusher member 154 is connected to the staple pusher member 42 (FIG. 13) of the loading unit 40 (FIG. 13). Accordingly, advancement of first pusher member 154 of the actuation assembly 150 causes advancement of the stapler pusher member 42 of the loading unit 40 to effect the stapling of tissue (not shown) that is clamped between the anvil assembly 50 (FIG. 1) and the loading unit 40 of the tool assembly 30 (FIG. 1).


Turning to FIG. 23, subsequent to the stapling of tissue (not shown), actuation of the third drive assembly 140, in the manner described above, effects movement of the second pusher member 156 of the actuation assembly 150, as indicated by arrow “F” in FIG. 22. As noted above, the second pusher member 156 is connected to the knife pusher member 44 (FIG. 13) of the loading unit 40 (FIG. 13). Accordingly, advancement of second pusher member 156 of the actuation assembly 150 causes advancement of the knife pusher member 44 of the loading unit 40 to effect the cutting of tissue (not shown) that is clamped between anvil assembly 50 (FIG. 1) and the loading unit 40 of the tool assembly 30 (FIG. 1).


Although the adapter assembly 100 has been shown and described in relation to operation of the tool assembly 30 (FIG. 1) including the loading unit 40 (FIG. 1) and the anvil assembly 50 (FIG. 1), the adapter assembly 100 may be modified for operation with end effectors having different configurations. For example, the adapter assembly 100 may be modified for use with an end effector having only a single actuation, e.g., linear stapling.


Any of the components described herein may be fabricated from either metals, plastics, resins, composites or the like taking into consideration strength, durability, wearability, weight, resistance to corrosion, ease of manufacturing, cost of manufacturing, and the like.


Persons skilled in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments. It is envisioned that the elements and features illustrated or described in connection with one exemplary embodiment may be combined with the elements and features of another without departing from the scope of the present disclosure. As well, one skilled in the art will appreciate further features and advantages of the disclosure based on the above-described embodiments. Accordingly, the disclosure is not to be limited by what has been particularly shown and described, except as indicated by the appended claims.

Claims
  • 1. An adapter assembly for operably connecting an end effector to a surgical instrument, the adapter assembly comprising: an outer housing having proximal and distal portions;a drive coupling assembly disposed in the proximal portion of the outer housing;a first drive assembly operably connected to the drive coupling assembly, the first drive assembly including a first push/pull cable;a second drive assembly operably connected to the drive coupling assembly, the second drive assembly including at least second and third push/pull cables, each of the at least second and third push/pull cables including a service slack and an outer sheath having proximal and distal portions;a frame member disposed within the outer housing, wherein the proximal portions of the outer sheaths of the at least second and third push/pull cables are secured to the frame member;an actuation assembly including a first pusher member and an inner housing, the first pusher member being movably supported within the inner housing, the distal portions of the outer sheaths of the at least second and third push/pull cables being secured to the first pusher member, wherein each of the second and third push/pull cables are secured to the inner housing by a first pair of guide members; andwherein retraction of the second and third push/pull cables effects advancement of the first pusher member.
  • 2. The adapter assembly of claim 1, further including a third drive assembly operably connected to the drive coupling assembly, the third drive assembly including at least fourth and fifth push/pull cables secured relative to the inner housing, each of the at least fourth and fifth push/pull cables including a service slack and an outer sheath having proximal and distal portions.
  • 3. The adapter assembly of claim 2, wherein the actuation assembly includes a second pusher member, the second pusher member being movably supported within the inner housing, the distal portions of the outer sheaths of the at least fourth and fifth push/pull cables being secured to the second pusher member, wherein retraction of the fourth and fifth bush/pull cables effects advancement of the second pusher member.
  • 4. The adapter assembly of claim 2, wherein each of the second and third push/pull cables are secured to the first pair of guide members and the fourth and fifth push/pull cables are secured to a second pair of guide members.
  • 5. The adapter assembly of claim 4, wherein the inner housing is cylindrical, each guide member of the first and second pairs of guide members is secured relative to the inner housing.
  • 6. The adapter assembly of claim 2, wherein each of the first, second, and third drive assemblies include a transmission for converting high speed, low torque input to low speed, high torque output.
  • 7. The adapter assembly of claim 2, wherein the coupling assembly connects each of the first, second, and third drive assemblies with respective first, second, and third drive shafts of a handle assembly.
