Adapter assembly for use with a wellbore tool string

Information

  • Patent Grant
  • 11814915
  • Patent Number
    11,814,915
  • Date Filed
    Wednesday, December 8, 2021
    2 years ago
  • Date Issued
    Tuesday, November 14, 2023
    7 months ago
  • Inventors
  • Original Assignees
    • DynaEnergetics Europe GmbH
  • Examiners
    • Malikasim; Jonathan
    Agents
    • Womble Bond Dickinson (US) LLP
Abstract
An adapter assembly for use with a wellbore tool string may include a tandem seal adapter (TSA) having a TSA body extending along an axial direction and a collar having a collar body formed in a substantially annular shape and extending in the axial direction. The collar may be provided outward from the TSA in a radial direction substantially perpendicular to the axial direction. The TSA body and the collar body may overlap in the axial direction. The collar may abut the TSA.
Description
BACKGROUND

Wellbore tools used in oil and gas operations are often sent down a wellbore in tool strings including multiple discrete wellbore tools, or modules, connected together to consolidate different or multiple wellbore operations into a single “run,” or process of sending wellbore tools downhole to perform one or more operations. This approach contributes to time and cost savings because preparing and deploying a wellbore tool into a wellbore and pumping, with fluid under hydraulic pressure, the wellbore tool to a particular location in a wellbore (that may be a mile or more under the ground) requires a great deal of time, energy, and manpower. Additional time, manpower, and costs are required to conduct the operation and remove the spent wellbore tool(s) from the wellbore.


Wellbore tools may include, without limitation, perforating guns, puncher guns, logging tools, jet cutters, plugs, frac plugs, bridge plugs, setting tools, self-setting bridge plugs, self-setting frac plugs, mapping/positioning/orientating tools, bailer/dump bailer tools and ballistic tools. Many of these wellbore tools contain sensitive or powerful explosives because many wellbore tools are ballistically (i.e., explosively) actuated or perform ballistic operations within the wellbore. Additionally, certain wellbore tools may include sensitive electronic control components and connections that control various operations of the wellbore tool. Explosives, control systems, and other components of wellbore tools may be sensitive to conditions within the wellbore including the high pressures and temperatures, fluids, debris, etc. In addition, wellbore tools that have explosive activity may generate tremendous amounts of ballistic and gas pressures within the wellbore tool itself. Accordingly, to ensure the integrity and proper operation of wellbore tools connected together as part of the tool string, connections between adjacent wellbore tools within the tool string may not only connect adjacent wellbore tools in the tool string, they may, in many cases, seal internal components of the wellbore tools from the wellbore conditions and pressure isolate adjacent modules against ballistic forces.


A tandem seal adapter (TSA) is a known connector often used for accomplishing the functions of a connector as described above, and in particular for connecting adjacent perforating gun modules. A perforating gun is an exemplary, though not limiting, wellbore tool that may include many of the features and challenges described above. A perforating gun carries explosive charges into the wellbore to perform perforating operations by which the shaped charges are detonated in a manner that produces perforations in a surrounding geological hydrocarbon formation from which oil and gas may be recovered. Conventional perforating guns often include electric componentry to control positioning and detonation of the explosive charges.


In conventional systems, problems may arise in that the mechanical coupling between consecutive wellbore tools has insufficient strength. Additionally, conventional connectors may undesirably increase the length of the wellbore tool string. For example, a conventional connector may include both sealing elements and mechanical coupling components on the same part. However, as the sealing elements and coupling components must be axially separated, this increases the overall axial length of the connector, which in turn increases the length of the tool string.


Accordingly, it may be desirable to develop a tandem seal adapter, adapter assembly, and wellbore tool string that helps to strength mechanical coupling between components, shortens the length of the tool string, and may be produced more efficiently and inexpensively.


BRIEF DESCRIPTION

An exemplary embodiment of an adapter assembly for use with a wellbore tool string may include a tandem seal adapter (TSA) comprising a TSA body extending along an axial direction and a collar comprising a collar body formed in a substantially annular shape and extending in the axial direction. The collar may be provided outward from the TSA in a radial direction substantially perpendicular to the axial direction. The TSA body and the collar body may overlap in the axial direction. The collar may abut the TSA. A collar maximum outer diameter may be larger than a TSA maximum outer diameter.


An exemplary embodiment of an adapter assembly for use with a wellbore tool string may include a tandem seal adapter (TSA) comprising a TSA body extending along an axial direction and a collar comprising a collar body formed in a substantially annular shape and extending in the axial direction. The collar may be provided outward from the TSA in a radial direction substantially perpendicular to the axial direction. The TSA body and the collar body may overlap in the axial direction. The collar may abut the TSA. A first housing of a first wellbore tool may be provided between the TSA and the collar in the radial direction.


An exemplary embodiment of an adapter assembly for use with a wellbore tool string may include a tandem seal adapter (TSA) and a collar. The TSA may include a TSA body extending along an axial direction and a first seal provided on an outer surface of the TSA body. The collar may include a collar body formed in a substantially annular shape and extending in the axial direction and a first collar thread portion formed on a surface of the collar body. The collar may be provided outward from the TSA in a radial direction substantially perpendicular to the axial direction. The TSA body and the collar body may overlap in the axial direction. The collar may abut the TSA. The first seal may overlap with the first collar thread portion in the axial direction.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

A more particular description will be rendered by reference to exemplary embodiments that are illustrated in the accompanying figures. Understanding that these drawings depict exemplary embodiments and do not limit the scope of this disclosure, the exemplary embodiments will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:



FIG. 1 is a cross-section view of a wellbore tool string according to an exemplary embodiment;



FIG. 2A is a cross-section view of a tandem seal adapter according to an exemplary embodiment;



FIG. 2B is a cross-section view of a tandem seal adapter according to an exemplary embodiment;



FIG. 3 is a cross-section view of a collar according to an exemplary embodiment;



FIG. 4A is an enlarged cross-section view of a wellbore tool string according to an exemplary embodiment;



FIG. 4B is an enlarged cross-section view of a wellbore tool string according to an exemplary embodiment;



FIG. 5 is an enlarged cross-section view of an adapter assembly according to an exemplary embodiment;



FIG. 6 is an enlarged cross-section view of a wellbore tool housing according to an exemplary embodiment;



FIG. 7 is an enlarged cross-section view of a wellbore tool string according to an exemplary embodiment;



FIG. 8 is a flowchart illustrating a method of using a wellbore tool string according to an exemplary embodiment; and



FIG. 9 is a flowchart illustrating a method of assembling a wellbore tool string according to an exemplary embodiment.





Various features, aspects, and advantages of the exemplary embodiments will become more apparent from the following detailed description, along with the accompanying drawings in which like numerals represent like components throughout the figures and detailed description. The various described features are not necessarily drawn to scale in the drawings but are drawn to emphasize specific features relevant to some embodiments.


DETAILED DESCRIPTION

Reference will now be made in detail to various exemplary embodiments. Each example is provided by way of explanation and is not meant as a limitation and does not constitute a definition of all possible embodiments.


The present disclosure may use the term “substantially” in phrases including, but not limited to, “substantially annular shape,” “substantially parallel,” and “substantially perpendicular,” hereinafter summarized as “substantially [x].” In the context of this disclosure, the phrase “substantially [x]” is meant to include both “precisely [x]” and deviations from “precisely [x]” such that the structure would function, from the perspective of one of ordinary skill in the art, in the same way as if it were “precisely [x].” The word “substantially” is not itself limiting but would be readily understood by a person of ordinary skill in the art in view of the exemplary embodiments described in this disclosure and shown in the figures.



FIG. 1 shows an exemplary embodiment of an adapter assembly 108 for use in a wellbore tool string 106. The wellbore tool string 106 may include a first wellbore tool 118 having a first housing 120, a second wellbore tool 122 having a second housing 124, and the adapter assembly 108. The adapter assembly 108 may be configured to mechanically and electrically couple the first wellbore tool 118 to the second wellbore tool 122. Additionally, the adapter assembly 108 may be configured to sealingly isolate the first wellbore tool 118 from the second wellbore tool 122 with regard to fluid and pressure penetration. Additionally, the adapter assembly 108 may be configured to sealingly isolate the first wellbore tool 118 and the second wellbore tool 122 from fluids and pressure exterior to the wellbore tool string 106.


The adapter assembly 108 may include a tandem seal adapter (TSA 110) comprising a TSA body 112. The TSA body 112 may extend along an axial direction 102. In an exemplary embodiment, the TSA body 112 may have a total length of 1 inch or less in the axial direction 102. The adapter assembly 108 may further include a collar 114. The collar 114 may include a collar body 116 formed in a substantially annular shape. The collar body 116 may extend in the axial direction 102. The collar 114 may be provided outward from the TSA 110 in a radial direction 104, the radial direction 104 being substantially perpendicular to the axial direction 102. The TSA 110 and the collar 114 may overlap in the axial direction 102.



FIG. 2A and FIG. 2B illustrate an exemplary embodiment of the TSA 110. The TSA 110 may include a TSA rib 204 extending radially outward from the TSA body 112 in the radial direction 104. Further details of the TSA rib 204 will be discussed herein with reference to FIG. 5 and FIG. 7.


