1. Technical Field
The present disclosure relates generally to powered surgical devices. More specifically, the present disclosure relates to an adapter assembly for selectively connecting an extension assembly including an end effector to the actuation units of the powered surgical devices.
2. Background of Related Art
Powered devices for use in surgical procedures are known. To permit reuse of the handle assemblies of these powered surgical devices and so that the handle assembly may be used with a variety of end effectors, adapter assemblies and extension assemblies have been developed for selective attachment to the handle assemblies and to a variety of end effectors. Following use, the adapter and/or extension assemblies may be disposed of along with the end effector. In some instances, the adapter assemblies and extension assemblies may be sterilized for reuse.
A surgical assembly for operably connecting an end effector to an electrosurgical instrument is provided. The surgical assembly includes an adapter assembly including a connector assembly, a drive transfer assembly operably received through the connector assembly and including a first rotatable shaft, and a first pusher assembly operably connected to the first rotatable shaft for converting rotational motion from the first rotatable shaft to longitudinal movement to perform a first function, the first pusher assembly including a first pusher member and first and second pawl assemblies. The surgical assembly further includes an extension assembly operably connected to a distal end of the adapter assembly. The extension assembly includes a flexible band assembly operably connectable to the first and second pawl assemblies of the first pusher assembly.
In embodiments, the surgical assembly further includes a second pusher assembly, and a second rotatable shaft operably connected to the second pusher assembly for converting rotational motion from the second rotatable shaft to longitudinal movement to perform a second function. The surgical assembly may further include a drive member, and a third rotatable shaft operably connected to the drive assembly for transferring rotational motion from the third rotatable shaft to perform a third function. The first pawl assembly may include a first plurality of pawl members, and the second pawl assembly includes a second plurality of pawl members. The flexible band assembly may include first and second connector members. Each of the first and second connector members may define an opening configured for selective receipt of a respective one of the first and second pawl assemblies.
In some embodiments, the first plurality of pawl members includes a protrusion selectively receivable within the opening of the first connector member, and the second plurality of pawl members includes a protrusion selectively receivable within the opening of the second connector member. Each of the protrusions may include a flat proximal facing surface and a slanted distal facing surface. The first and second plurality of pawl members may be pivotally secured to the pusher member.
The pusher member may include a first retainer for supporting the first plurality of pawl members, and a second retainer for supporting the second plurality of pawl members. The first and second retainers may each define a longitudinal slot for receiving the respective first and second plurality of pawl members. The first plurality of pawl members may be pivotally received within the longitudinal slot of the first retainer, and the second plurality of pawl members may be pivotally received within the longitudinal slot of the second retainer. Each of the first and second plurality of pawl members may be configured to flex radially inward. The first and second plurality of pawl members may each include a curved profile. The first and second plurality of pawl members may each be formed of a resilient material.
Embodiments of the present disclosure are described herein with reference to the accompanying drawings, wherein:
Embodiments of the presently disclosed adapter assemblies and extension assemblies for surgical devices and/or handle assemblies are described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein the term “distal” refers to that portion of the adapter assembly or surgical device, or component thereof, farther from the user, while the term “proximal” refers to that portion of the adapter assembly or surgical device, or component thereof, closer to the user.
With reference to
As illustrated in
The adapter assembly 100 will now be described with reference to
Turning to
With reference to
The drive coupling assembly 110 also includes first, second and third biasing members 122a, 124a and 126a disposed distally of the respective first, second and third connector sleeves 122, 124, 126. Each of the biasing members 122a, 124a and 126a is disposed about the respective first, second, and third rotatable proximal drive shafts 116, 118 and 120 to help maintain the connector sleeves 122, 124, and 126 engaged with the distal end of the respective rotatable drive connectors (not shown) of the surgical device 10 when the adapter assembly 100 is connected to the surgical device 10. In particular, the first, second, and third biasing members 122a, 124a, and 126a function to bias the respective connector sleeves 122, 124, and 126 in a proximal direction.
For a detailed description of an exemplary drive coupling assembly, please refer to the '329 application, the contents of which were previously incorporated by reference herein.
With reference to
The first and second rotatable distal drive shafts 136 and 138 are each operably connected to the respective first and second rotatable proximal drive shafts 116 and 118 of the drive coupling assembly 110 by a pair of gears. In particular, the distal ends of each of the first and second rotatable proximal drive shaft 116 and 118 include a geared portion 142a and 144a, respectively, which engages a proximal drive gear 142b and 144b on a proximal end of the respective first and second distal drive shafts 136 and 138. As shown, each of the respective paired geared portions and proximal drive gears 142a, 142b and 144a, 144b are the same size to provide a 1:1 gear ratio between the respective first and second rotatable proximal and distal drive shafts 116, 136 and 118, 138. In this manner, the respective first and second rotatable proximal and distal drive shafts 116, 136 and 118, 138 rotate at the same speed. However, it is envisioned that either or both of the paired geared portions and proximal drive gears may be of different sizes to alter the gear ratio between the first and second rotatable proximal and distal drive shafts 116, 136 and 118, 138.
A distal end of the third proximal drive shaft 120 of the drive coupling assembly 110 includes a geared portion 146a that engages a geared portion 146b formed on a proximal end of the drive member 140 of the drive transfer assembly 130. The size of the geared portion 146a on the third proximal drive shaft 120 and the geared portion 146b on the drive member 140 are the same size to provide a 1:1 gear ratio between the third proximal drive shaft 120 and the drive member 140. In this manner, the third proximal drive shaft 120 and the drive member 140 rotate at the same speed. However, it is envisioned that either or both of the geared portions 146a, 146b may be of different sizes to alter the gear ratio between the third proximal drive shaft 120 and the drive member 140. A distal end of the drive member 140 defines a socket 145 that receives a proximal end 108a of the shaft 108. Alternatively, the socket 145 may be configured to operably engage a proximal end 208a of a drive shaft (
The drive transfer assembly 130 also includes a drive connector 148 (
As shown, the geared portion 152a of the first rotatable distal drive shaft 136 is smaller than the geared portion 152b of the drive connector 148 to provide a gear ratio of greater than 1:1 between the first rotatable distal drive shaft 136 and the drive connector 148. In this manner, the drive connector 148 rotates at a slower speed than the first rotatable distal drive shaft 136. Similarly, the geared portion 154a of the second rotatable distal drive shaft 138 is smaller than the drive gear 154b on the tubular connector 150 to provide a gear ratio of greater than 1:1 between the second rotatable distal drive shaft 138 and the drive connector 148. In this manner, the tubular connector 150 rotates at a slower speed than the second rotatable distal drive shaft 138. However, it is envisioned that each of the paired geared portions 152a, 152b, and the geared portion 154a and the drive gear 154b may be the same size to provide a gear ratio of 1:1 between the respective first rotatable distal drive shaft 136 and the drive connector 148 and between the second rotatable distal drive shaft 138 and the tubular connector 150.