  • 8. The adapter assembly of claim 2, wherein the third drive assembly includes a third carriage assembly, the fourth and fifth push/pull cables being secured to the third carriage assembly.
  • 9. The adapter assembly of claim 1, further comprising a trocar member, wherein the first push/pull cable is secured to the trocar member.
  • 10. The adapter assembly of claim 1, wherein the first drive assembly includes a first carriage assembly and the second drive assembly includes a second carriage assembly, the first push/pull cable being secured to the first carriage assembly and the second and third push/pull cables being secured to the second carriage assembly.
  • 11. The adapter assembly of claim 1, further including a trocar assembly, wherein the trocar assembly includes a locking member and a releasable trocar member.
  • 12. The adapter assembly of claim 11, wherein the releasable trocar member is configured for operable engagement with an anvil assembly.
  • 13. An adapter assembly operably connecting an end effector to a surgical stapling instrument, the adapter assembly comprising: a drive coupling assembly;a first drive assembly operably connected to the drive coupling assembly, the first drive assembly including a first push/pull cable;a second drive assembly operably connected to the drive coupling assembly, the second drive assembly including at least second and third push/pull cables; andan actuation assembly including a first pusher member and an inner housing,wherein the first pusher member is movably supported within the inner housing;wherein each of the second and third push/pull cables is secured relative to the inner housing by a first pair of guide members;wherein the second and third push/pull cables each include an outer sheath, a proximal end of each outer sheath being secured to a frame member of a proximal portion of the adapter assembly, the second and third push/pull cables and their corresponding outer sheaths each including a service slack,wherein the outer sheaths of the respective second and third push/pull cables engage the first pusher member, whereby retraction of the second and third push/pull cables reduces the service slack to advance the sheaths to cause distal movement of the first pusher member.
  • 14. The adapter assembly of claim 13, further comprising a trocar member, wherein the first push/pull cable is secured to the trocar member.
  • 15. The adapter assembly of claim 13, wherein the inner housing is cylindrical, each guide member of the first pair of guide members is secured relative to the inner housing.
  • 16. The adapter assembly of claim 13, wherein at least one of the first and second assemblies include a transmission for converting high speed, low torque input to low speed, high torque output.
  • 17. The adapter assembly of claim 13, further including a trocar assembly, wherein the trocar assembly includes a locking member and a releasable trocar member.
  • 18. The adapter assembly of claim 17, wherein the releasable trocar member is configured for operable engagement with an anvil assembly.