As seen in FIG. 2A, the TSA 110 may include sealing elements provided on an outer surface 202 of the TSA body 112. In the example shown in FIG. 2A, the sealing elements may include a first seal 206, a second seal 208, a third seal 210, and a fourth seal 212. However, it will be understood that the specific number of seals may be variable to suit a particular application. In an exemplary embodiment, the first seal 206, the second seal 208, the third seal 210, and the fourth seal 212 may be o-rings. The first seal 206, the second seal 208, the third seal 210, and the fourth seal 212 may be respectively provided within a First TSA seal groove 218, a Second TSA seal groove 220, a Third TSA seal groove 222, and a Fourth TSA seal groove 224 formed in the outer surface 202 of the TSA body 112 (see FIG. 2B).


As seen in FIG. 2A, the first seal 206 and the third seal 210 may be provided to a first side of a TSA center 214 (approximate position of the TSA center 214 is shown by the broken line in FIG. 2A), and the second seal 208 and the fourth seal 212 may be provided to a second side of the TSA center 214.



FIG. 2B shows an exemplary embodiment of the TSA 110, which may further include a bore 216 extending through the TSA body 112. Returning to FIG. 2A, a bulkhead 226 may be provided within the bore 216. Exemplary embodiments of the bulkhead 226 are described in U.S. patent application Ser. No. 16/819,270, filed Mar. 16, 2020, which is herein incorporated by reference to the extent that it does not conflict with the present application. The bulkhead 226 may sealingly isolate the first wellbore tool 118 from the second wellbore tool 122, for example via bulkhead seals 228a, 228b, 228c, 228d.


The bulkhead 226 may include a first electrical contact 230 and a second electrical contact 232 that are in electrical communication through an interior of the bulkhead 226. The first electrical contact 230 is configured to contact a component within the first wellbore tools 118, and the second electrical contact 232 is configured to contact a component with the second wellbore tool 122, thereby providing electrical communication between the first wellbore tool 118 and the second wellbore tool 122 through the TSA 110.


The bulkhead 226 may be retained in the bore 216 by abutting with an interior shoulder 234 of the TSA body 112 at a first end. A retainer nut 236 may be used to retain the bulkhead 226 within the bore 216 at a second end. The retainer nut 236 may be threadedly engaged with the TSA body 112. It will be understood that other structures may be used in place of the retainer nut 236, such as a C-clip or a retainer ring.



FIG. 3 illustrates an exemplary embodiment of the collar 114. The collar 114 may include a collar rib 302 extending radially inward from the collar body 116 in the radial direction 104. The collar 114 may further include a first collar coupling 306 and a second collar coupling 308. In an exemplary embodiment, the first collar coupling 306 and the second collar coupling 308 may be provided on an interior surface of the collar body 116. The first collar coupling 306 and the second collar coupling 308 may be embodied as threads formed on the interior surface of the collar body 116. The first collar coupling 306 may be provided to a first side of a collar center 304 in the axial direction 102 (approximate location of the collar center 304 is indicated by the broken line). The second collar coupling 308 may be provided to a second side of the collar center 304 in the axial direction 102.


In an exemplary embodiment, the collar 114 may have a maximum outer diameter of about 3.5 inches at the collar center 304. The collar may further include a first sloped portion 310 and a second sloped portion 312 where an outer diameter of the collar 114 decreases as distance from the collar center 304 increases. This may help to provide a tapered profile at ends of the collar 114 that help to prevent or reduce friction, shock, and damage in the event of impact with a wellbore casing during a pump-down operation.


Additionally, as the outer diameter of the collar 114 may be larger than an outer diameter of connected wellbore tools, the collar 114 may help to prevent contact between the wellbore tools and the wellbore casing, thereby reducing the chance of contact and damage to both the wellbore tools and the wellbore casing. Additionally, larger diameter of the collar 114 may help to centralize wellbore tools within the wellbore, thereby resulting in more consistent diameters of perforations into the surrounding formations.



FIG. 4A is an enlarged cross-section view showing adapter assembly 108. In an exemplary embodiment, the TSA rib 204 and the collar rib 302 may overlap in the axial direction 102. Additionally, the TSA rib 204 and the collar rib 302 may overlap in the radial direction 104. The first seal 206 and the third seal 210 may overlap with the first collar coupling 306 in the axial direction 102, and the second seal 208 and the fourth seal 212 may overlap with the second collar coupling 308 in the axial direction 102. As further seen in FIG. 4A, the first housing 120 may be provided between the first seal 206 and the first collar coupling 306 in the radial direction 104. Additionally, the second housing 124 may be provided between the second seal 208 and the second collar coupling 308 in the radial direction 104.


As further seen in FIG. 4A, a portion of the first housing 120 may be provided between the TSA body 112 and the collar body 116 in the radial direction 104. The first housing 120 of the first wellbore tool 118 may abut one or more of the TSA rib 204 and the collar rib 302. Similarly, a portion of the second housing 124 may be provided between the TSA body 112 and the collar body 116 in the radial direction 104. The second housing 124 of the second wellbore tool 122 may abut one or more of the TSA rib 204 and the collar rib 302. The first housing 120 may include a first tool coupling 402 provided on an outer surface of the first housing 120. Similarly, the second housing 124 may include a second tool coupling 404 provided on an outer surface of the second housing 124. In an exemplary embodiment, the first tool coupling 402 and the second tool coupling 404 may be threads respectively formed on the outer surfaces of the first housing 120 and the second housing 124. The first tool coupling 402 may be configured to engage with the first collar coupling 306 to mechanically couple the first housing 120 to the collar body 116 of the collar 114. Similarly, the second tool coupling 404 may be configured to engage with the second collar coupling 308 to mechanically couple the second housing 124 to the collar body 116 of the collar 114. When the first tool coupling 402 is engaged with the first collar coupling 306, the first seal 206 and the third seal 210 may overlap with both the first tool coupling 402 and the first collar coupling 306 in the axial direction 102. Similarly, when the second tool coupling 404 is engaged with the second collar coupling 308, the second seal 208 and the fourth seal 212 may overlap with both the second tool coupling 404 and the second collar coupling 308 in the axial direction 102.


Using the adapter assembly 108 to connect the first wellbore tool 118 and the second wellbore tool 122 (see FIG. 1) may help to decrease the overall length of the wellbore tool string 106. For example, in an exemplary embodiment, the adapter assembly 108 includes separate pieces such as the TSA 110 and the collar 114. By providing the sealing elements (such as the first seal 206, the second seal 208, the third seal 210, and the fourth seal 212) on the TSA 110 and the coupling elements (such as the first collar coupling 306 and the second collar coupling 308) on the collar 114, the sealing elements and the coupling elements can overlap in the axial direction 102, instead of having to be axially displaced from each other. Accordingly, the overall length of the adapter assembly 108 may be shortened compared with conventional devices. This may allow for shorting of the entire wellbore tool string 106.



FIG. 4B shows the relative dimensions of exemplary embodiments of the TSA body 112, the collar 114, and the first housing 120. A TSA body diameter 406 in the radial direction 104 may be smaller than an inner collar diameter 408 in the radial direction 104. An outer collar diameter 410, i.e., an outer adapter assembly diameter, in the radial direction 104 may be larger than an outer tool diameter 412, i.e., an outer first housing diameter, in the radial direction 104. In an exemplary embodiment, the outer collar diameter 410 may be 3.5 inches and the outer tool diameter 412 may be 3.125 inches.


The relative dimensions of the outer collar diameter 410 and the outer tool diameter 412 may help to improve efficiency during pump-down operations of the wellbore tool string 106. For example, because the outer collar diameter 410 is larger than the outer tool diameter 412, the surface area of the wellbore tool string 106 in contact with an inner surface of the wellbore is reduced, thereby reducing surface friction that may acting in opposition to the pump-down operation, especially in applications where the wellbore has a horizontal component with respect to gravity. Further, the differential between the outer collar diameter 410 and the outer tool diameter 412 provides an increased cross-sectional surface area for wellbore fluid to press against during a pump-down operation. In an exemplary embodiment in which the wellbore tools are perforating guns, the outer tool diameter 412 may increase and approach the outer collar diameter 410 following firing of the perforation guns due to gun swell. This may reduce the cross-sectional surface area to facilitate withdrawal of the wellbore tool string 106 from the wellbore.



FIG. 5 shows an enlarged cross-section view of an exemplary embodiment of the TSA rib 204 and the collar rib 302. As seen in FIG. 5, the TSA rib 204 has a stepped profile when viewed in cross-section, in other words, when viewed along a plane intersecting with a central axis 238 of the TSA 110. For example, the TSA rib 204 may include a first TSA rib wall 502 extending radially outward from the TSA body 112 in the radial direction 104. The TSA rib 204 may further include a second TSA rib wall 504 extending radially outward from the TSA body 112, with the second TSA rib wall 504 being spaced apart from the first TSA rib wall 502 in the axial direction 102. The TSA rib 204 may further include a first TSA rib step surface 506 extending from the first TSA rib wall 502 in the axial direction 102 toward the second TSA rib wall 504. The TSA rib 204 may further include a second TSA rib step surface 508 extending from the second TSA rib wall 504 in the axial direction 102 toward the first TSA rib wall 502. The first TSA rib step surface 506 and the second TSA rib step surface 508 may be spaced apart in the radial direction 104. The TSA rib 204 my further include a third TSA rib wall 510 extending in the radial direction 104 from the first TSA rib step surface 506 to the second TSA rib step surface 508.