With particular reference to
The planetary gear assembly 166 includes first and second planetary gear systems 166a, 166b (
Each of the planetary gears 174a engages the central drive gear 172a and a toothed inner surface 165 of the proximal housing section 162. As central drive gear 172a rotates in a first direction, i.e., clockwise, each of the planetary gears 174a rotates in a second direction, i.e., counter-clockwise. As each of the planetary gears 174a rotates in the second direction, engagement of the planetary gears 174a with the toothed inner surface 165 of the distal housing section 162 causes the rotatable support ring 176 to rotate in the first direction. Conversely, rotation of the central drive gear 172a in the second direction causes rotation of each of the planetary gears 174a in the first direction thereby causing rotation of the rotatable support ring 176 in the second direction. The configuration of the first planetary gear system 166a provides a reduction in the gear ratio. In this manner, the speed of rotation of the rotatable support ring 174 is less than the speed of rotation of the central drive gear 172a.
The second planetary gear system 166b of the first pusher assembly 160 includes a central drive gear 172b securely affixed to the rotatable support ring 176 and a plurality of planetary gears 174b rotatably mounted to a proximal end surface 168a of the screw member 168. Each of the planetary gears 174b engages the central drive gear 172b and the toothed inner surface 165 of the proximal housing section 162. As the rotatable support ring 176 of the first planetary gear system 166a rotates in the first direction thereby causing the central drive gear 172b to also rotate in the first direction, each of the planetary gears 174b rotates in the second direction. As each of the planetary gears 174b rotates in the second direction, engagement of the planetary gears 174b with the toothed inner surface 165 of the proximal housing section 162 causes the screw member 168 to rotate in the first direction. Conversely, rotation of the central drive gear 172b in the second direction causes rotation of each of the planetary gears 174b in the first direction, thereby causing the screw member 168 to rotate in the second direction. The configuration of the second planetary gear system 166b provides a reduction in the gear ratio. In this manner, the speed of rotation of the screw member 168 is less than the speed of rotation of the central drive gear 172b.
The first and second planetary gear systems 166a, 166b operate in unison to provide a reduction in the gear ratio between the first rotatable proximal drive shaft 116 and the screw member 168. In this manner, the reduction in the speed of rotation of the screw member 168 relative to the drive connector 148 is a product of the reduction provided by the first and second planetary gear systems 166a, 166b.
The screw member 168 is rotatably supported within the proximal housing portion 162 and includes a threaded distal end 168b that operably engages a threaded inner surface 170a of the pusher member 170. As the screw member 168 is rotated in the first direction, engagement of the threaded distal end 168b of the screw member 168 with the threaded inner surface 170a of the pusher member 170 causes longitudinal advancement of the pusher member 170, as indicated by arrows “A” in
The pusher member 170 includes a pair of tabs 178 formed on a distal end thereof for engaging the connector extensions 240, 242 (
With particular reference now to
The planetary gear assembly 186 includes first and second planetary gear systems 186a, 186b (
Each of the planetary gears 194a engages the central drive gear 192a and a toothed inner surface 185 of the proximal housing section 182. As central drive gear 192a rotates in a first direction, i.e., clockwise, each of the planetary gears 194a rotates in a second direction, i.e., counter-clockwise. As each of the planetary gears 194a rotates in the second direction, engagement of the planetary gears 194a with toothed inner surface 185 of the distal housing section 182 causes the rotatable support ring 196 to rotate in the first direction. Conversely, rotation of the central drive gear 192a in the second direction causes rotation of each of the planetary gears 194a in the first direction thereby causing rotation of the rotatable support ring 196 in the second direction. The configuration of the first planetary gear system 186a provides a reduction in the gear ratio. In this manner, the speed of rotation of the rotatable support ring 194 is less than the speed of rotation of the central drive gear 190a.
The second planetary gear system 186b of the second pusher assembly 180 includes a central drive gear 192b securely affixed to the rotatable support ring 196 and a plurality of planetary gears 194b rotatably mounted to a proximal end surface 188a of the screw member 188. Each of the planetary gears 194b engages the central drive gear 192b and the toothed inner surface 185 of the proximal housing section 182. As the rotatable support ring 196 of the first planetary gear system 186a rotates in the first direction thereby causing the central drive gear 192b to also rotate in the first direction, each of the planetary gears 174b rotates in the second direction. As each of the planetary gears 194b rotates in the second direction, engagement of the planetary gears 194b with the toothed inner surface 185 of the proximal housing section 182 causes the screw member 188 to rotate in the first direction. Conversely, rotation of the central drive gear 192b in the second direction causes rotation of each of the planetary gears 194b in the first direction, thereby causing the screw member 198 to rotate in the second direction. The configuration of the second planetary gear system 186b provides a reduction in the gear ratio. In this manner, the speed of rotation of the screw member 188 is less than the speed of rotation of the central drive gear 182b. The first and second planetary gear systems 186a, 186b operate in unison to provide a reduction in the gear ratio between the second rotatable proximal drive shaft 118 and the screw member 188. In this manner, the reduction in the speed of rotation of the screw member 188 relative to the tubular connector 150 is a product of the reduction provided by the first and second planetary gear systems 186a, 186b.
The screw member 188 is rotatably supported within the proximal housing portion 182 and includes a threaded distal end 188b that operably engages a threaded inner surface 190a of the pusher member 190. As the screw member 188 is rotated in the first direction, engagement of the threaded distal end 188b of the screw member 188 with the threaded inner surface 190a of the pusher member 190 causes longitudinal advancement of the pusher member 190. Conversely, rotation of the screw member 188 in the second direction causes retraction of the pusher member 190. The pusher member 190 includes a pair of longitudinal flanges 191 (
The pusher member 190 includes a pair of tabs 198 formed on a distal end thereof for engaging the connector extensions 220, 224 (
The extension assembly 200 for operably connecting the adapter assembly 100 (
The extension assembly 200 includes an inner flexible band assembly 210 (
With reference to
The first and second connection extensions 220, 222 of the inner flexible band assembly 210 extend proximally from the support ring 216 and operably connect the inner flexible band assembly 210 with the pusher member 190 (
The support base 218 extends distally from the inner flexible bands 212, 214 and is configured to selectively connect the extension assembly 200 with the loading unit 40 (
With reference now to
The first and second connection extensions 240, 242 of the outer flexible band assembly 230 extend proximally from the support ring 236 and operably connect the outer flexible band assembly 230 with the pusher member 170 (
The support base 238 extends distally from the outer flexible bands 232, 234 and is configured to selectively connect the extension assembly 200 with the loading unit 40 (
With reference now to
In one embodiment, and as shown, the first and second proximal spacer members 252, 254 are formed of plastic and are secured together with a snap-fit arrangement. Alternatively, the first and second proximal spacer members 252, 254 may be formed of metal or other suitable material and may be secured together in any suitable manner, including by welding, adhesives, and/or using mechanical fasteners.
The first and second distal spacer members 256, 258 define a pair of inner slots 257a for slidably receiving the first and second flexible bands 212, 214 (
In one embodiment, and as shown, each of the first and second distal spacer members 256, 258 are secured about the inner and outer flexible band assemblies 210, 230 and to the outer sleeve 206 (
With reference now to
With reference to
A bearing assembly 278 is mounted to a proximal end 272a of the outer housing 272 of the trocar assembly 270 for rotatably supporting a proximal end 276a of the drive screw 276 relative to the outer housing 272 and the trocar member 274. The bearing assembly 278 includes a housing 278a, proximal and distal spacers 278b, proximal and distal retention clips 278c, proximal and distal bearings 278d, and a washer 278e. As shown, the proximal end 276a of the drive screw 276 includes a flange 276c for connection with a link assembly 280.