  • 19. The adapter assembly of claim 13, wherein the coupling assembly connects each of the first and second drive assemblies with respective first and second drive shafts of a handle assembly.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of and priority to U.S. Provisional Patent Application No. 62/251,300 filed Nov. 5, 2015, the entire disclosure of which is incorporated by reference herein.

US Referenced Citations (507)
Number Name Date Kind
3193165 Akhalaya et al. Jul 1965 A
3388847 Kasulin et al. Jun 1968 A
3552626 Astafiev et al. Jan 1971 A
3638652 Kelley Feb 1972 A
3771526 Rudie Nov 1973 A
4198982 Fortner et al. Apr 1980 A
4207898 Becht Jun 1980 A
4289133 Rothfuss Sep 1981 A
4304236 Conta et al. Dec 1981 A
4319576 Rothfuss Mar 1982 A
4350160 Kolesov et al. Sep 1982 A
4351466 Noiles Sep 1982 A
4379457 Gravener et al. Apr 1983 A
4473077 Noiles et al. Sep 1984 A
4476863 Kanshin et al. Oct 1984 A
4485817 Swiggett Dec 1984 A
4488523 Shichman Dec 1984 A
4505272 Utyamyshev et al. Mar 1985 A
4505414 Filipi Mar 1985 A
4520817 Green Jun 1985 A
4550870 Krumme et al. Nov 1985 A
4573468 Conta et al. Mar 1986 A
4576167 Noiles Mar 1986 A
4592354 Rothfuss Jun 1986 A
4603693 Conta et al. Aug 1986 A
4606343 Conta et al. Aug 1986 A
4632290 Green et al. Dec 1986 A
4646745 Noiles Mar 1987 A
4665917 Clanton et al. May 1987 A
4667673 Li May 1987 A
4671445 Barker et al. Jun 1987 A
4700703 Resnick et al. Oct 1987 A
4703887 Clanton et al. Nov 1987 A
4708141 Inoue et al. Nov 1987 A
4717063 Ebihara Jan 1988 A
4752024 Green et al. Jun 1988 A
4754909 Barker et al. Jul 1988 A
4776506 Green Oct 1988 A
4817847 Redtenbacher et al. Apr 1989 A
4873977 Avant et al. Oct 1989 A
4893662 Gervasi Jan 1990 A
4903697 Resnick et al. Feb 1990 A
4907591 Vasconcellos et al. Mar 1990 A
4917114 Green et al. Apr 1990 A
4957499 Lipatov et al. Sep 1990 A
4962877 Hervas Oct 1990 A
5005749 Aranyi Apr 1991 A
5042707 Taheri Aug 1991 A
5047039 Avant et al. Sep 1991 A
5104025 Main et al. Apr 1992 A
5119983 Green et al. Jun 1992 A
5122156 Granger et al. Jun 1992 A
5139513 Segato Aug 1992 A
5158222 Green et al. Oct 1992 A
5188638 Tzakis Feb 1993 A
5193731 Aranyi Mar 1993 A
5197648 Gingold Mar 1993 A
5197649 Bessler et al. Mar 1993 A
5205459 Brinkerhoff et al. Apr 1993 A
5221036 Takase Jun 1993 A
5222963 Brinkerhoff et al. Jun 1993 A
5253793 Green et al. Oct 1993 A
5261920 Main et al. Nov 1993 A
5271543 Grant et al. Dec 1993 A
5271544 Fox et al. Dec 1993 A
5275322 Brinkerhoff et al. Jan 1994 A
5282810 Allen et al. Feb 1994 A
5285944 Green et al. Feb 1994 A
5285945 Brinkerhoff et al. Feb 1994 A
5292053 Bilotti et al. Mar 1994 A
5309927 Welch May 1994 A
5312024 Grant et al. May 1994 A
5314435 Green et al. May 1994 A
5314436 Wilk May 1994 A
5330486 Wilk Jul 1994 A
5333773 Main et al. Aug 1994 A
5344059 Green et al. Sep 1994 A
5346115 Perouse et al. Sep 1994 A
5348259 Blanco et al. Sep 1994 A
5350104 Main et al. Sep 1994 A
5355897 Pietrafitta et al. Oct 1994 A
5360154 Green Nov 1994 A
5368215 Green et al. Nov 1994 A
5392979 Green et al. Feb 1995 A