As further seen in FIG. 5, the collar rib 302 and the third TSA rib wall 510 may overlap in the radial direction 104, and the collar rib 302 and the first TSA rib step surface 506 may overlap in the axial direction 102. The collar rib 302 may abut one or more of the first TSA rib step surface 506 and the third TSA rib wall 510. The second TSA rib step surface 508, the collar rib 302, and the collar body 116 may define a recess 512 for receiving a portion of the first housing 120.



FIG. 6 shows an enlarged cross-section view of the first housing 120 according to an exemplary embodiment. The first housing 120 may include a first housing rim 602 provided at a first end of the first housing 120. The first housing rim 602 may be defined in part by a first end surface 604 substantially parallel to the radial direction 104 and a first axial surface 606 extending from the first end surface 604 substantially parallel to the axial direction 102. The first housing rim 602 may be received in the recess 512 (see FIG. 5). The first housing 120 may further include a first tool step surface 608 extending radially inward from the first axial surface 606. The first axial surface 606 and the first tool step surface 608 may define a tool groove 610 formed in a first housing inner surface 612 of the first housing 120.



FIG. 7 shows an enlarged cross-section view illustrating the region of the TSA rib 204, the collar rib 302, and the first housing rim 602. As seen in FIG. 7, at least a portion of the TSA rib 204 is received in the tool groove 610. The first end surface 604 may abut against the collar rib 302. One or more of the first axial surface 606 and the first tool step surface 608 may abut against the TSA rib 204. As can be seen in FIG. 7, at least a portion of the TSA rib 204 may be interposed between the collar rib 302 and the first tool step surface 608 of the first housing 120 in the axial direction 102. This may help to lock the TSA 110 in place and prevent movement of the TSA 110 in the axial direction 102, thereby helping to maintain stable mechanical and electrical connections between the first wellbore tool 118 and the second wellbore tool 122 (see FIG. 1).


Additionally, as seen in FIG. 7, the collar body 116 of the collar 114 is provided radially outward from the first housing 120, with the first housing 120 being interposed between the collar 114 and the TSA body 112. Similarly, the second housing 124 may be interposed between the 114 and the TSA body 112. This may help to strengthen the mechanical coupling between the first wellbore tool 118 and the second wellbore tool 122 (see FIG. 1), thereby reducing the risk of damage, breakage, and/or separation during wellbore operations.



FIG. 8 shows an exemplary embodiment of a method 800 for using a wellbore tool string such as the wellbore tool string 106 (see FIG. 1). In block 802, the wellbore tool string 106 is provided. The wellbore tool string 106 may include the first wellbore tool 118, having the first housing 120, and the adapter assembly 108. The adapter assembly 108 may have an adapter diameter in the radial direction 104 (see outer collar diameter 410 in FIG. 4B) that is larger than the outer tool diameter 412. In block 804, the wellbore tool string 106 is inserted into a wellbore. In block 806, a pump-down operation is performed on the wellbore tool string 106 to position the wellbore tool string 106 at a desired position. For example, the desired position may be a position for firing perforating guns.


As noted above, the differential between the outer collar diameter 410 and the outer tool diameter 412 may be improve efficiency of the pump-down operation by reducing surface area in contact with the wellbore and providing increased cross-sectional surface area for the wellbore fluid to act against.



FIG. 9 shows an exemplary embodiment of a method 900 for assembling a wellbore tool string such as the wellbore tool string 106 (see FIG. 1). In block 902, the first housing 120 of the first wellbore tool 118 is provided. In block 904, the TSA 110 is inserted into the first housing 120 until the TSA rib 204 abuts with the first housing 120.


In block 906, the collar 114 is coupled to the first housing 120. The portion of the TSA 110 protruding from the first housing 120 may be passed through the interior of the collar 114 until the first collar coupling 306 starts to engage with the first tool coupling 402. In an exemplary embodiment in which the first collar coupling 306 and the first tool coupling 402 are complementary threads, the collar 114 and the first housing 120 may be rotated relative to each other until the collar 114 is securely coupled to the first housing 120, which may occur when the collar rib 302 abuts one or both of the TSA rib 204 and the first housing 120 (see FIG. 4A). In this configuration, a portion of the first housing 120 will be positioned between the TSA body 112 and the collar 114 in the radial direction 104.


In block 908, the collar 114 is coupled to the second housing 124 of the second wellbore tool 122. This may be achieved by inserting the second housing 124 into the collar 114 opposite the first housing 120 to engage the second collar coupling 308 and the second tool coupling 404 (see FIG. 4A). In an exemplary embodiment in which the second collar coupling 308 and the second tool coupling 404 are complementary threads, the collar 114 and the second wellbore tool 122 may be rotated relative to each other until the collar 114 is securely coupled to the second wellbore tool 122, which may occur when the second housing 124 abuts one or both of the TSA rib 204 and the collar rib 302.


This disclosure, in various embodiments, configurations and aspects, includes components, methods, processes, systems, and/or apparatuses as depicted and described herein, including various embodiments, sub-combinations, and subsets thereof. This disclosure contemplates, in various embodiments, configurations and aspects, the actual or optional use or inclusion of, e.g., components or processes as may be well-known or understood in the art and consistent with this disclosure though not depicted and/or described herein.


The phrases “at least one,” “one or more,” and “and/or” are open-ended expressions that are both conjunctive and disjunctive in operation. For example, each of the expressions “at least one of A, B and C,” “at least one of A, B, or C,” “one or more of A, B, and C,” “one or more of A, B, or C,” and “A, B, and/or C” means A alone, B alone, C alone, A and B together, A and C together, B and C together, or A, B, and C together.


In this specification and the claims that follow, reference will be made to a number of terms that have the following meanings. The terms “a” (or “an”) and “the” refer to one or more of that entity, thereby including plural referents unless the context clearly dictates otherwise. As such, the terms “a” (or “an”), “one or more” and “at least one” can be used interchangeably herein. Furthermore, references to “one embodiment”, “some embodiments”, “an embodiment” and the like are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. Approximating language, as used herein throughout the specification and claims, may be applied to modify any quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term such as “about” is not to be limited to the precise value specified. In some instances, the approximating language may correspond to the precision of an instrument for measuring the value. Terms such as “first,” “second,” “upper,” “lower,” etc. are used to identify one element from another, and unless otherwise specified are not meant to refer to a particular order or number of elements.


As used herein, the terms “may” and “may be” indicate a possibility of an occurrence within a set of circumstances; a possession of a specified property, characteristic or function; and/or qualify another verb by expressing one or more of an ability, capability, or possibility associated with the qualified verb. Accordingly, usage of “may” and “may be” indicates that a modified term is apparently appropriate, capable, or suitable for an indicated capacity, function, or usage, while taking into account that in some circumstances the modified term may sometimes not be appropriate, capable, or suitable. For example, in some circumstances an event or capacity can be expected, while in other circumstances the event or capacity cannot occur—this distinction is captured by the terms “may” and “may be.”


As used in the claims, the word “comprises” and its grammatical variants logically also subtend and include phrases of varying and differing extent such as for example, but not limited thereto, “consisting essentially of” and “consisting of.” Where necessary, ranges have been supplied, and those ranges are inclusive of all sub-ranges therebetween. It is to be expected that the appended claims should cover variations in the ranges except where this disclosure makes clear the use of a particular range in certain embodiments.


The terms “determine,” “calculate,” and “compute,” and variations thereof, as used herein, are used interchangeably and include any type of methodology, process, mathematical operation or technique.


This disclosure is presented for purposes of illustration and description. This disclosure is not limited to the form or forms disclosed herein. In the Detailed Description of this disclosure, for example, various features of some exemplary embodiments are grouped together to representatively describe those and other contemplated embodiments, configurations, and aspects, to the extent that including in this disclosure a description of every potential embodiment, variant, and combination of features is not feasible. Thus, the features of the disclosed embodiments, configurations, and aspects may be combined in alternate embodiments, configurations, and aspects not expressly discussed above. For example, the features recited in the following claims lie in less than all features of a single disclosed embodiment, configuration, or aspect. Thus, the following claims are hereby incorporated into this Detailed Description, with each claim standing on its own as a separate embodiment of this disclosure.


Advances in science and technology may provide variations that are not necessarily express in the terminology of this disclosure although the claims would not necessarily exclude these variations.