The link assembly 280 operably connects the transfer assembly 130 (
With reference to
With particular reference to
With reference now to
With reference now to
As noted above, adapter assembly 100 may include a drive shaft 108 (
After the extension assembly 200 is operably engaged with the adapter assembly 100, and the adapter assembly 100 is operably engaged with the surgical device 10 (
In embodiments, the inner flexible band assembly 210 operably connects the second pusher assembly 180 of the adapter assembly 100 with a knife assembly (not show) of the loading unit 40 (
By stacking the first and second pusher assemblies 160, 180 of the adapter assembly 100, as described, and positioning the drive shaft 108 of the transfer assembly 130 through the first and second pusher assemblies 160, 180, the adapter assembly 100 can perform three functions through an access port or other opening (not shown) having a small diameter, e.g., 21 mm. Similarly, by configuring the inner flexible band assembly 210 within the outer flexible band assembly 230 and receiving the trocar assembly 270 through the inner and outer flexible band assemblies 210, 230, the extension assembly 200 can perform three functions through an access port or other opening (not shown) having a small diameter, e.g., 21 mm.
With reference now to
As will become apparent from the following description, the configuration of adapter assembly 300 permits rotation of a distal portion 304 of adapter assembly 300 about a longitudinal axis “x” (
With particular reference to
With reference still to
The drive coupling assembly 320 is configured to selectively secure adapter assembly 300 to a surgical device (not shown). For a detailed description of an exemplary surgical device and drive coupling assembly, please refer to commonly owned U.S. patent application Ser. No. 14/550,183, filed Nov. 21, 2014, the content of which is incorporated by reference herein in its entirety.
With continued reference to
The support structure 308 is fixedly received about the first and second drive pusher assemblies 340, 380 and is rotatable relative to the base 306. As noted above, the rotation handle 310 is fixedly secured to the proximal end of the support structure 308 to facilitate rotation of the support structure 308 relative to the base 306. The support structure 308 is retained within the outer sleeve 305 of the adapter assembly 300 and is configured to maintain axial alignment of the first and second drive pusher assemblies 340, 380. For a detailed description of an exemplary support structure, please refer to commonly owned U.S. Provisional Patent Application Ser. No. 62/066,518, the content of which was previously incorporated by reference herein.
The drive transfer assembly 330, the first pusher assembly 340, and the second drive pusher assembly 380 of the adapter assembly 300 are substantially identical to the respective drive transfer assembly 130, first pusher assembly 160, and second drive pusher assembly 180 of the adapter assembly 100 described hereinabove, and therefore, will only be described as relates to the differences therebetween.
Briefly, the first pusher assembly 340 includes a planetary gear assembly 346 operably supported within a proximal housing section 342 and a screw member 348 operably connected to the planetary gear assembly 346 and rotatably supported within a distal housing section 344. The first pusher assembly 340 further includes a pusher member 350 operably connected to the screw member 348 and slidably disposed within the distal housing section 344.
With particular reference to
A pawl assembly 362, 364 is received within each of the longitudinal slots 359, 361, respectively. The pawl assemblies 362, 364 each include a plurality of pawl members 362a-e, 364a-e, respectively (collectively, pawls 366, 368, respectively), and pivot pins 363, 365. The pawls 366, 368 are secured within the respective longitudinal slots 359, 361 by the pivot pins 363, 365, respectively, received through openings 367, 369, respectively, formed in the respective distal ends 366b, 368b of the pawls 366, 368, respectively. The pawls 366, 368 each include a curved profile and are formed of a resilient material. Protrusions 370, 372 are formed on an outer curved surface of the respective pawls 366, 368 proximal to the distal ends 366b, 368b, respectively. The protrusions 370, 372 each include a flat proximal facing surface 370a, 372a, respectively, and a slanted or inclined distal facing surface 370b, 372b. As will be described in further detail below, the protrusions 370, 372 are configured to be received within openings 241, 243 (
With particular reference to
With reference now to
Once the connector extensions 240, 242 of the outer flexible band 230 of the extension assembly 200 are received over the pawls 366, 368, respectively, and once the protrusions 370, 372 are received within respective openings 241, 243 of the respective connector extensions 240, 242, engagement of the connector extensions 240, 242 by the flat proximal surface 370a, 372a of the protrusions 370, 372, respectively, prevents the connector extensions 240, 242 from being disengaging from the first pusher assembly 340 during operation of the adapter assembly 300 and the extension assembly 200.
The adapter assembly 300 operates in a substantially similar manner to adapter assembly 100 described hereinabove. In addition, adapter assembly 300 is configured to permit rotation of an end effector, e.g., end effector 30 (
Any of the components described herein may be fabricated from either metals, plastics, resins, composites or the like taking into consideration strength, durability, wearability, weight, resistance to corrosion, ease of manufacturing, cost of manufacturing, and the like.
Persons skilled in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments. It is envisioned that the elements and features illustrated or described in connection with one exemplary embodiment may be combined with the elements and features of another without departing from the scope of the present disclosure. As well, one skilled in the art will appreciate further features and advantages of the disclosure based on the above-described embodiments. Accordingly, the disclosure is not to be limited by what has been particularly shown and described, except as indicated by the appended claims.
This application claims the benefit of and priority to U.S. Provisional Patent Application No. 62/251,930, filed Nov. 6, 2015, the entire disclosure of which is incorporated by reference herein.