5395030 Kuramoto et al. Mar 1995 A
5403333 Kaster et al. Apr 1995 A
5404870 Brinkerhoff et al. Apr 1995 A
5411508 Bessler et al. May 1995 A
5425738 Gustafson et al. Jun 1995 A
5433721 Hooven et al. Jul 1995 A
5437684 Calabrese et al. Aug 1995 A
5439156 Grant et al. Aug 1995 A
5443198 Viola et al. Aug 1995 A
5447514 Gerry et al. Sep 1995 A
5454825 Van Leeuwen et al. Oct 1995 A
5464415 Chen Nov 1995 A
5470006 Rodak Nov 1995 A
5474223 Viola et al. Dec 1995 A
5497934 Brady et al. Mar 1996 A
5503635 Sauer et al. Apr 1996 A
5522534 Viola et al. Jun 1996 A
5533661 Main et al. Jul 1996 A
5571116 Bolanos Nov 1996 A
5588579 Schnut et al. Dec 1996 A
5609285 Grant et al. Mar 1997 A
5626591 Kockerling et al. May 1997 A
5632433 Grant et al. May 1997 A
5639008 Gallagher et al. Jun 1997 A
5641111 Ahrens et al. Jun 1997 A
5658300 Bito et al. Aug 1997 A
5669918 Balazs et al. Sep 1997 A
5685474 Seeber Nov 1997 A
5709335 Heck Jan 1998 A
5715987 Kelley et al. Feb 1998 A
5718360 Green et al. Feb 1998 A
5720506 Arabia, Jr. et al. Feb 1998 A
5720755 Dakov Feb 1998 A
5732872 Bolduc et al. Mar 1998 A
5749896 Cook May 1998 A
5758814 Gallagher et al. Jun 1998 A
5799857 Robertson et al. Sep 1998 A
5814055 Knodel et al. Sep 1998 A
5833698 Hinchliffe et al. Nov 1998 A
5836503 Ehrenfels et al. Nov 1998 A
5839639 Sauer et al. Nov 1998 A
5855312 Toledano Jan 1999 A
5860581 Robertson et al. Jan 1999 A
5868760 McGuckin, Jr. Feb 1999 A
5881943 Heck et al. Mar 1999 A
5915616 Viola et al. Jun 1999 A
5947363 Bolduc et al. Sep 1999 A
5951576 Wakabayashi Sep 1999 A
5957363 Heck Sep 1999 A
5993468 Rygaard Nov 1999 A
6024748 Manzo et al. Feb 2000 A
6050472 Shibata Apr 2000 A
6053390 Green et al. Apr 2000 A
6068636 Chen May 2000 A
6083241 Longo et al. Jul 2000 A
6102271 Longo et al. Aug 2000 A
6117148 Ravo et al. Sep 2000 A
6119913 Adams et al. Sep 2000 A
6126058 Adams et al. Oct 2000 A
6142933 Longo et al. Nov 2000 A
6149667 Hovland et al. Nov 2000 A
6176413 Heck et al. Jan 2001 B1
6179195 Adams et al. Jan 2001 B1
6193129 Bittner et al. Feb 2001 B1
6203553 Robertson et al. Mar 2001 B1
6209773 Bolduc et al. Apr 2001 B1
6241140 Adams et al. Jun 2001 B1
6253984 Heck et al. Jul 2001 B1
6258107 Balazs et al. Jul 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6269997 Balazs et al. Aug 2001 B1
6273897 Dalessandro et al. Aug 2001 B1
6279809 Nicolo Aug 2001 B1
6302311 Adams et al. Oct 2001 B1
6338737 Toledano Jan 2002 B1
6343731 Adams et al. Feb 2002 B1
6387105 Gifford, III et al. May 2002 B1
6398795 McAlister et al. Jun 2002 B1
6402008 Lucas Jun 2002 B1
6439446 Perry et al. Aug 2002 B1
6443973 Whitman Sep 2002 B1
6450390 Heck et al. Sep 2002 B2
6478210 Adams et al. Nov 2002 B2
6488197 Whitman Dec 2002 B1
6491201 Whitman Dec 2002 B1
6494877 Odell et al. Dec 2002 B2
6503259 Huxel et al. Jan 2003 B2
6517566 Hovland et al. Feb 2003 B1
6520398 Nicolo Feb 2003 B2
6533157 Whitman Mar 2003 B1
6551334 Blatter et al. Apr 2003 B2
6578751 Hartwick Jun 2003 B2
6585144 Adams et al. Jul 2003 B2
6588643 Bolduc et al. Jul 2003 B2
6592596 Geitz Jul 2003 B1