Claims
  • 1. An adapter assembly for use with a wellbore tool string, the adapter assembly comprising: a tandem seal adapter (TSA) comprising a TSA body extending along an axial direction; anda collar comprising a collar body formed in a substantially annular shape and extending in the axial direction, the collar being provided outward from the TSA in a radial direction substantially perpendicular to the axial direction;a first collar coupling provided on an interior surface of the collar body; anda second collar coupling providing on the interior surface of the collar body and axially displaced from the first collar coupling, wherein:the TSA body and the collar body overlap in the axial direction;the collar abuts the TSA;a collar maximum outer diameter is larger than a TSA maximum outer diameter; andthe first collar coupling and the second collar coupling overlap with the TSA body in the axial direction.
  • 2. The adapter assembly of claim 1, wherein; the TSA further comprises a first seal provided on an outer surface of the TSA body;andthe first seal overlaps with the first collar coupling in the axial direction.
  • 3. The adapter assembly of claim 2, wherein a first housing of a first wellbore tool is provided between the first seal and the first collar coupling in the radial direction.
  • 4. The adapter assembly of claim 2, wherein: the first seal is provided to a first side of a TSA center of the TSA body in the axial direction;the first collar coupling is provided to a first side of a collar center of the collar body in the axial direction;the TSA further comprises a second seal provided on the outer surface of the TSA body to a second side of the TSA center in the axial direction;the second collar coupling is provided to a second side of the collar center in the axial direction; andthe second seal overlaps with the second collar coupling in the axial direction.
  • 5. The adapter assembly of claim 4, wherein: a first housing of a first wellbore tool is provided between the first seal and the first collar coupling in the radial direction; anda second housing of a second wellbore tool is provided between the second seal and the second collar coupling in the radial direction.
  • 6. The adapter assembly of claim 4, wherein: the TSA further comprises a third seal provided on the outer surface of the TSA body to the first side of the TSA center in the axial direction;the TSA further comprises a fourth seal provided on the outer surface of the TSA body to the second side of the TSA center in the axial direction;the third seal overlaps with the first collar coupling in the axial direction; andthe fourth seal overlaps with the second collar coupling in the axial direction.
  • 7. The adapter assembly of claim 1, wherein the TSA further comprises: a bore extending through the TSA body; anda bulkhead provided within the bore;wherein the bulkhead is configured to provide electrical connectivity through the bore of the TSA body.
  • 8. The adapter assembly of claim 1, wherein: the TSA further comprises a TSA rib extending radially outward from the TSA body in the radial direction;the collar further comprises a collar rib extending radially inward from the collar body in the radial direction; andwherein the TSA rib and the collar rib overlap in the radial direction.
  • 9. The adapter assembly of claim 1, wherein: the TSA further comprises a TSA rib extending radially outward from the TSA body in the radial direction;the collar further comprises a collar rib extending radially inward from the collar body in the radial direction; andwherein the TSA rib and the collar rib overlap in the axial direction.
  • 10. The adapter assembly of claim 1, wherein an outer diameter of the collar decreases in a direction from a center of the collar in the axial direction to a first end of the collar in the axial direction.
  • 11. A wellbore tool string, the wellbore tool string comprising: a first wellbore tool having a first housing,a second wellbore tool having a second housing,an adapter assembly comprising: a tandem seal adapter (TSA) comprising a TSA body extending along an axial direction; anda collar comprising a collar body formed in a substantially annular shape and extending in the axial direction, the collar being provided outward from the TSA in a radial direction substantially perpendicular to the axial direction, wherein:the TSA body and the collar body overlap in the axial direction;the collar abuts the TSA;the first housing of the first wellbore tool is provided between the TSA and the collar in the radial direction; andthe second housing of the second wellbore tool is provided between the TSA and the cooler.
  • 12. The wellbore tool string of claim 11, wherein: the TSA further comprises a first seal provided on an outer surface of the TSA body;the collar further comprises a first collar coupling; andthe first seal overlaps with the first collar coupling in the axial direction.
  • 13. The wellbore tool string of claim 12, wherein: the first seal is provided to a first side of a TSA center of the TSA body in the axial direction;the first collar coupling is provided to a first side of a collar center of the collar body in the axial direction;the TSA further comprises a second seal provided on the outer surface of the TSA body to a second side of the TSA center in the axial direction;the collar further comprises a second collar coupling provided to a second side of the collar center in the axial direction; andthe second seal overlaps with the second collar coupling in the axial direction.
  • 14. The wellbore tool string of claim 11, wherein the TSA further comprises: a bore extending through the TSA body; anda bulkhead provided within the bore,wherein the bulkhead is configured to provided electrical connectivity through the TSA.
  • 15. The wellbore tool string of claim 11, wherein an outer diameter of the collar decreases in a direction from a center of the collar in the axial direction to a first end of the collar in the axial direction.
  • 16. An adapter assembly for use with a wellbore tool string, the adapter assembly comprising: a tandem seal adapter (TSA) comprising: a TSA body extending along an axial direction;a first seal provided on an outer surface of the TSA body;a second seal provided on the outer surface of the TSA body; anda collar comprising: a collar body formed in a substantially annular shape and extending in the axial direction;a first collar thread portion formed on a surface of the collar body; anda second collar thread portion formed on the surface of the collar body and axially displaced from the first collar thread portion, wherein:the collar is provided outward from the TSA in a radial direction substantially perpendicular to the axial direction;the TSA body and the collar body overlap in the axial direction;the collar abuts the TSA;the first seal overlaps with the first collar thread portion in the axial direction; andthe second seal overlaps with the second collar thread portion in the axial direction.
  • 17. The adapter assembly of claim 16, wherein: the first seal is provided to a first side of a TSA center of the TSA body in the axial direction;the first thread portion is provided to a first side of a collar center of the collar body in the axial direction;the second seal is provided to a second side of the TSA center in the axial direction; andthe second thread portion is provided to a second side of the collar center in the axial direction.
  • 18. The adapter assembly of claim 16, wherein the TSA further comprises: a bore extending through the TSA body; anda bulkhead provided within the bore,wherein the bulkhead is configured to provided electrical connectivity through the TSA.
  • 19. The adapter assembly of claim 16, wherein an outer diameter of the collar decreases in a direction from a center of the collar in the axial direction to a first end of the collar in the axial direction.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 17/181,280 filed Feb. 22, 2021, which claims priority to U.S. Provisional Application No. 62/992,643 filed Mar. 20, 2020, the contents of each of which are incorporated herein by reference. This application is a continuation-in-part of U.S. Design patent application No. 29/735,905, filed May 26, 2020, the contents of which are incorporated herein by reference.