| Number | Name | Date | Kind |
|---|---|---|---|
| 2777340 | Hettwer et al. | Jan 1957 | A |
| 2957353 | Babacz | Oct 1960 | A |
| 3111328 | Di Rito et al. | Nov 1963 | A |
| 3695058 | Keith, Jr. | Oct 1972 | A |
| 3734515 | Dudek | May 1973 | A |
| 3759336 | Marcovitz et al. | Sep 1973 | A |
| 4162399 | Hudson | Jul 1979 | A |
| 4606343 | Conta et al. | Aug 1986 | A |
| 4705038 | Sjostrom et al. | Nov 1987 | A |
| 4722685 | de Estrada et al. | Feb 1988 | A |
| 4823807 | Russell et al. | Apr 1989 | A |
| 4874181 | Hsu | Oct 1989 | A |
| 5129118 | Walmesley | Jul 1992 | A |
| 5129570 | Schulze et al. | Jul 1992 | A |
| 5152744 | Krause et al. | Oct 1992 | A |
| 5301061 | Nakada et al. | Apr 1994 | A |
| 5312023 | Green et al. | May 1994 | A |
| 5326013 | Green et al. | Jul 1994 | A |
| 5350355 | Sklar | Sep 1994 | A |
| 5383874 | Jackson et al. | Jan 1995 | A |
| 5383880 | Hooven | Jan 1995 | A |
| 5389098 | Tsuruta et al. | Feb 1995 | A |
| 5395033 | Byrne et al. | Mar 1995 | A |
| 5400267 | Denen et al. | Mar 1995 | A |
| 5411508 | Bessler et al. | May 1995 | A |
| 5413267 | Solyntjes et al. | May 1995 | A |
| 5427087 | Ito et al. | Jun 1995 | A |
| 5433721 | Hooven et al. | Jul 1995 | A |
| 5454378 | Palmer | Oct 1995 | A |
| 5467911 | Tsuruta et al. | Nov 1995 | A |
| 5476379 | Disel | Dec 1995 | A |
| 5487499 | Sorrentino et al. | Jan 1996 | A |
| 5518163 | Hooven | May 1996 | A |
| 5518164 | Hooven | May 1996 | A |
| 5526822 | Burbank et al. | Jun 1996 | A |
| 5529235 | Boiarski et al. | Jun 1996 | A |
| 5535934 | Boiarski et al. | Jul 1996 | A |
| 5535937 | Boiarski et al. | Jul 1996 | A |
| 5540375 | Bolanos et al. | Jul 1996 | A |
| 5540706 | Aust et al. | Jul 1996 | A |
| 5542594 | McKean et al. | Aug 1996 | A |
| 5549637 | Crainich | Aug 1996 | A |
| 5553675 | Pitzen et al. | Sep 1996 | A |
| 5562239 | Boiarski et al. | Oct 1996 | A |
| 5564615 | Bishop et al. | Oct 1996 | A |
| 5609560 | Ichikawa et al. | Mar 1997 | A |
| 5626587 | Bishop et al. | May 1997 | A |
| 5632432 | Schulze et al. | May 1997 | A |
| 5645209 | Green et al. | Jul 1997 | A |
| 5647526 | Green et al. | Jul 1997 | A |
| 5653374 | Young et al. | Aug 1997 | A |
| 5658300 | Bito et al. | Aug 1997 | A |
| 5662662 | Bishop et al. | Sep 1997 | A |
| 5667517 | Hooven | Sep 1997 | A |
| 5693042 | Boiarski et al. | Dec 1997 | A |
| 5704534 | Huitema et al. | Jan 1998 | A |
| 5713505 | Huitema | Feb 1998 | A |
| 5762603 | Thompson | Jun 1998 | A |
| 5779130 | Alesi et al. | Jul 1998 | A |
| 5782396 | Mastri et al. | Jul 1998 | A |
| 5782397 | Koukline | Jul 1998 | A |
| 5792573 | Pitzen et al. | Aug 1998 | A |
| 5797536 | Smith et al. | Aug 1998 | A |
| 5820009 | Melling et al. | Oct 1998 | A |
| 5863159 | Lasko | Jan 1999 | A |
| 5908427 | McKean et al. | Jun 1999 | A |
| 5954259 | Viola et al. | Sep 1999 | A |
| 5964774 | McKean et al. | Oct 1999 | A |
| 5993454 | Longo | Nov 1999 | A |
| 6010054 | Johnson et al. | Jan 2000 | A |
| 6017354 | Culp et al. | Jan 2000 | A |
| 6032849 | Mastri et al. | Mar 2000 | A |
| 6045560 | McKean et al. | Apr 2000 | A |
| 6090123 | Culp et al. | Jul 2000 | A |
| 6126651 | Mayer | Oct 2000 | A |
| 6129547 | Cise et al. | Oct 2000 | A |
| 6165169 | Panescu et al. | Dec 2000 | A |
| 6239732 | Cusey | May 2001 | B1 |
| 6241139 | Milliman et al. | Jun 2001 | B1 |
| 6264086 | McGuckin, Jr. | Jul 2001 | B1 |
| 6264087 | Whitman | Jul 2001 | B1 |
| 6302311 | Adams et al. | Oct 2001 | B1 |
| 6315184 | Whitman | Nov 2001 | B1 |
| 6321855 | Barnes | Nov 2001 | B1 |
| 6329778 | Culp et al. | Dec 2001 | B1 |
| 6343731 | Adams et al. | Feb 2002 | B1 |
| 6348061 | Whitman | Feb 2002 | B1 |
| 6368324 | Dinger et al. | Apr 2002 | B1 |
| 6371909 | Hoeg et al. | Apr 2002 | B1 |
| 6434507 | Clayton et al. | Aug 2002 | B1 |
| 6443973 | Whitman | Sep 2002 | B1 |
| 6461372 | Jensen et al. | Oct 2002 | B1 |
| 6488197 | Whitman | Dec 2002 | B1 |
| 6491201 | Whitman | Dec 2002 | B1 |
| 6533157 | Whitman | Mar 2003 | B1 |
| 6537280 | Dinger et al. | Mar 2003 | B2 |
| 6610066 | Dinger et al. | Aug 2003 | B2 |
| 6611793 | Burnside et al. | Aug 2003 | B1 |
| 6645218 | Cassidy et al. | Nov 2003 | B1 |
| 6654999 | Stoddard et al. | Dec 2003 | B2 |
| 6698643 | Whitman | Mar 2004 | B2 |
| 6699177 | Wang et al. | Mar 2004 | B1 |
| 6716233 | Whitman | Apr 2004 | B1 |
| 6743240 | Smith et al. | Jun 2004 | B2 |
| 6783533 | Green et al. | Aug 2004 | B2 |
| 6792390 | Burnside et al. | Sep 2004 | B1 |
| 6793652 | Whitman et al. | Sep 2004 | B1 |
| 6817508 | Racenet et al. | Nov 2004 | B1 |
| 6830174 | Hillstead et al. | Dec 2004 | B2 |
| 6846308 | Whitman et al. | Jan 2005 | B2 |
| 6846309 | Whitman et al. | Jan 2005 | B2 |
| 6849071 | Whitman et al. | Feb 2005 | B2 |
| 6860892 | Tanaka et al. | Mar 2005 | B1 |
| 6899538 | Matoba | May 2005 | B2 |
| 6905057 | Swayze et al. | Jun 2005 | B2 |
| 6959852 | Shelton, IV et al. | Nov 2005 | B2 |
| 6964363 | Wales et al. | Nov 2005 | B2 |
| 6981628 | Wales | Jan 2006 | B2 |
| 6981941 | Whitman et al. | Jan 2006 | B2 |
| 6986451 | Mastri et al. | Jan 2006 | B1 |
| 6988649 | Shelton, IV et al. | Jan 2006 | B2 |
| 7032798 | Whitman et al. | Apr 2006 | B2 |
| RE39152 | Aust et al. | Jun 2006 | E |