6601749 Sullivan et al. Aug 2003 B2
6605078 Adams Aug 2003 B2
6605098 Nobis et al. Aug 2003 B2
6626921 Blatter et al. Sep 2003 B2
6629630 Adams Oct 2003 B2
6631837 Heck Oct 2003 B1
6632227 Adams Oct 2003 B2
6632237 Ben-David et al. Oct 2003 B2
6652542 Blatter et al. Nov 2003 B2
6659327 Heck et al. Dec 2003 B2
6676671 Robertson et al. Jan 2004 B2
6681979 Whitman Jan 2004 B2
6685079 Sharma et al. Feb 2004 B2
6695198 Adams et al. Feb 2004 B2
6695199 Whitman Feb 2004 B2
6698643 Whitman Mar 2004 B2
6716222 McAlister et al. Apr 2004 B2
6716233 Whitman Apr 2004 B1
6726697 Nicholas et al. Apr 2004 B2
6742692 Hartwick Jun 2004 B2
6743244 Blatter et al. Jun 2004 B2
6763993 Bolduc et al. Jul 2004 B2
6769590 Vresh et al. Aug 2004 B2
6769594 Orban, III Aug 2004 B2
6820791 Adams Nov 2004 B2
6821282 Perry et al. Nov 2004 B2
6827246 Sullivan et al. Dec 2004 B2
6840423 Adams et al. Jan 2005 B2
6843403 Whitman Jan 2005 B2
6846308 Whitman et al. Jan 2005 B2
6852122 Rush Feb 2005 B2
6866178 Adams et al. Mar 2005 B2
6872214 Sonnenschein et al. Mar 2005 B2
6874669 Adams et al. Apr 2005 B2
6884250 Monassevitch et al. Apr 2005 B2
6905504 Vargas Jun 2005 B1
6938814 Sharma et al. Sep 2005 B2
6942675 Vargas Sep 2005 B1
6945444 Gresham et al. Sep 2005 B2
6953138 Dworak et al. Oct 2005 B1
6957758 Aranyi Oct 2005 B2
6959851 Heinrich Nov 2005 B2
6978922 Bilotti et al. Dec 2005 B2
6981941 Whitman et al. Jan 2006 B2
6981979 Nicolo Jan 2006 B2
7032798 Whitman et al. Apr 2006 B2
7059331 Adams et al. Jun 2006 B2
7059510 Orban, III Jun 2006 B2
7077856 Whitman Jul 2006 B2
7080769 Vresh et al. Jul 2006 B2
7086267 Dworak et al. Aug 2006 B2
7114642 Whitman Oct 2006 B2
7118528 Piskun Oct 2006 B1
7122044 Bolduc et al. Oct 2006 B2
7128748 Mooradian et al. Oct 2006 B2
7141055 Abrams et al. Nov 2006 B2
7168604 Milliman et al. Jan 2007 B2
7179267 Nolan et al. Feb 2007 B2
7182239 Myers Feb 2007 B1
7195142 Orban, III Mar 2007 B2
7207168 Doepker et al. Apr 2007 B2
7220237 Gannoe et al. May 2007 B2
7234624 Gresham et al. Jun 2007 B2
7235089 McGuckin, Jr. Jun 2007 B1
RE39841 Bilotti et al. Sep 2007 E
7285125 Viola Oct 2007 B2
7303106 Milliman et al. Dec 2007 B2
7303107 Milliman et al. Dec 2007 B2
7309341 Ortiz et al. Dec 2007 B2
7322994 Nicholas et al. Jan 2008 B2
7325713 Aranyi Feb 2008 B2
7334718 McAlister et al. Feb 2008 B2
7335212 Edoga et al. Feb 2008 B2
7364060 Milliman Apr 2008 B2
7398908 Holsten et al. Jul 2008 B2
7399305 Csiky et al. Jul 2008 B2
7401721 Holsten et al. Jul 2008 B2
7401722 Hur Jul 2008 B2
7407075 Holsten et al. Aug 2008 B2
7410086 Ortiz et al. Aug 2008 B2
7422137 Manzo Sep 2008 B2
7422138 Bilotti et al. Sep 2008 B2
7431191 Milliman Oct 2008 B2
7438718 Milliman et al. Oct 2008 B2
7455676 Holsten et al. Nov 2008 B2
7455682 Viola Nov 2008 B2
7481347 Roy Jan 2009 B2
7494038 Milliman Feb 2009 B2
7506791 Omaits et al. Mar 2009 B2
7516877 Aranyi Apr 2009 B2
7527185 Harari et al. May 2009 B2
7537602 Whitman May 2009 B2
7540839 Butler et al. Jun 2009 B2
7546939 Adams et al. Jun 2009 B2
7546940 Milliman et al. Jun 2009 B2
7547312 Bauman et al. Jun 2009 B2