US Referenced Citations (413)
Number Name Date Kind
2177740 Orndorff et al. Oct 1939 A
2216359 Spencer Oct 1940 A
2228873 Hardt et al. Jan 1941 A
2296198 Alexander Sep 1942 A
2326406 Lloyd Aug 1943 A
2358466 Miller Sep 1944 A
2418486 Smylie Apr 1947 A
2519116 Crake Aug 1950 A
2543814 Thompson et al. Mar 1951 A
2598651 Spencer May 1952 A
2621744 Toelke Dec 1952 A
2655993 Lloyd Oct 1953 A
2696258 Greene Dec 1954 A
2734456 Sweetman Feb 1956 A
2785631 Blanchard Mar 1957 A
2889775 Owen Jun 1959 A
2906339 Griffin Sep 1959 A
2946283 Udry Jul 1960 A
2982210 Andrew et al. May 1961 A
3040659 Mcculleugh Jun 1962 A
RE25407 Lebourg Jun 1963 E
3125024 Hicks et al. Mar 1964 A
3155164 Keener Nov 1964 A
3158680 Lovitt et al. Nov 1964 A
3170400 Nelson Feb 1965 A
3173992 Boop Mar 1965 A
RE25846 Campbell Aug 1965 E
3246707 Bell Apr 1966 A
3264989 Rucker Aug 1966 A
3264994 Kurt Aug 1966 A
3336054 Blount et al. Aug 1967 A
3374735 Moore Mar 1968 A
3426849 Brumble, Jr. Feb 1969 A
3426850 McDuffie, Jr. Feb 1969 A
3504723 Cushman et al. Apr 1970 A
3565188 Hakala Feb 1971 A
3859921 Stephenson Jan 1975 A
4007790 Henning Feb 1977 A
4007796 Boop Feb 1977 A
4039239 Cobaugh et al. Aug 1977 A
4058061 Mansur, Jr. et al. Nov 1977 A
4100978 Boop Jul 1978 A
4107453 Erixon Aug 1978 A
4132171 Pawlak et al. Jan 1979 A
4140188 Vann Feb 1979 A
4172421 Regalbuto Oct 1979 A
4182216 DeCaro Jan 1980 A
4191265 Bosse-Platiere Mar 1980 A
4208966 Hart Jun 1980 A
4220087 Posson Sep 1980 A
4266613 Boop May 1981 A
4290486 Regalbuto Sep 1981 A
4312273 Camp Jan 1982 A
4363529 Loose Dec 1982 A
4485741 Moore et al. Dec 1984 A
4491185 McClure Jan 1985 A
4496008 Pottier et al. Jan 1985 A
4512418 Regalbuto et al. Apr 1985 A
4523649 Stout Jun 1985 A
4523650 Sehnert et al. Jun 1985 A
4534423 Regalbuto Aug 1985 A
4574892 Grigar et al. Mar 1986 A
4598775 Vann et al. Jul 1986 A
4609057 Walker et al. Sep 1986 A
4621396 Walker et al. Nov 1986 A
4629001 Miller et al. Dec 1986 A
4637478 George Jan 1987 A
4643097 Chawla et al. Feb 1987 A
4650009 McClure et al. Mar 1987 A
4657089 Stout Apr 1987 A
4660910 Sharp et al. Apr 1987 A
4730793 Thurber, Jr. et al. Mar 1988 A
4744424 Lendermon et al. May 1988 A
4747201 Donovan et al. May 1988 A
4753170 Regalbuto et al. Jun 1988 A
4756363 Lanmon et al. Jul 1988 A
4762067 Barker et al. Aug 1988 A
4776393 Forehand et al. Oct 1988 A
4790383 Savage et al. Dec 1988 A
4796708 Lembcke Jan 1989 A
4800815 Appledorn et al. Jan 1989 A
4830120 Stout May 1989 A
4852494 Williams Aug 1989 A
4869171 Abouav Sep 1989 A
4889183 Sommers et al. Dec 1989 A
5006833 Marlowe et al. Apr 1991 A
5027708 Gonzalez et al. Jul 1991 A
5038682 Marsden Aug 1991 A
5050691 Moses Sep 1991 A
5052489 Carisella et al. Oct 1991 A
5060573 Montgomery et al. Oct 1991 A
5088413 Huber Feb 1992 A
5105742 Sumner Apr 1992 A
5159145 Carisella et al. Oct 1992 A
5159146 Carisella et al. Oct 1992 A
5204491 Aureal et al. Apr 1993 A
5322019 Hyland Jun 1994 A
5347929 Erche et al. Sep 1994 A
5358418 Carmichael Oct 1994 A
5392851 Arend Feb 1995 A
5392860 Ross Feb 1995 A
5436791 Turano et al. Jul 1995 A
5503077 Motley Apr 1996 A
5603384 Bethel et al. Feb 1997 A
5648635 Lussier et al. Jul 1997 A
5671899 Nicholas et al. Sep 1997 A
5703319 Fritz et al. Dec 1997 A
5756926 Bonbrake et al. May 1998 A
5775426 Snider et al. Jul 1998 A
5778979 Burleson et al. Jul 1998 A
5785130 Wesson et al. Jul 1998 A
5797761 Ring Aug 1998 A
5803175 Myers, Jr. et al. Sep 1998 A
5816343 Markel et al. Oct 1998 A
5820402 Chiacchio et al. Oct 1998 A
5823266 Burleson et al. Oct 1998 A
5837925 Nice Nov 1998 A
5911277 Hromas et al. Jun 1999 A
5964294 Edwards et al. Oct 1999 A
5992289 George et al. Nov 1999 A
5992523 Burleson et al. Nov 1999 A
6006833 Burleson et al. Dec 1999 A
6012525 Burleson et al. Jan 2000 A
6050353 Logan et al. Apr 2000 A
6082450 Snider et al. Jul 2000 A
6112666 Murray et al. Sep 2000 A
6158532 Logan et al. Dec 2000 A
6196325 Connell et al. Mar 2001 B1
6298915 George Oct 2001 B1
6305287 Capers et al. Oct 2001 B1
6333699 Zierolf Dec 2001 B1
6354374 Edwards et al. Mar 2002 B1
6385031 Lerche et al. May 2002 B1
6386108 Brooks et al. May 2002 B1
6408758 Duguet Jun 2002 B1
6412388 Frazier Jul 2002 B1
6412415 Kothari et al. Jul 2002 B1
6418853 Duguet et al. Jul 2002 B1
6419044 Tite et al. Jul 2002 B1
6439121 Gillingham Aug 2002 B1
6467415 Menzel et al. Oct 2002 B2
6474931 Austin et al. Nov 2002 B1
6487973 Gilbert, Jr. et al. Dec 2002 B1
6497285 Walker Dec 2002 B2
6582251 Burke et al. Jun 2003 B1
6618237 Eddy et al. Sep 2003 B2
6651747 Chen et al. Nov 2003 B2
6659180 Moss Dec 2003 B2
6675896 George Jan 2004 B2
6719061 Muller et al. Apr 2004 B2
6739265 Badger et al. May 2004 B1
6742602 Trotechaud Jun 2004 B2
6752083 Lerche et al. Jun 2004 B1
6779605 Jackson Aug 2004 B2
6843317 Mackenzie Jan 2005 B2
6851471 Barlow et al. Feb 2005 B2
7013977 Nordaas Mar 2006 B2
7044230 Starr et al. May 2006 B2
7093664 Todd et al. Aug 2006 B2
7107908 Forman et al. Sep 2006 B2
7147068 Vail, III Dec 2006 B2
7168494 Starr et al. Jan 2007 B2
7182625 Machado et al. Feb 2007 B2
7193527 Hall Mar 2007 B2
7210524 Sloan et al. May 2007 B2
7237626 Gurjar et al. Jul 2007 B2
7243722 Oosterling et al. Jul 2007 B2
7255183 Cramer Aug 2007 B2
7278491 Scott Oct 2007 B2
7306038 Challacombe Dec 2007 B2
7347278 Lerche et al. Mar 2008 B2
7347279 Li et al. Mar 2008 B2
7350448 Bell et al. Apr 2008 B2
7353879 Todd et al. Apr 2008 B2
7357083 Takahara et al. Apr 2008 B2
7360487 Myers, Jr. et al. Apr 2008 B2
7364451 Ring et al. Apr 2008 B2
7387162 Mooney, Jr. et al. Jun 2008 B2
7441601 George et al. Oct 2008 B2
7493945 Doane et al. Feb 2009 B2
7510017 Howell et al. Mar 2009 B2
7540758 Ho Jun 2009 B2
7565927 Gerez et al. Jul 2009 B2
7568429 Hummel et al. Aug 2009 B2
7591212 Myers, Jr. et al. Sep 2009 B2
7661474 Campbell et al. Feb 2010 B2
7726396 Briquet et al. Jun 2010 B2
7735578 Loehr et al. Jun 2010 B2
7762172 Li et al. Jul 2010 B2
7762331 Goodman et al. Jul 2010 B2
7762351 Vidal Jul 2010 B2
7775279 Marya et al. Aug 2010 B2
7778006 Stewart et al. Aug 2010 B2
7789153 Prinz et al. Sep 2010 B2
7810430 Chan et al. Oct 2010 B2
7901247 Ring Mar 2011 B2
7908970 Jakaboski et al. Mar 2011 B1
7913603 LaGrange et al. Mar 2011 B2
7929270 Hummel et al. Apr 2011 B2
7934453 Moore May 2011 B2
7980874 Finke et al. Jul 2011 B2
8028624 Mattson Oct 2011 B2
8066083 Hales et al. Nov 2011 B2
8069789 Hummel et al. Dec 2011 B2
8074713 Ramos et al. Dec 2011 B2
8074737 Hill et al. Dec 2011 B2
8091477 Brooks et al. Jan 2012 B2
8127846 Hill et al. Mar 2012 B2
8136439 Bell Mar 2012 B2
8141434 Kippersund et al. Mar 2012 B2
8151882 Grigar et al. Apr 2012 B2
8157022 Bertoja et al. Apr 2012 B2
8181718 Burleson et al. May 2012 B2
8182212 Parcell May 2012 B2
8186259 Burleson et al. May 2012 B2
8230788 Brooks et al. Jul 2012 B2
8256337 Hill Sep 2012 B2
8336437 Barlow et al. Dec 2012 B2
8388374 Grek et al. Mar 2013 B2
8395878 Stewart et al. Mar 2013 B2
8408286 Rodgers et al. Apr 2013 B2
8413727 Holmes Apr 2013 B2
8439114 Parrott et al. May 2013 B2
8451137 Bonavides et al. May 2013 B2
8468944 Givens et al. Jun 2013 B2
8474381 Streibich et al. Jul 2013 B2
8596378 Mason et al. Dec 2013 B2
8661978 Backhus et al. Mar 2014 B2
8678666 Scadden et al. Mar 2014 B2
8695506 Lanclos Apr 2014 B2
8807003 Le et al. Aug 2014 B2
8833441 Fielder et al. Sep 2014 B2
8863665 DeVries et al. Oct 2014 B2
8869887 Deere et al. Oct 2014 B2
8875787 Tassaroli Nov 2014 B2
8875796 Hales et al. Nov 2014 B2
8881816 Glenn et al. Nov 2014 B2
8884778 Lerche et al. Nov 2014 B2