| 7055731 | Shelton, IV et al. | Jun 2006 | B2 |
| 7059508 | Shelton, IV et al. | Jun 2006 | B2 |
| 7077856 | Whitman | Jul 2006 | B2 |
| 7111769 | Wales et al. | Sep 2006 | B2 |
| 7122029 | Koop et al. | Oct 2006 | B2 |
| 7140528 | Shelton, IV | Nov 2006 | B2 |
| 7141049 | Stern et al. | Nov 2006 | B2 |
| 7143923 | Shelton, IV et al. | Dec 2006 | B2 |
| 7143925 | Shelton, IV et al. | Dec 2006 | B2 |
| 7143926 | Shelton, IV et al. | Dec 2006 | B2 |
| 7147138 | Shelton, IV | Dec 2006 | B2 |
| 7172104 | Scirica et al. | Feb 2007 | B2 |
| 7225964 | Mastri et al. | Jun 2007 | B2 |
| 7238021 | Johnson | Jul 2007 | B1 |
| 7246734 | Shelton, IV | Jul 2007 | B2 |
| 7252660 | Kunz | Aug 2007 | B2 |
| 7328828 | Ortiz et al. | Feb 2008 | B2 |
| 7364061 | Swayze | Apr 2008 | B2 |
| 7380695 | Doll et al. | Jun 2008 | B2 |
| 7380696 | Shelton, IV et al. | Jun 2008 | B2 |
| 7404508 | Smith et al. | Jul 2008 | B2 |
| 7407078 | Shelton, IV et al. | Aug 2008 | B2 |
| 7416101 | Shelton, IV et al. | Aug 2008 | B2 |
| 7419080 | Smith et al. | Sep 2008 | B2 |
| 7422139 | Shelton, IV et al. | Sep 2008 | B2 |
| 7431189 | Shelton, IV et al. | Oct 2008 | B2 |
| 7441684 | Shelton, IV et al. | Oct 2008 | B2 |
| 7448525 | Shelton, IV et al. | Nov 2008 | B2 |
| 7464846 | Shelton, IV et al. | Dec 2008 | B2 |
| 7464847 | Viola et al. | Dec 2008 | B2 |
| 7464849 | Shelton, IV et al. | Dec 2008 | B2 |
| 7481347 | Roy | Jan 2009 | B2 |
| 7481824 | Boudreaux et al. | Jan 2009 | B2 |
| 7487899 | Shelton, IV et al. | Feb 2009 | B2 |
| 7549564 | Boudreaux et al. | Jun 2009 | B2 |
| 7565993 | Milliman et al. | Jul 2009 | B2 |
| 7568603 | Shelton, IV et al. | Aug 2009 | B2 |
| 7575144 | Ortiz et al. | Aug 2009 | B2 |
| 7588175 | Timm et al. | Sep 2009 | B2 |
| 7588176 | Timm et al. | Sep 2009 | B2 |
| 7637409 | Marczyk | Dec 2009 | B2 |
| 7641093 | Doll et al. | Jan 2010 | B2 |
| 7644848 | Swayze et al. | Jan 2010 | B2 |
| 7670334 | Hueil et al. | Mar 2010 | B2 |
| 7673780 | Shelton, IV et al. | Mar 2010 | B2 |
| 7699835 | Lee et al. | Apr 2010 | B2 |
| 7721931 | Shelton, IV et al. | May 2010 | B2 |
| 7738971 | Swayze et al. | Jun 2010 | B2 |
| 7740159 | Shelton, IV et al. | Jun 2010 | B2 |
| 7743960 | Whitman et al. | Jun 2010 | B2 |
| 7758613 | Whitman | Jul 2010 | B2 |
| 7766210 | Shelton, IV et al. | Aug 2010 | B2 |
| 7770773 | Whitman et al. | Aug 2010 | B2 |
| 7770775 | Shelton, IV et al. | Aug 2010 | B2 |
| 7793812 | Moore et al. | Sep 2010 | B2 |
| 7799039 | Shelton, IV et al. | Sep 2010 | B2 |
| 7802712 | Milliman et al. | Sep 2010 | B2 |
| 7803151 | Whitman | Sep 2010 | B2 |
| 7822458 | Webster, III et al. | Oct 2010 | B2 |
| 7845534 | Viola et al. | Dec 2010 | B2 |
| 7845537 | Shelton, IV et al. | Dec 2010 | B2 |
| 7857185 | Swayze et al. | Dec 2010 | B2 |
| 7870989 | Viola et al. | Jan 2011 | B2 |
| 7900805 | Shelton, IV et al. | Mar 2011 | B2 |
| 7905897 | Whitman et al. | Mar 2011 | B2 |
| 7918230 | Whitman et al. | Apr 2011 | B2 |
| 7922061 | Shelton, IV et al. | Apr 2011 | B2 |
| 7922719 | Ralph et al. | Apr 2011 | B2 |
| 7947034 | Whitman | May 2011 | B2 |
| 7951071 | Whitman et al. | May 2011 | B2 |
| 7954682 | Giordano et al. | Jun 2011 | B2 |
| 7959051 | Smith et al. | Jun 2011 | B2 |
| 7963433 | Whitman et al. | Jun 2011 | B2 |
| 7967178 | Scirica et al. | Jun 2011 | B2 |
| 7967179 | Olson et al. | Jun 2011 | B2 |
| 7992758 | Whitman et al. | Aug 2011 | B2 |
| 8011550 | Aranyi et al. | Sep 2011 | B2 |
| 8016178 | Olson et al. | Sep 2011 | B2 |
| 8016855 | Whitman et al. | Sep 2011 | B2 |
| 8020743 | Shelton, IV | Sep 2011 | B2 |
| 8025199 | Whitman et al. | Sep 2011 | B2 |
| 8035487 | Malackowski | Oct 2011 | B2 |
| 8052024 | Viola et al. | Nov 2011 | B2 |
| 8114118 | Knodel et al. | Feb 2012 | B2 |
| 8127975 | Olson et al. | Mar 2012 | B2 |
| 8132705 | Viola et al. | Mar 2012 | B2 |
| 8152516 | Harvey et al. | Apr 2012 | B2 |
| 8157150 | Viola et al. | Apr 2012 | B2 |
| 8157151 | Ingmanson et al. | Apr 2012 | B2 |
| 8182494 | Yencho et al. | May 2012 | B1 |
| 8186555 | Shelton, IV et al. | May 2012 | B2 |
| 8186587 | Zmood et al. | May 2012 | B2 |
| 8220367 | Hsu | Jul 2012 | B2 |
| 8235273 | Olson et al. | Aug 2012 | B2 |
| 8241322 | Whitman et al. | Aug 2012 | B2 |
| 8272554 | Whitman et al. | Sep 2012 | B2 |
| 8292150 | Bryant | Oct 2012 | B2 |
| 8292888 | Whitman | Oct 2012 | B2 |
| 8342379 | Whitman et al. | Jan 2013 | B2 |
| 8348130 | Shah et al. | Jan 2013 | B2 |
| 8348855 | Hillely et al. | Jan 2013 | B2 |
| 8353440 | Whitman et al. | Jan 2013 | B2 |
| 8357144 | Whitman et al. | Jan 2013 | B2 |
| 8365633 | Simaan et al. | Feb 2013 | B2 |
| 8365972 | Aranyi et al. | Feb 2013 | B2 |
| 8371492 | Aranyi et al. | Feb 2013 | B2 |
| 8372057 | Cude et al. | Feb 2013 | B2 |
| 8391957 | Carlson et al. | Mar 2013 | B2 |
| 8403926 | Nobis et al. | Mar 2013 | B2 |
| 8418904 | Wenchell et al. | Apr 2013 | B2 |
| 8424739 | Racenet et al. | Apr 2013 | B2 |
| 8454585 | Whitman | Jun 2013 | B2 |
| 8505802 | Viola et al. | Aug 2013 | B2 |
| 8517241 | Nicholas et al. | Aug 2013 | B2 |
| 8523043 | Ullrich et al. | Sep 2013 | B2 |
| 8551076 | Duval et al. | Oct 2013 | B2 |
| 8561871 | Rajappa et al. | Oct 2013 | B2 |
| 8561874 | Scirica | Oct 2013 | B2 |
| 8602287 | Yates et al. | Dec 2013 | B2 |