7556186 Milliman Jul 2009 B2
7559451 Sharma et al. Jul 2009 B2
7585306 Abbott et al. Sep 2009 B2
7588174 Holsten et al. Sep 2009 B2
7600663 Green Oct 2009 B2
7611038 Racenet et al. Nov 2009 B2
7635385 Milliman et al. Dec 2009 B2
7669747 Weisenburgh, II et al. Mar 2010 B2
7686201 Csiky Mar 2010 B2
7694864 Okada et al. Apr 2010 B2
7699204 Viola Apr 2010 B2
7708181 Cole et al. May 2010 B2
7717313 Criscuolo et al. May 2010 B2
7721932 Cole et al. May 2010 B2
7726539 Holsten et al. Jun 2010 B2
7743958 Orban, III Jun 2010 B2
7744627 Orban, III et al. Jun 2010 B2
7770776 Chen et al. Aug 2010 B2
7771440 Ortiz et al. Aug 2010 B2
7776060 Mooradian et al. Aug 2010 B2
7793813 Bettuchi Sep 2010 B2
7802712 Milliman et al. Sep 2010 B2
7823592 Bettuchi et al. Nov 2010 B2
7837079 Holsten et al. Nov 2010 B2
7837080 Schwemberger Nov 2010 B2
7837081 Holsten et al. Nov 2010 B2
7845536 Viola et al. Dec 2010 B2
7845538 Whitman Dec 2010 B2
7857187 Milliman Dec 2010 B2
7886951 Hessler Feb 2011 B2
7896215 Adams et al. Mar 2011 B2
7900806 Chen et al. Mar 2011 B2
7909039 Hur Mar 2011 B2
7909219 Cole et al. Mar 2011 B2
7909222 Cole et al. Mar 2011 B2
7909223 Cole et al. Mar 2011 B2
7913892 Cole et al. Mar 2011 B2
7918377 Measamer et al. Apr 2011 B2
7922062 Cole et al. Apr 2011 B2
7922743 Heinrich et al. Apr 2011 B2
7931183 Orban, III Apr 2011 B2
7938307 Bettuchi May 2011 B2
7942302 Roby et al. May 2011 B2
7951166 Orban, III et al. May 2011 B2
7959050 Smith et al. Jun 2011 B2
7967181 Viola et al. Jun 2011 B2
7975895 Milliman Jul 2011 B2
8002795 Beetel Aug 2011 B2
8006701 Bilotti et al. Aug 2011 B2
8006889 Adams et al. Aug 2011 B2
8011551 Marczyk et al. Sep 2011 B2
8011554 Milliman Sep 2011 B2
8016177 Bettuchi et al. Sep 2011 B2
8016858 Whitman Sep 2011 B2
8020741 Cole et al. Sep 2011 B2
8025199 Whitman et al. Sep 2011 B2
8028885 Smith et al. Oct 2011 B2
8038046 Smith et al. Oct 2011 B2
8043207 Adams Oct 2011 B2
8066167 Measamer et al. Nov 2011 B2
8066169 Viola Nov 2011 B2
8070035 Holsten et al. Dec 2011 B2
8070037 Csiky Dec 2011 B2
8096458 Hessler Jan 2012 B2
8109426 Milliman et al. Feb 2012 B2
8109427 Orban, III Feb 2012 B2
8113406 Holsten et al. Feb 2012 B2
8113407 Holsten et al. Feb 2012 B2
8123103 Milliman Feb 2012 B2
8128645 Sonnenschein et al. Mar 2012 B2
8132703 Milliman et al. Mar 2012 B2
8136712 Zingman Mar 2012 B2
8146790 Milliman Apr 2012 B2
8146791 Bettuchi et al. Apr 2012 B2
8181838 Milliman et al. May 2012 B2
8192460 Orban, III et al. Jun 2012 B2
8201720 Hessler Jun 2012 B2
8203782 Brueck et al. Jun 2012 B2
8211130 Viola Jul 2012 B2
8225799 Bettuchi Jul 2012 B2
8225981 Criscuolo et al. Jul 2012 B2
8231041 Marczyk et al. Jul 2012 B2
8231042 Hessler et al. Jul 2012 B2
8257391 Orban et al. Sep 2012 B2
8267301 Milliman et al. Sep 2012 B2
8272552 Holsten et al. Sep 2012 B2
8276802 Kostrzewski Oct 2012 B2
8281975 Criscuolo et al. Oct 2012 B2
8286845 Perry et al. Oct 2012 B2
8308045 Bettuchi et al. Nov 2012 B2
8312885 Bettuchi et al. Nov 2012 B2
8313014 Bettuchi Nov 2012 B2
8317073 Milliman et al. Nov 2012 B2
8317074 Ortiz et al. Nov 2012 B2