8943943 Tassaroli Feb 2015 B2
8960093 Preiss et al. Feb 2015 B2
8960288 Sampson Feb 2015 B2
9065201 Borgfeld et al. Jun 2015 B2
9080433 Lanclos et al. Jul 2015 B2
9145763 Sites, Jr. Sep 2015 B1
9145764 Burton et al. Sep 2015 B2
9181790 Mace et al. Nov 2015 B2
9194219 Hardesty et al. Nov 2015 B1
9206675 Hales et al. Dec 2015 B2
9284819 Tolman et al. Mar 2016 B2
9284824 Fadul et al. Mar 2016 B2
9317038 Ozick et al. Apr 2016 B2
9359863 Streich et al. Jun 2016 B2
9383237 Wiklund et al. Jul 2016 B2
9441465 Tassaroli Sep 2016 B2
9476289 Wells Oct 2016 B2
9494021 Parks Nov 2016 B2
9523265 Upchurch et al. Dec 2016 B2
9523271 Bonavides et al. Dec 2016 B2
9562421 Hardesty et al. Feb 2017 B2
9581422 Preiss et al. Feb 2017 B2
9587439 Lamik-Thonhauser et al. Mar 2017 B2
9593548 Hill et al. Mar 2017 B2
9598942 Wells et al. Mar 2017 B2
9605937 Eitschberger et al. Mar 2017 B2
D783133 Fitzhugh et al. Apr 2017 S
9617814 Seals et al. Apr 2017 B2
9677363 Schacherer et al. Jun 2017 B2
9689223 Schacherer Jun 2017 B2
9702211 Tinnen Jul 2017 B2
9702680 Parks et al. Jul 2017 B2
9709373 Hikone et al. Jul 2017 B2
9784549 Eitschberger Oct 2017 B2
9903192 Entchev et al. Feb 2018 B2
9926750 Ringgenberg Mar 2018 B2
10066921 Eitschberger Sep 2018 B2
10072783 Gledhill et al. Sep 2018 B2
10077641 Rogman et al. Sep 2018 B2
D833581 Atwell et al. Nov 2018 S
10138713 Tolman et al. Nov 2018 B2
10151152 Wight et al. Dec 2018 B2
10151180 Robey et al. Dec 2018 B2
10188990 Burmeister et al. Jan 2019 B2
10190398 Goodman et al. Jan 2019 B2
10337270 Carisella et al. Jul 2019 B2
10352136 Goyeneche Jul 2019 B2
10352144 Entchev et al. Jul 2019 B2
10428595 Bradley et al. Oct 2019 B2
10429161 Parks et al. Oct 2019 B2
10458213 Eitschberger et al. Oct 2019 B1
10472901 Engel et al. Nov 2019 B2
10472938 Parks et al. Nov 2019 B2
10844697 Preiss et al. Nov 2020 B2
D904475 Preiss et al. Dec 2020 S
11225848 Eitschberger Jan 2022 B2
20020020320 Lebaudy et al. Feb 2002 A1
20020062991 Farrant et al. May 2002 A1
20030000411 Cernocky et al. Jan 2003 A1
20030001753 Cernocky et al. Jan 2003 A1
20040141279 Amano et al. Jul 2004 A1
20040211862 Elam Oct 2004 A1
20050178282 Brooks et al. Aug 2005 A1
20050183610 Barton et al. Aug 2005 A1
20050186823 Ring et al. Aug 2005 A1
20050194146 Barker et al. Sep 2005 A1
20050229805 Myers, Jr. et al. Oct 2005 A1
20050257710 Monetti et al. Nov 2005 A1
20050279513 Eppink Dec 2005 A1
20070084336 Neves Apr 2007 A1
20070125540 Gerez et al. Jun 2007 A1
20070158071 Mooney, Jr. et al. Jul 2007 A1
20080029302 Scott Feb 2008 A1
20080047456 Li et al. Feb 2008 A1
20080047716 McKee et al. Feb 2008 A1
20080110612 Prinz et al. May 2008 A1
20080134922 Grattan et al. Jun 2008 A1
20080149338 Goodman et al. Jun 2008 A1
20080173204 Anderson et al. Jul 2008 A1
20080173240 Furukawahara et al. Jul 2008 A1
20080264639 Parrott et al. Oct 2008 A1
20090050322 Hill et al. Feb 2009 A1
20090159285 Goodman Jun 2009 A1
20090272519 Green et al. Nov 2009 A1
20090272529 Crawford Nov 2009 A1
20090301723 Gray Dec 2009 A1
20100000789 Barton et al. Jan 2010 A1
20100012774 Fanucci et al. Jan 2010 A1
20100024674 Peeters et al. Feb 2010 A1
20100089643 Vidal Apr 2010 A1
20100096131 Hill et al. Apr 2010 A1
20100107917 Moser May 2010 A1
20100163224 Strickland Jul 2010 A1
20100230104 Nölke et al. Sep 2010 A1
20110024116 McCann et al. Feb 2011 A1
20110042069 Bailey et al. Feb 2011 A1
20110100627 Hales et al. May 2011 A1
20110301784 Oakley et al. Dec 2011 A1
20120006217 Anderson Jan 2012 A1
20120085538 Guerrero et al. Apr 2012 A1
20120094553 Fujiwara et al. Apr 2012 A1
20120160483 Carisella Jun 2012 A1
20120199031 Lanclos Aug 2012 A1
20120199352 Lanclos et al. Aug 2012 A1
20120241169 Hales et al. Sep 2012 A1
20120242135 Thomson et al. Sep 2012 A1
20120247769 Schacherer et al. Oct 2012 A1
20120247771 Black et al. Oct 2012 A1
20120298361 Sampson Nov 2012 A1
20130008639 Tassaroli et al. Jan 2013 A1
20130008669 Deere et al. Jan 2013 A1
20130037255 Kash et al. Feb 2013 A1
20130043074 Tassaroli Feb 2013 A1
20130062055 Tolman et al. Mar 2013 A1
20130112396 Splittstoeßer May 2013 A1
20130118342 Tassaroli May 2013 A1
20130199843 Ross Aug 2013 A1
20130248174 Dale et al. Sep 2013 A1
20130256464 Belik et al. Oct 2013 A1
20140033939 Priess et al. Feb 2014 A1
20140053750 Lownds et al. Feb 2014 A1
20140131035 Entchev et al. May 2014 A1
20140148044 Balcer et al. May 2014 A1
20150075783 Angman et al. Mar 2015 A1
20150176386 Castillo et al. Jun 2015 A1
20150226044 Ursi et al. Aug 2015 A1
20150308208 Capps et al. Oct 2015 A1
20150330192 Rogman et al. Nov 2015 A1
20160040520 Tolman et al. Feb 2016 A1
20160061572 Eitschberger et al. Mar 2016 A1
20160069163 Tolman et al. Mar 2016 A1
20160084048 Harrigan et al. Mar 2016 A1
20160168961 Parks et al. Jun 2016 A1
20160273902 Eitschberger Sep 2016 A1
20160333675 Wells et al. Nov 2016 A1
20170030693 Preiss et al. Feb 2017 A1
20170052011 Parks et al. Feb 2017 A1
20170145798 Robey et al. May 2017 A1
20170211363 Bradley et al. Jul 2017 A1
20170241244 Barker et al. Aug 2017 A1
20170268860 Eitschberger Sep 2017 A1
20170314372 Tolman et al. Nov 2017 A1
20180030334 Collier et al. Feb 2018 A1
20180087330 Bradley et al. Mar 2018 A1
20180135398 Entchev et al. May 2018 A1
20180202789 Parks et al. Jul 2018 A1
20180202790 Parks et al. Jul 2018 A1
20180209251 Robey et al. Jul 2018 A1
20180274342 Sites Sep 2018 A1
20180299239 Eitschberger et al. Oct 2018 A1
20180318770 Eitschberger et al. Nov 2018 A1
20190040722 Yang et al. Feb 2019 A1
20190048693 Henke et al. Feb 2019 A1
20190049225 Eitschberger Feb 2019 A1
20190085685 McBride Mar 2019 A1
20190153827 Goyeneche May 2019 A1
20190162056 Sansing May 2019 A1
20190195054 Bradley et al. Jun 2019 A1
20190211655 Bradley et al. Jul 2019 A1
20190219375 Parks et al. Jul 2019 A1
20190257158 Langford et al. Aug 2019 A1
20190257181 Langford et al. Aug 2019 A1
20190284889 LaGrange et al. Sep 2019 A1
20190292887 Austin, II et al. Sep 2019 A1
20190316449 Schultz et al. Oct 2019 A1
20190330947 Mulhern et al. Oct 2019 A1
20200032626 Parks et al. Jan 2020 A1
20200063537 Langford et al. Feb 2020 A1
20200199983 Preiss et al. Jun 2020 A1
20200362652 Eitschberger et al. Nov 2020 A1
20200362654 Eitschberger et al. Nov 2020 A1
20200362676 Goyeneche Nov 2020 A1
20200378731 Mcnelis Dec 2020 A1
20200386060 Sullivan et al. Dec 2020 A1
20200399995 Preiss et al. Dec 2020 A1
Foreign Referenced Citations (87)
Number Date Country
2003166 May 1991 CA
2821506 Jan 2015 CA
2824838 Feb 2015 CA
2941648 Sep 2015 CA
2888787 Oct 2015 CA
2980935 Oct 2016 CA
3040116 Oct 2016 CA
3022946 Nov 2017 CA
3021913 Feb 2018 CA
3050712 Jul 2018 CA
2980935 Nov 2019 CA
85107897 Sep 1986 CN
1082601 Apr 2002 CN
2661919 Dec 2004 CN
2821154 Sep 2006 CN
201209435 Mar 2009 CN
101397890 Apr 2009 CN
101691837 Apr 2010 CN
201507296 Jun 2010 CN
101892822 Nov 2010 CN
201620848 Nov 2010 CN
201764910 Mar 2011 CN
202431259 Sep 2012 CN
102878877 Jan 2013 CN
103485750 Jan 2014 CN
103993861 Aug 2014 CN
204430910 Jul 2015 CN
207847603 Sep 2018 CN
208347755 Jan 2019 CN
208870580 May 2019 CN
209195374 Aug 2019 CN
110424930 Nov 2019 CN
106522886 Dec 2019 CN
209908471 Jan 2020 CN
102007007498 Oct 2015 DE
0416915 Mar 1991 EP
0180520 May 1991 EP
679859 Nov 1995 EP
0482969 Aug 1996 EP
0721051 Apr 1998 EP
694157 Aug 2001 EP
2702349 Nov 2015 EP
2310616 Oct 2017 EP
839486 Jun 1960 GB
2531450 Feb 2017 GB
1363909 May 2009 JP
1387855 Apr 2010 JP
2175379 Oct 2001 RU
2295694 Mar 2007 RU
93521 Apr 2010 RU
100552 Dec 2010 RU
2434122 Nov 2011 RU