| 8623000 | Humayun et al. | Jan 2014 | B2 |
| 8627995 | Smith et al. | Jan 2014 | B2 |
| 8632463 | Drinan et al. | Jan 2014 | B2 |
| 8636766 | Milliman et al. | Jan 2014 | B2 |
| 8647258 | Aranyi et al. | Feb 2014 | B2 |
| 8652121 | Quick et al. | Feb 2014 | B2 |
| 8657174 | Yates et al. | Feb 2014 | B2 |
| 8657177 | Scirica et al. | Feb 2014 | B2 |
| 8672206 | Aranyi et al. | Mar 2014 | B2 |
| 8696552 | Whitman | Apr 2014 | B2 |
| 8708213 | Shelton, IV et al. | Apr 2014 | B2 |
| 8715306 | Faller et al. | May 2014 | B2 |
| 8758391 | Swayze et al. | Jun 2014 | B2 |
| 8806973 | Ross et al. | Aug 2014 | B2 |
| 8808311 | Heinrich et al. | Aug 2014 | B2 |
| 8820605 | Shelton, IV | Sep 2014 | B2 |
| 8844789 | Shelton, IV | Sep 2014 | B2 |
| 8851355 | Aranyi et al. | Oct 2014 | B2 |
| 8858571 | Shelton, IV et al. | Oct 2014 | B2 |
| 8875972 | Weisenburgh, II et al. | Nov 2014 | B2 |
| 8888762 | Whitman | Nov 2014 | B2 |
| 8893946 | Boudreaux et al. | Nov 2014 | B2 |
| 8899462 | Kostrzewski et al. | Dec 2014 | B2 |
| 8905289 | Patel et al. | Dec 2014 | B2 |
| 8919630 | Milliman | Dec 2014 | B2 |
| 8931680 | Milliman | Jan 2015 | B2 |
| 8939344 | Olson et al. | Jan 2015 | B2 |
| 8950646 | Viola | Feb 2015 | B2 |
| 8960519 | Whitman et al. | Feb 2015 | B2 |
| 8961396 | Azarbarzin et al. | Feb 2015 | B2 |
| 8967443 | McCuen | Mar 2015 | B2 |
| 8968276 | Zemlok et al. | Mar 2015 | B2 |
| 8968337 | Whitfield et al. | Mar 2015 | B2 |
| 8991677 | Moore | Mar 2015 | B2 |
| 8992422 | Spivey et al. | Mar 2015 | B2 |
| 9016545 | Aranyi et al. | Apr 2015 | B2 |
| 9023014 | Chowaniec et al. | May 2015 | B2 |
| 9033868 | Whitman et al. | May 2015 | B2 |
| 9055943 | Zemlok et al. | Jun 2015 | B2 |
| 9064653 | Prest et al. | Jun 2015 | B2 |
| 9072515 | Hall et al. | Jul 2015 | B2 |
| 9113847 | Whitman et al. | Aug 2015 | B2 |
| 9113875 | Viola et al. | Aug 2015 | B2 |
| 9113876 | Zemlok et al. | Aug 2015 | B2 |
| 9113899 | Garrison et al. | Aug 2015 | B2 |
| 9216013 | Scirica et al. | Dec 2015 | B2 |
| 9241712 | Zemlok et al. | Jan 2016 | B2 |
| 9282961 | Whitman et al. | Mar 2016 | B2 |
| 9282963 | Bryant | Mar 2016 | B2 |
| 9295522 | Kostrzewski | Mar 2016 | B2 |
| 9307986 | Hall et al. | Apr 2016 | B2 |
| 10045791 | Sakaguchi | Aug 2018 | B2 |
| 20010031975 | Whitman et al. | Oct 2001 | A1 |
| 20020049454 | Whitman et al. | Apr 2002 | A1 |
| 20020165541 | Whitman | Nov 2002 | A1 |
| 20030038938 | Jung | Feb 2003 | A1 |
| 20030165794 | Matoba | Sep 2003 | A1 |
| 20040034369 | Sauer et al. | Feb 2004 | A1 |
| 20040111012 | Whitman | Jun 2004 | A1 |
| 20040133189 | Sakurai | Jul 2004 | A1 |
| 20040153124 | Whitman | Aug 2004 | A1 |
| 20040176751 | Weitzner et al. | Sep 2004 | A1 |
| 20040193146 | Lee et al. | Sep 2004 | A1 |
| 20050125027 | Knodel et al. | Jun 2005 | A1 |
| 20050131442 | Yachia et al. | Jun 2005 | A1 |
| 20060142656 | Malackowski et al. | Jun 2006 | A1 |
| 20060142740 | Sherman et al. | Jun 2006 | A1 |
| 20060142744 | Boutoussov | Jun 2006 | A1 |
| 20060259073 | Miyamoto et al. | Nov 2006 | A1 |
| 20060278680 | Viola et al. | Dec 2006 | A1 |
| 20060284730 | Schmid et al. | Dec 2006 | A1 |
| 20070023476 | Whitman et al. | Feb 2007 | A1 |
| 20070023477 | Whitman et al. | Feb 2007 | A1 |
| 20070027469 | Smith et al. | Feb 2007 | A1 |
| 20070029363 | Popov | Feb 2007 | A1 |
| 20070084897 | Shelton et al. | Apr 2007 | A1 |
| 20070102472 | Shelton | May 2007 | A1 |
| 20070152014 | Gillum et al. | Jul 2007 | A1 |
| 20070175947 | Ortiz et al. | Aug 2007 | A1 |
| 20070175949 | Shelton et al. | Aug 2007 | A1 |
| 20070175950 | Shelton et al. | Aug 2007 | A1 |
| 20070175951 | Shelton et al. | Aug 2007 | A1 |
| 20070175955 | Shelton et al. | Aug 2007 | A1 |
| 20070175961 | Shelton et al. | Aug 2007 | A1 |
| 20070270784 | Smith et al. | Nov 2007 | A1 |
| 20080029570 | Shelton et al. | Feb 2008 | A1 |
| 20080029573 | Shelton et al. | Feb 2008 | A1 |
| 20080029574 | Shelton et al. | Feb 2008 | A1 |
| 20080029575 | Shelton et al. | Feb 2008 | A1 |
| 20080058801 | Taylor et al. | Mar 2008 | A1 |
| 20080109012 | Falco et al. | May 2008 | A1 |
| 20080110958 | McKenna et al. | May 2008 | A1 |
| 20080147089 | Loh et al. | Jun 2008 | A1 |
| 20080167736 | Swayze et al. | Jul 2008 | A1 |
| 20080185419 | Smith et al. | Aug 2008 | A1 |
| 20080188841 | Tomasello et al. | Aug 2008 | A1 |
| 20080197167 | Viola et al. | Aug 2008 | A1 |
| 20080208195 | Shores et al. | Aug 2008 | A1 |
| 20080237296 | Boudreaux et al. | Oct 2008 | A1 |
| 20080251561 | Eades et al. | Oct 2008 | A1 |
| 20080255413 | Zemlok et al. | Oct 2008 | A1 |
| 20080255607 | Zemlok | Oct 2008 | A1 |
| 20080262654 | Omori et al. | Oct 2008 | A1 |
| 20080308603 | Shelton et al. | Dec 2008 | A1 |
| 20090012533 | Barbagli et al. | Jan 2009 | A1 |
| 20090090763 | Zemlok et al. | Apr 2009 | A1 |
| 20090099876 | Whitman | Apr 2009 | A1 |
| 20090138006 | Bales et al. | May 2009 | A1 |
| 20090171147 | Lee et al. | Jul 2009 | A1 |
| 20090179063 | Milliman | Jul 2009 | A1 |
| 20090182193 | Whitman et al. | Jul 2009 | A1 |
| 20090209946 | Swayze et al. | Aug 2009 | A1 |
| 20090209990 | Yates et al. | Aug 2009 | A1 |
| 20090254094 | Knapp et al. | Oct 2009 | A1 |
| 20090299141 | Downey et al. | Dec 2009 | A1 |