8322590 Patel et al. Dec 2012 B2
8328060 Jankowski et al. Dec 2012 B2
8328062 Viola Dec 2012 B2
8328063 Milliman et al. Dec 2012 B2
8343185 Milliman et al. Jan 2013 B2
8353438 Baxter, III et al. Jan 2013 B2
8353439 Baxter, III et al. Jan 2013 B2
8353930 Heinrich et al. Jan 2013 B2
8360295 Milliman et al. Jan 2013 B2
8365974 Milliman Feb 2013 B2
8403942 Milliman et al. Mar 2013 B2
8408441 Wenchell et al. Apr 2013 B2
8413870 Pastorelli et al. Apr 2013 B2
8413872 Patel Apr 2013 B2
8418905 Milliman Apr 2013 B2
8418909 Kostrzewski Apr 2013 B2
8424535 Hessler et al. Apr 2013 B2
8424741 McGuckin, Jr. et al. Apr 2013 B2
8430291 Heinrich et al. Apr 2013 B2
8430292 Patel et al. Apr 2013 B2
8453910 Bettuchi et al. Jun 2013 B2
8453911 Milliman et al. Jun 2013 B2
8485414 Criscuolo et al. Jul 2013 B2
8490853 Criscuolo et al. Jul 2013 B2
8511533 Viola et al. Aug 2013 B2
8551138 Orban, III et al. Oct 2013 B2
8567655 Nalagatla et al. Oct 2013 B2
8579178 Holsten et al. Nov 2013 B2
8590763 Milliman Nov 2013 B2
8590764 Hartwick et al. Nov 2013 B2
8608047 Holsten et al. Dec 2013 B2
8616428 Milliman et al. Dec 2013 B2
8616429 Viola Dec 2013 B2
8622275 Baxter, III et al. Jan 2014 B2
8631993 Kostrzewski Jan 2014 B2
8636187 Hueil et al. Jan 2014 B2
8640940 Ohdaira Feb 2014 B2
8662370 Takei Mar 2014 B2
8663258 Bettuchi et al. Mar 2014 B2
8672931 Goldboss et al. Mar 2014 B2
8678264 Racenet et al. Mar 2014 B2
8684248 Milliman Apr 2014 B2
8684250 Bettuchi et al. Apr 2014 B2
8684251 Rebuffat et al. Apr 2014 B2
8684252 Patel et al. Apr 2014 B2
8733611 Milliman May 2014 B2
20030111507 Nunez Jun 2003 A1
20030218047 Sharma Nov 2003 A1
20040073090 Butler et al. Apr 2004 A1
20050051597 Toledano Mar 2005 A1
20050107813 Gilete Garcia May 2005 A1
20060000869 Fontayne Jan 2006 A1
20060011698 Okada et al. Jan 2006 A1
20060201989 Ojeda Sep 2006 A1
20070027473 Vresh et al. Feb 2007 A1
20070029363 Popov Feb 2007 A1
20070060952 Roby et al. Mar 2007 A1
20090236392 Cole et al. Sep 2009 A1
20090236398 Cole et al. Sep 2009 A1
20090236401 Cole et al. Sep 2009 A1
20100019016 Edoga et al. Jan 2010 A1
20100051668 Milliman et al. Mar 2010 A1
20100084453 Hu Apr 2010 A1
20100147923 D'Agostino et al. Jun 2010 A1
20100163598 Belzer Jul 2010 A1
20100224668 Fontayne et al. Sep 2010 A1
20100230465 Smith et al. Sep 2010 A1
20100258611 Smith et al. Oct 2010 A1
20100264195 Bettuchi Oct 2010 A1
20100327041 Milliman et al. Dec 2010 A1
20110011916 Levine Jan 2011 A1
20110114697 Baxter, III et al. May 2011 A1
20110114700 Baxter, III et al. May 2011 A1
20110144640 Heinrich et al. Jun 2011 A1
20110147432 Heinrich et al. Jun 2011 A1
20110192882 Hess et al. Aug 2011 A1
20110288573 Yates et al. Nov 2011 A1
20120145755 Kahn Jun 2012 A1
20120193395 Pastorelli et al. Aug 2012 A1
20120193398 Williams et al. Aug 2012 A1
20120197190 Suon Aug 2012 A1
20120232339 Csiky Sep 2012 A1
20120273548 Ma et al. Nov 2012 A1
20120292367 Morgan Nov 2012 A1
20120310220 Malkowski Dec 2012 A1
20120325888 Qiao et al. Dec 2012 A1
20130015232 Smith et al. Jan 2013 A1
20130020372 Jankowski et al. Jan 2013 A1