2633904 Oct 2017 RU
8802056 Mar 1988 WO
9905390 Feb 1999 WO
2000020821 Apr 2000 WO
0133029 May 2001 WO
0159401 Aug 2001 WO
2001059401 Aug 2001 WO
2008098052 Oct 2008 WO
2009091422 Jul 2009 WO
2009091422 Mar 2010 WO
2011051435 May 2011 WO
2012006357 Jan 2012 WO
2012106640 Nov 2012 WO
2012149584 Nov 2012 WO
2014046670 Mar 2014 WO
2014089194 Jun 2014 WO
2015006869 Jan 2015 WO
2015028204 Mar 2015 WO
2015134719 Sep 2015 WO
2016100269 Jun 2016 WO
2017147329 Aug 2017 WO
2017192878 Nov 2017 WO
2018009223 Jan 2018 WO
2018057934 Mar 2018 WO
2018136808 Jul 2018 WO
2018182565 Oct 2018 WO
2018213768 Nov 2018 WO
2019117861 Jun 2019 WO
2019148009 Aug 2019 WO
2019165286 Aug 2019 WO
2019204137 Oct 2019 WO
2020016644 Jan 2020 WO
2020035616 Feb 2020 WO
2020232242 Nov 2020 WO
2020244895 Dec 2020 WO
Non-Patent Literature Citations (106)
Entry
United States Patent Trial and Appeal Board; Institution Decision for PGR 2020-00080; dated Feb. 12, 2021; 15 pages.
Vigor USA; “Sniper Addressable System”; promotional brochure; Sep. 2019.
Vigor,Perforating Gun Accessories,China Vigor Drilling Oil Tools And Equipment Co.,Ltd., Sep. 14, 2018, 4 pgs., http://www.vigordrilling.com/completion-tools/perforating-gun-accessories.html.
Amit Govil, Selective Perforation: A Game Changer in Perforating Technology—Case Study, presented at the 2012 European and West African Perforating Symposium, Schlumberger, Nov. 7-9, 2012, 14 pgs.
Austin Powder Company; A—140 F & Block, Detonator & Block Assembly; Jan. 5, 2017; 2 pgs.; https://www.austinpowder.com/wp-content/uploads/2019/01/OilStar_A140Fbk-2.pdf.
Baker Hughes, Long Gun Deployment Systems IPS-12-28; 2012 International Perforating Symposium; Apr. 26-27, 2011; 11 pages.
Baker Hughes; SurePerf Rapid Select-Fire System Perforate production zones in a single run; 2012; 2 pages.
Brazilian Patent and Trademark Office; Search Report for BR Application No. BR112015033010-0; dated May 5, 2020; (4 pages).
Buche & Associates, P.C.; Rule 501 Citation of Prior Art and Written “Claim Scope Statements” in U.S. Pat. No. 10,844,697; dated Mar. 3, 2021; 24 pages.
Burndy, Bulkhead Ground Connector, Mechanical Summary Sheet, The Grounding Superstore, Jul. 15, 2014, 1 page, https://www.burndy.com/docs/default-source/cutsheets/bulkhead-connect.
C&J Energy Services; Gamechanger Perforating System Description; 2018; 1 pages.
C&J Energy Services; Gamechanger Perforating System Press Release; 2018; 4 pages.
Canadian Intellectual Property Office, Office Action for CA App. No. 2923860 dated Jul. 14, 2017, 3 pages.
Core Lab, ZERO180™ Gun SystemAssembly and Arming Procedures, 2015, 33 pgs., https://www.corelab.com/owen/CMS/docs/Manuals/gunsys/zero180/MAN-Z180-000.pdf.
CoreLab Quick Change Assembly; Exhibit No. 1034 of PGR No. 2021-00078; dated Aug. 2002; 1 page.
Dynaenergetics Europe GMBH; Patent Owner's Preliminary Response for PGR2020-00072; dated Oct. 23, 2020; 108 pages.
Dynaenergetics Europe GMBH; Patent Owner's Preliminary Response for PGR2020-00080; dated Nov. 18, 2020; 119 pages.
Dynaenergetics Europe GMBH; Principal and Response Brief of Cross-Appellant for United States Court of Appeals case No. 2020-2163, -2191; dated Jan. 11, 2021; 95 pages.
Dynaenergetics Europe; Defendants' Preliminary Infringement Contentions for Civil Action No. 3:20-CV-00376; dated Mar. 25, 2021; 22 pages.
Dynaenergetics Europe; Exhibit B Invalidity Claim Chart for Civil Action No. 4:19-cv-01611; dated May 2, 2019; 62 pages.
Dynaenergetics Europe; Exhibit C Invalidity Claim Chart for Civil Action No. 4:17-cv-03784; dated Jul. 13, 2020; 114 pages.
Dynaenergetics Europe; Patent Owner's Preliminary Response for PGR No. 2020-00080; dated Nov. 18, 2020; 119 pages.
Dynaenergetics Europe; Plaintiffs' Local Patent Rule 3-1 Infringement Contentions for Civil Action No. 4:19-cv-01611; dated May 25, 2018; 10 Pages.
Dynaenergetics Europe; Plaintiffs' Preliminary Claim Constructions and Identification of Extrinsic Evidence Civil Action No. 4:17-cv-03784; dated Aug. 3, 2018; 9 pages.
Dynaenergetics Europe; Plaintiffs' Preliminary Infringement Contentions, Civil Action No. 6:20-cv-00069-ADA; dated Apr. 22, 2020; 32 pages.
Dynaenergetics Europe; Plaintiffs' Reply in Support of Motion to Dismiss and Strike for Civil Action No. 6:20-cv-00069-ADA; dated Apr. 29, 2020; 15 pages.
DynaEnergetics exhibition and product briefing; Exhibit 2006 of PGR No. 2020-00072; dated 2013; 15 pages.
Dynaenergetics GMBH & Co. KG, Patent Owner's Response to Hunting Titan's Petition for Inter Parties Review—Case IPR2018-00600, filed Dec. 6, 2018, 73 pages.
Dynaenergetics GmbH & Co. KG; Patent Owner's Precedential Opinion Panel Request for Case IPR2018-00600; Sep. 18, 2019, 2 pg.
Dynaenergetics, DYNAselect Electronic Detonator 0015 SFDE RDX 1.4B, Product Information, Dec. 16, 2011, 1 pg.
Dynaenergetics, DYNAselect Electronic Detonator 0015 SFDE RDX 1.4S, Product Information, Dec. 16, 2011, 1 pg.
Dynaenergetics, DYNAselect System, information downloaded from website, Jul. 3, 2013, 2 pages, http://www.dynaenergetics.com/.
Dynaenergetics, Electronic Top Fire Detonator, Product Information Sheet, Jul. 30, 2013, 1 pg.
Dynaenergetics, Gun Assembly, Product Summary Sheet, May 7, 2004, 1 page.
Dynaenergetics, Selective Perforating Switch, information downloaded from website, Jul. 3, 2013, 2 pages, http://www.dynaenergetics.com/.
Dynaenergetics, Selective Perforating Switch, Product Information Sheet, May 27, 2011, 1 pg.
DynaStage Gun System; Exhibit 2009 of PGR No. 2020-00080; dated May 2014; 2 pages.
Eric H. Findlay, Jury Trial Demand in Civil Action No. 6:20-cv-00069-ADA, dated Apr. 22, 2020, 32 pages.
GeoDynamics; “STRATX”; promotional brochure; Jan. 30, 2020.
GeoDynamics; “VaporGun”; promotional brochure; Mar. 4, 2020.
GeoDynamics; “Vapr”; promotional brochure; Oct. 1, 2019.
Gilliat et al.; New Select-Fire System: Improved Reliability and Safety in Select Fire Operations; 2012; 16 pgs.
Horizontal Wireline Services, Presentation of a completion method of shale demonstrated through an example of Marcellus Shale, Pennsylvania, USA, Presented at 2012 International Perforating Symposium (Apr. 26-28, 2012), 17 pages.
Hunting Energy Services Pte Ltd., “H-1 Perforating Gun System”; promotional brochure; Jun. 21, 2019.
Hunting Energy Services Pte Ltd., “H-2 Perforating System”; promotional brochure; Feb. 12, 2020.
Hunting Titan Inc.; Petition for Post Grant Review of U.S. Pat. No. 10,429,161; dated Jun. 30, 2020; 109 pages.
Hunting Titan Inc.; Petition for Post Grant Review of U.S. Pat. No. 10,472,938; dated Aug. 12, 2020; 198 pages.
Hunting Titan Ltd.; Petition for Inter Partes Review of U.S. Pat. No. 9,581,422 Case No. IPR2018-00600; dated Feb. 16, 2018; 93 pages.
Hunting Titan Ltd.; Defendants Invalidity Contentions Pursuant to Patent Rule 3-3, Civil Action No. 4:17-cv-03784; dated Jul. 6, 2018; 29 pages.
Hunting Titan, H-1® Perforating Gun System, 2016, 2 pgs., http://www.hunting-intl.com/titan.
Hunting Titan, Inc., U.S. Appl. No. 62/627,591 titled Cluster Gun System and filed Feb. 7, 2018, which is a priority application of International App. No. PCT/US2019/015255 published as WO2019/148009, Aug. 1, 2019, 7 pages, WIPO.
Hunting Titan, Wireline Top Fire Detonator Systems, Nov. 24, 2014, 2 pgs, http://www.hunting-intl.com/titan/perforating-guns-and-setting-tools/wireline-top-fire-detonator-systems.
International Searching Authority; International Search Report and Written Opinion of the International Searching Authority for PCT/EP2021/057148; dated Jul. 5, 2021; 11 pages.