| 20100023022 | Zeiner et al. | Jan 2010 | A1 |
| 20100069942 | Shelton, IV | Mar 2010 | A1 |
| 20100160823 | Parihar | Jun 2010 | A1 |
| 20100193568 | Scheib et al. | Aug 2010 | A1 |
| 20100211053 | Ross et al. | Aug 2010 | A1 |
| 20100225073 | Porter et al. | Sep 2010 | A1 |
| 20110071508 | Duval et al. | Mar 2011 | A1 |
| 20110077673 | Grubac et al. | Mar 2011 | A1 |
| 20110121049 | Malinouskas et al. | May 2011 | A1 |
| 20110125138 | Malinouskas et al. | May 2011 | A1 |
| 20110139851 | McCuen | Jun 2011 | A1 |
| 20110155783 | Rajappa et al. | Jun 2011 | A1 |
| 20110155786 | Shelton, IV | Jun 2011 | A1 |
| 20110172648 | Jeong | Jul 2011 | A1 |
| 20110174009 | Iizuka et al. | Jul 2011 | A1 |
| 20110174099 | Ross | Jul 2011 | A1 |
| 20110184245 | Xia et al. | Jul 2011 | A1 |
| 20110204119 | McCuen | Aug 2011 | A1 |
| 20110218522 | Whitman | Sep 2011 | A1 |
| 20110276057 | Conlon et al. | Nov 2011 | A1 |
| 20110290854 | Timm et al. | Dec 2011 | A1 |
| 20110295242 | Spivey et al. | Dec 2011 | A1 |
| 20110295269 | Swensgard et al. | Dec 2011 | A1 |
| 20120000962 | Racenet et al. | Jan 2012 | A1 |
| 20120074199 | Olson et al. | Mar 2012 | A1 |
| 20120089131 | Zemlok et al. | Apr 2012 | A1 |
| 20120104071 | Bryant | May 2012 | A1 |
| 20120116368 | Viola | May 2012 | A1 |
| 20120143002 | Aranyi et al. | Jun 2012 | A1 |
| 20120172924 | Allen, IV | Jul 2012 | A1 |
| 20120211542 | Racenet | Aug 2012 | A1 |
| 20120223121 | Viola et al. | Sep 2012 | A1 |
| 20120245428 | Smith et al. | Sep 2012 | A1 |
| 20120253329 | Zemlok et al. | Oct 2012 | A1 |
| 20120310220 | Malkowski et al. | Dec 2012 | A1 |
| 20120323226 | Chowaniec et al. | Dec 2012 | A1 |
| 20120330285 | Hartoumbekis et al. | Dec 2012 | A1 |
| 20130012957 | Shelton, IV | Jan 2013 | A1 |
| 20130093149 | Saur et al. | Apr 2013 | A1 |
| 20130181035 | Milliman | Jul 2013 | A1 |
| 20130184704 | Beardsley et al. | Jul 2013 | A1 |
| 20130214025 | Zemlok et al. | Aug 2013 | A1 |
| 20130274722 | Kostrzewski et al. | Oct 2013 | A1 |
| 20130282052 | Aranyi et al. | Oct 2013 | A1 |
| 20130292451 | Viola et al. | Nov 2013 | A1 |
| 20130313304 | Shelton, IV et al. | Nov 2013 | A1 |
| 20130317486 | Nicholas et al. | Nov 2013 | A1 |
| 20130319706 | Nicholas et al. | Dec 2013 | A1 |
| 20130324978 | Nicholas et al. | Dec 2013 | A1 |
| 20130324979 | Nicholas et al. | Dec 2013 | A1 |
| 20130334281 | Williams | Dec 2013 | A1 |
| 20140005661 | Shelton, IV | Jan 2014 | A1 |
| 20140005680 | Shelton, IV | Jan 2014 | A1 |
| 20140012236 | Williams et al. | Jan 2014 | A1 |
| 20140012237 | Pribanic et al. | Jan 2014 | A1 |
| 20140012289 | Snow et al. | Jan 2014 | A1 |
| 20140025046 | Williams et al. | Jan 2014 | A1 |
| 20140110455 | Ingmanson et al. | Apr 2014 | A1 |
| 20140207125 | Applegate et al. | Jul 2014 | A1 |
| 20140207182 | Zergiebel et al. | Jul 2014 | A1 |
| 20140207185 | Goble et al. | Jul 2014 | A1 |
| 20140236174 | Williams et al. | Aug 2014 | A1 |
| 20140276932 | Williams et al. | Sep 2014 | A1 |
| 20140299647 | Scirica et al. | Oct 2014 | A1 |
| 20140303668 | Nicholas et al. | Oct 2014 | A1 |
| 20140305994 | Parihar | Oct 2014 | A1 |
| 20140352463 | Parihar | Dec 2014 | A1 |
| 20140358129 | Zergiebel et al. | Dec 2014 | A1 |
| 20140361068 | Aranyi et al. | Dec 2014 | A1 |
| 20140365235 | DeBoer et al. | Dec 2014 | A1 |
| 20140373652 | Zergiebel et al. | Dec 2014 | A1 |
| 20150014392 | Williams et al. | Jan 2015 | A1 |
| 20150048144 | Whitman | Feb 2015 | A1 |
| 20150076205 | Zergiebel | Mar 2015 | A1 |
| 20150080912 | Sapre | Mar 2015 | A1 |
| 20150112381 | Richard | Apr 2015 | A1 |
| 20150122870 | Zemlok et al. | May 2015 | A1 |
| 20150133224 | Whitman et al. | May 2015 | A1 |
| 20150150547 | Ingmanson et al. | Jun 2015 | A1 |
| 20150150574 | Richard et al. | Jun 2015 | A1 |
| 20150157320 | Zergiebel et al. | Jun 2015 | A1 |
| 20150157321 | Zergiebel et al. | Jun 2015 | A1 |
| 20150164502 | Richard et al. | Jun 2015 | A1 |
| 20150201931 | Zergiebel et al. | Jul 2015 | A1 |
| 20150272577 | Zemlok et al. | Oct 2015 | A1 |
| 20150297199 | Nicholas et al. | Oct 2015 | A1 |
| 20150303996 | Calderoni | Oct 2015 | A1 |
| 20150320420 | Penna et al. | Nov 2015 | A1 |
| 20150327850 | Kostrzewski | Nov 2015 | A1 |
| 20150342601 | Williams et al. | Dec 2015 | A1 |
| 20150342603 | Zergiebel et al. | Dec 2015 | A1 |
| 20150374366 | Zergiebel et al. | Dec 2015 | A1 |
| 20150374370 | Zergiebel et al. | Dec 2015 | A1 |
| 20150374371 | Richard et al. | Dec 2015 | A1 |
| 20150374372 | Zergiebel et al. | Dec 2015 | A1 |
| 20150374449 | Chowaniec et al. | Dec 2015 | A1 |
| 20150380187 | Zergiebel et al. | Dec 2015 | A1 |
| 20160095585 | Zergiebel et al. | Apr 2016 | A1 |
| 20160095596 | Scirica et al. | Apr 2016 | A1 |
| 20160106406 | Cabrera et al. | Apr 2016 | A1 |
| 20160113648 | Zergiebel et al. | Apr 2016 | A1 |
| 20160113649 | Zergiebel et al. | Apr 2016 | A1 |
| Number | Date | Country |
|---|---|---|
| 2451558 | Jan 2003 | CA |
| 1547454 | Nov 2004 | CN |
| 1957854 | May 2007 | CN |
| 101495046 | Jul 2009 | CN |
| 102247182 | Nov 2011 | CN |
| 102008053842 | May 2010 | DE |
| 1563793 | Aug 2005 | EP |
| 1769754 | Apr 2007 | EP |
| 2316345 | May 2011 | EP |
| 2668910 | Dec 2013 | EP |