20130020373 Smith et al. Jan 2013 A1
20130032628 Li et al. Feb 2013 A1
20130056516 Viola Mar 2013 A1
20130060258 Giacomantonio Mar 2013 A1
20130105544 Mozdzierz et al. May 2013 A1
20130105546 Milliman et al. May 2013 A1
20130105551 Zingman May 2013 A1
20130126580 Smith et al. May 2013 A1
20130153630 Miller et al. Jun 2013 A1
20130153631 Vasudevan et al. Jun 2013 A1
20130153633 Casasanta, Jr. et al. Jun 2013 A1
20130153634 Carter et al. Jun 2013 A1
20130153638 Carter et al. Jun 2013 A1
20130153639 Hodgkinson et al. Jun 2013 A1
20130175315 Milliman Jul 2013 A1
20130175318 Felder et al. Jul 2013 A1
20130175319 Felder et al. Jul 2013 A1
20130175320 Mandakolathur Vasudevan et al. Jul 2013 A1
20130181035 Milliman Jul 2013 A1
20130181036 Olson et al. Jul 2013 A1
20130186930 Wenchell et al. Jul 2013 A1
20130193185 Patel Aug 2013 A1
20130193187 Milliman Aug 2013 A1
20130193190 Carter et al. Aug 2013 A1
20130193191 Stevenson et al. Aug 2013 A1
20130193192 Casasanta, Jr. et al. Aug 2013 A1
20130200131 Racenet et al. Aug 2013 A1
20130206816 Penna Aug 2013 A1
20130214027 Hessler et al. Aug 2013 A1
20130214028 Patel et al. Aug 2013 A1
20130228609 Kostrzewski Sep 2013 A1
20130240597 Milliman et al. Sep 2013 A1
20130240600 Bettuchi Sep 2013 A1
20130248581 Smith et al. Sep 2013 A1
20130277411 Hodgkinson et al. Oct 2013 A1
20130277412 Gresham et al. Oct 2013 A1
20130284792 Ma Oct 2013 A1
20130292449 Bettuchi et al. Nov 2013 A1
20130299553 Mozdzierz Nov 2013 A1
20130299554 Mozdzierz Nov 2013 A1
20130306701 Olson Nov 2013 A1
20130306707 Viola et al. Nov 2013 A1
20140005681 Gee Jan 2014 A1
20140008413 Williams Jan 2014 A1
20140012317 Orban et al. Jan 2014 A1
20140025046 Williams Jan 2014 A1
20140194893 Jeong Jul 2014 A1
20150223818 Racenet et al. Aug 2015 A1
20160316996 Nakayama Nov 2016 A1
20170102055 Gutelius Apr 2017 A1
Foreign Referenced Citations (34)
Number Date Country
908529 Aug 1972 CA
2805365 Aug 2013 CA
1057729 May 1959 DE
3301713 Jul 1984 DE
0152382 Aug 1985 EP
0173451 Mar 1986 EP
0190022 Aug 1986 EP
0282157 Sep 1988 EP
0503689 Sep 1992 EP
1354560 Oct 2003 EP
2138118 Dec 2009 EP
2168510 Mar 2010 EP
2238926 Oct 2010 EP
2524656 Nov 2012 EP
2823771 Jan 2015 EP
1136020 May 1957 FR
1461464 Feb 1966 FR
1588250 Apr 1970 FR
2443239 Jul 1980 FR
1185292 Mar 1970 GB
2016991 Sep 1979 GB
2070499 Sep 1981 GB
2004147969 May 2004 JP
2013-138860 Jul 2013 JP
7711347 Apr 1979 NL
1509052 Sep 1989 SU
8706448 Nov 1987 WO
8900406 Jan 1989 WO
9006085 Jun 1990 WO
9835614 Aug 1998 WO
2001054594 Aug 2001 WO
2004032763 Apr 2004 WO
2008107918 Sep 2008 WO
2015139197 Sep 2015 WO
Non-Patent Literature Citations (4)
Entry
European Search Report dated Jul. 13, 2017, issued in EP Application No. 16197375.
European Search Report dated Mar. 14, 2017, issued in EP Application No. 16197375.
Extended European Search Report from Appl. No. 14181908.6 dated May 26, 2015.
European Examination Report from Appl. No. 14181908.6 dated May 3, 2016.
Related Publications (1)
Number Date Country
20170128074 A1 May 2017 US
Provisional Applications (1)
Number Date Country
62251300 Nov 2015 US