Jet Research Center Inc., JRC Catalog, 2008, 36 pgs., https://www.jetresearch.com/content/dam/jrc/Documents/Books_Catalogs/06_Dets.pdf.
Jet Research Center Inc., Red RF Safe Detonators Brochure, 2008, 2 pages, www.jetresearch.com.
Jet Research Center, Velocity™ Perforating System Plug and Play Guns For Pumpdown Operation, Ivarado, Texas, Jul. 2019, 8 pgs., https://www.jetresearch.com/content/dam/jrc/Documents/Brochures/jrc-velocity-perforating-system.pdf.
Johnson, Bryce; Rule 501 citation of prior art and written “claim scope statements” in U.S. Pat. No. 10,844,697; dated Apr. 29, 2021; 18 pages.
OSO Perforating; “OsoLite”; promotional brochure; Jan. 2019.
Owen Oil Tools & Pacific Scientific; RF-Safe Green Det, Side Block for Side Initiation, Jul. 26, 2017, 2 pgs.
Owen Oil Tools, E & B Select Fire Side Port, Tandem Sub, Apr. 2010, 2 pgs., https://www.corelab.com/owen/cms/docs/Canada/10A_eandbsystem-01.0-c.pdf.
Owen Oil Tools, Expendable Perforating Guns, Jul. 2008, 7 pgs., https://www.corelab.com/owen/cms/docs/Canada/10A_erhsc-01.0-c.pdf.
Owen Oil Tools, Recommended Practice for Oilfield Explosive Safety, Presented at 2011 MENAPS Middle East and North Africa Perforating Symposium, Nov. 28-30, 2011, 6 pages.
Owens Oil Tools, E & B Select Fire Side Port Tandem Sub Assembly, 2009, 9 pgs., https://www.corelab.com/owen/CMS/docs/Manuals/gunsys/MAN-30-XXX-0002-96-R00.pdf.
Parrot, Robert; Declaration, PGR 2020-00080; dated Aug. 11, 2020; 400 pages.
Parrott, Robert; Declaration for IPR2021-00082; dated Oct. 20, 2020; 110 pages.
Parrott, Robert; Declaration for PGR No. 2021-00078; dated May 10, 2021; 182 pages.
Robert Parrott, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Declaration regarding Patent Invalidity, dated Jun. 29, 2020, 146 pages.
Rodgers, John; Declaration for PGR2020-00072; dated Oct. 23, 2020; 116 pages.
Rodgers, John; Declaration for PGR2020-00080; dated Nov. 18, 2020; 142 pages.
Salt Warren et al.; New Perforating Gun System Increases Safety and Efficiency; dated Apr. 1, 2016; 11 pages.
Scharf Thilo; Declaration for PGR2020-00080; dated Nov. 16, 2020; 16 pages.
Scharf, Thilo; Declaration for PGR2020-00072; dated Oct. 22, 2020; 13 pages.
Schlumberger & Said Abubakr, Combining and Customizing Technologies for Perforating Horizontal Wells in Algeria, Presented at 2011 MENAPS, Nov. 28-30, 2011, 20 pages.
Smylie, Tom, New Safe and Secure Detonators for the Industry's consideration, presented at Explosives Safety & Security Conference, Marathon Oil Co, Houston; Feb. 23-24, 2005, 20 pages.
SWM International Inc.; “Thunder Disposable Gun System”; promotional brochure; Oct. 2018; 5 pgs.
Thilo Scharf; “DynaEnergetics exhibition and product briefing”; pp. 5-6; presented at 2014 Offshore Technology Conference; May 2014.
Thilo Scharf; “DynaStage & BTM Introduction”; pp. 4-5, 9; presented at 2014 Offshore Technology Conference; May 2014.
U.S. Patent Trial and Appeal Board, Institution of Inter Partes Review of U.S. Pat. No. 9581422, Case IPR2018-00600,Aug. 21, 2018, 9 pages.
United States District Court for the Southern District of Texas Houston Division, Case 4:19-cv-01611 for U.S. Pat. No. 9,581,422B2, Plaintiff's Complaint and Exhibits, dated May 2, 2019, 26 pgs.
United States District Court for the Southern District of Texas Houston Division, Case 4:19-cv-01611 for U.S. Pat. No. 9,581,422B2, Defendant's Answers, Counterclaims and Exhibits, dated May 28, 2019, 135 pgs.
United States District Court for the Southern District of Texas Houston Division, Case 4:19-cv-01611 for U.S. Pat. No. 9,581,422B2, Plaintiffs' Motion to Dismiss and Exhibits, dated Jun. 17, 2019, 63 pgs.
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Reply In Support of Patent Owner's Motion to Amend, dated Mar. 21, 2019, 15 pgs.
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Decision of Precedential Opinion Panel, Granting Patent Owner's Request for Hearing and Granting Patent Owner's Motion to Amend, dated Jul. 6, 2020, 27 pgs.
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, DynaEnergetics GmbH & Co. KG's Patent Owner Preliminary Response, dated May 22, 2018, 47 pgs.
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Order Granting Precedential Opinion Panel, Paper No. 46, dated Nov. 7, 2019, 4 pgs.
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Patent Owner's Motion to Amend, dated Dec. 6, 2018, 53 pgs.
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Patent Owner's Opening Submission to Precedential Opinion Panel, dated Dec. 20, 2019, 21 pgs.
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Patent Owner's Request for Hearing, dated Sep. 18, 2019, 19 pgs.
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Patent Owner's Responsive Submission to Precedential Opinion Panel, dated Jan. 6, 2020, 16 pgs.
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Patent Owner's Sur-reply, dated Mar. 21, 2019, 28 pgs.
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Petitioner's Additional Briefing to the Precedential Opinion Panel, dated Dec. 20, 2019, 23 pgs.
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Petitioner's Opposition to Patent Owner's Motion to Amend, dated Mar. 7, 2019, 30 pgs.
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Petitioner's Reply Briefing to the Precedential Opinion Panel, dated Jan. 6, 2020, 17 pgs.
United States Patent and Trademark Office, Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Petitioner's Reply in Inter Partes Review of U.S. Pat. No. 9,581,422, dated Mar. 7, 2019, 44 pgs.
United States Patent and Trademark Office, Final Written Decision of Case IPR2018-00600 for U.S. Pat. No. 9,581,422 B2, Paper No. 42, dated Aug. 20, 2019, 31 pgs.
United States Patent and Trademark Office; Non-Final Office Action for U.S. Appl. No. 17/007,574; dated Jan. 29, 2021; 11 pages.
United States Patent and Trademark Office; Non-Final Office Action for U.S. Appl. No. 17/221,219; dated Jun. 17, 2021; 10 pages.
United States Patent and Trademark Office; Patent Prosecution History of U.S. Appl. No. 61/733,129; dated Jan. 3, 2013; 22 pages.
United States Patent and Trademark Office; Patent Prosecution History U.S. Appl. No. 61/439,217; dated Mar. 4, 2011; 31 pages.
United States Patent and Trademark Office; U.S. Appl. No. 62/002,559; dated May 23, 2014; 19 pages.
United States Patent and Trademark Office; U.S. Appl. No. 62/002,565; dated Jun. 25, 2014; 25 pages.
United States Patent and Trial Appeal Board; Final Written Decision on IPR2018-00600; dated Aug. 20, 2019; 31 pages.
United States Patent Trial and Appeal Board; Decision Denying Institution of Post-Grant Review; PGR No. 2020-00072; dated Jan. 19, 2021; 38 pages.
International Searching Authority; International Preliminary Report on Patentability of the International Searching Authority for PCT/EP2021/057148; dated Sep. 29, 2022; 8 pages.
United States Patent and Trademark Office; Non-Final Office Action for U.S. Appl. No. 17/181,280; dated Apr. 19, 2021; 18 pages.
United States Patent and Trademark Office; Notice of Allowance for U.S. Appl. No. 17/181,280; dated Sep. 15, 2021; 14 pages.
Related Publications (1)
Number Date Country
20220098947 A1 Mar 2022 US
Provisional Applications (1)
Number Date Country
62992643 Mar 2020 US
Continuations (1)
Number Date Country
Parent 17181280 Feb 2021 US
Child 17545147 US
Continuation in Parts (1)
Number Date Country
Parent 29735905 May 2020 US
Child 17181280 US