| 2333509 | Feb 2010 | ES |
| 2005-125075 | May 2005 | JP |
| 20120022521 | Mar 2012 | KR |
| 0705571 | Apr 1996 | WO |
| 2011108840 | Sep 2011 | WO |
| 2012040984 | Apr 2012 | WO |
| Entry |
|---|
| Extended European Search Report corresponding to counterpart International Application No. EP 14 18 4882.0 dated May 12, 2015. |
| Canadian Office Action corresponding to counterpart International Application No. CA 2640399 dated May 7, 2015. |
| Japanese Office Action corresponding to counterpart International Application No. JP 2011-197365 dated Mar. 23, 2015. |
| Japanese Office Action corresponding to counterpart International Application No. JP 2011-084092 dated May 20, 2015. |
| Japanese Office Action corresponding to counterpart International Application No. JP 2014-148482 dated Jun. 2, 2015. |
| Extended European Search Report corresponding to counterpart International Application No. EP 14 18 9358.6 dated Jul. 8, 2015. |
| Extended European Search Report corresponding to counterpart International Application No. EP 14 19 6148.2 dated Apr. 23, 2015. |
| Partial European Search Report corresponding to counterpart International Application No. EP 14 19 6704.2 dated May 11, 2015. |
| Australian Office Action corresponding to counterpart International Application No. AU 2010241367 dated Aug. 20, 2015. |
| Partial European Search Report corresponding to counterpart International Application No. EP 14 19 9783.3 dated Sep. 3, 2015. |
| Extended European Search Report corresponding to counterpart International Application No. EP 15 16 9962.6 dated Sep. 14, 2015. |
| Extended European Search Report corresponding to International Application No. EP 15 15 1076.5 dated Apr. 22, 2015. |
| Japanese Office Action corresponding to International Application No. JP 2011-084092 dated Jan. 14, 2016. |
| Extended European Search Report corresponding to International Application No. EP 12 19 7970.2 dated Jan. 28, 2016. |
| Chinese Office Action corresponding to International Application No. CN 201210560638.1 dated Oct. 21, 2015. |
| European Office Action corresponding to International Application No. EP 14 15 9056.2 dated Oct. 26, 2015. |
| Australian Examination Report No. 1 corresponding to International Application No. AU 2015200153 dated Dec. 11, 2015. |
| Australian Examination Report No. 1 corresponding to International Application No. AU 2014204542 dated Jan. 7, 2016. |
| Chinese Office Action corresponding to International Application No. CN 201310125449.6 dated Feb. 3, 2016. |
| Extended European Search Report corresponding to International Application No. EP 15 19 0245.9 dated Jan. 28, 2016. |
| Extended European Search Report corresponding to International Application No. EP 15 16 7793.7 dated Apr. 5, 2016. |
| European Office Action corresponding to International Application No. EP 14 18 4882.0 dated Apr. 25, 2016. |
| Extended European Search Report corresponding to International Application No. EP 14 19 6704.2 dated Sep. 24, 2015. |
| International Search Report and Written Opinion corresponding to Int'l Appln. No. PCT/US2015/051837, dated Dec. 21, 2015. |
| Extended European Search Report corresponding to International Application No. EP 14 19 7563.1 dated Aug. 5, 2015. |
| Partial European Search Report corresponding to International Application No. EP 15 19 0643.5 dated Feb. 26, 2016. |
| Extended European Search Report corresponding to International Application No. EP 15 16 6899.3 dated Feb. 3, 2016. |
| Extended European Search Report corresponding to International Application No. EP 14 19 9783.3 dated Dec. 22, 2015. |
| Extended European Search Report corresponding to International Application No. EP 15 17 38071 dated Nov. 24, 2015. |
| Extended European Search Report corresponding to International Application No. EP 15 19 0760.7 dated Apr. 1, 2016. |
| Extended European Search Report corresponding to International Application No. EP 15 17 3803.6 dated Nov. 24, 2015. |
| Extended European Search Report corresponding to International Application No. EP 15 17 3804.4 dated Nov. 24, 2015. |
| Extended European Search Report corresponding to International Application No. EP 15 18 8539.9 dated Feb. 17, 2016. |
| Extended European Search Report corresponding to International Application No. EP 15 17 3910.9 dated Nov. 13, 2015. |
| European Office Action corresponding to International Application No. EP 14 15 2236.7 dated Aug. 11, 2015. |
| Extended European Search Report corresponding to International Application No. EP 15 18 4915.5 dated Jan. 5, 2016. |
| Chinese Office Action corresponding to counterpart Int'l Appln. No. CN 201310369318.2 dated Jun. 28, 2016. |
| Chinese Office Action (with English translation), dated Jul. 4, 2016, corresponding to Chinese Patent Application No. 2015101559718; 23 total pages. |
| European Search Report EP 15 156 035.6 dated Aug. 10, 2016. |
| Australian Examination Report No. 1 corresponding to International Application No. AU 2013205872 dated Oct. 19, 2016. |
| Australian Examination Report from Appl. No. AU 2013205840 dated Nov. 3, 2016. |
| Number | Date | Country | |
|---|---|---|---|
| 20170128123 A1 | May 2017 | US |
| Number | Date | Country | |
|---|---|---|---|
| 62251930 | Nov 2015 | US |