Adapter, extension, and connector assemblies for surgical devices

Information

  • Patent Grant
  • 10729443
  • Patent Number
    10,729,443
  • Date Filed
    Tuesday, August 16, 2016
    8 years ago
  • Date Issued
    Tuesday, August 4, 2020
    4 years ago
Abstract
A surgical assembly for operably connecting an end effector to an electrosurgical instrument includes an adapter assembly and an extension assembly. The adapter assembly includes a drive coupling assembly, a drive transfer assembly operably received through the drive coupling assembly and including a first rotatable shaft, and a first pusher assembly operably connected to the first rotatable shaft for converting rotational motion from the first rotatable shaft to longitudinal movement to perform a first function. The first pusher assembly includes a first pusher member having an outer housing formed of a first material, and a threaded insert formed of a second material and disposed within the outer housing. The extension assembly is operably connected to a distal end of the adapter assembly, and includes a flexible band assembly operably connectable to the first pusher member of the first pusher assembly.
Description
TECHNICAL FIELD

The present disclosure relates generally to powered surgical devices. More specifically, the present disclosure relates to an adapter assembly for selectively connecting an extension assembly including an end effector to the actuation units of the powered surgical devices.


BACKGROUND

Powered devices for use in surgical procedures are known. To permit reuse of the handle assemblies of these powered surgical devices and so that the handle assembly may be used with a variety of end effectors, adapter assemblies and extension assemblies have been developed for selective attachment to the handle assemblies and to a variety of end effectors. Following use, the adapter and/or extension assemblies may be disposed of along with the end effector. In some instances, the adapter assemblies and extension assemblies may be sterilized for reuse.


Many of the existing end effectors for use with many of the existing surgical devices and/or handle assemblies are driven by a linear force. For examples, linear force is typically required to operate end effectors for performing endo-gastrointestinal anastomosis procedures, end-to-end anastomosis procedures, and transverse anastomosis procedures. As such, these end effectors are not compatible with surgical devices and/or handle assemblies that use a rotary motion to deliver power or the like.


In order to make the linear driven end effectors compatible with surgical devices and/or handle assemblies that use a rotary motion to deliver power, adapters and/or adapter assemblies are used to interface between and interconnect the linear driven extension assemblies and/or end effectors with the rotary driven surgical devices and/or handle assemblies.


SUMMARY

In accordance with an aspect of the present disclosure, a surgical assembly for operably connecting an end effector to an electrosurgical instrument includes an adapter assembly and an extension assembly. The adapter assembly includes a drive coupling assembly, a drive transfer assembly operably received through the drive coupling assembly and including a first rotatable shaft, and a first pusher assembly operably connected to the first rotatable shaft for converting rotational motion from the first rotatable shaft to longitudinal movement to perform a first function. The first pusher assembly includes a first pusher member having an outer housing formed of a first material, and a threaded insert formed of a second material and disposed within the outer housing. The extension assembly is operably connected to a distal end of the adapter assembly, and includes a flexible band assembly operably connectable to the first pusher member of the first pusher assembly.


The first material of the outer housing of the first pusher member may be a metal and/or the second material of the threaded insert of the first pusher member may be a polymer. In some embodiments, the metal is stainless steel and the polymer is polyether ether ketone.


The outer housing of the first pusher member may include first and second distal tabs extending laterally therefrom. The flexible band assembly may include first and second connector members, and each of the first and second connector members may be configured to engage a respective one of the first and second distal tabs. The outer housing of the first pusher member may include first and second proximal tabs extending laterally therefrom, and each of the first and second proximal tabs may be aligned with a respective one of the first and second distal tabs.


The threaded insert of the first pusher member may include an inner surface defining a threaded central bore. In some embodiments, the adapter assembly includes a screw member threadingly engaged with the inner surface of the threaded insert of the first pusher member.


The outer housing may include first and second apertures disposed therethrough, and the threaded insert may include an outer surface having first and second longitudinal rails extending laterally therefrom. Each of the first and second longitudinal rails of the threaded insert may be keyed to a respective one of the first and second apertures of the outer housing.


In embodiments, the first pusher member includes a retaining ring fixedly secured to a proximal end of the outer housing to secure the threaded insert within the outer housing. The retaining ring may be formed of a third material. The third material of the retaining ring may be a metal, and in some embodiments, the metal is stainless steel.


The surgical assembly may further include a second pusher assembly operably connected to a second rotatable shaft of the drive transfer assembly for converting rotational motion from the second rotatable shaft to longitudinal movement to perform a second function and/or a drive member operably connected to a third rotatable shaft of the drive transfer assembly for transferring rotational motion from the third rotatable shaft to perform a third function.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present disclosure are described herein with reference to the accompanying drawings, wherein:



FIG. 1 is a perspective separated view of an adapter assembly, in accordance with an embodiment of the present disclosure, an extension assembly, in accordance with an embodiment of the present disclosure, and an exemplary electromechanical surgical device;



FIG. 2 is a perspective side view of the exemplary electromechanical surgical device of FIG. 1;



FIG. 3 is a perspective side view of the adapter assembly of FIG. 1;



FIG. 4 is a perspective side view of the adapter assembly of FIG. 3 with the outer sleeve removed;



FIG. 5 is a perspective side view of the adapter assembly of FIGS. 3 and 4 with proximal and distal housings of first and second pusher assemblies removed;



FIG. 6 is a cross-sectional side view of the adapter assembly of FIGS. 2-4 taken along line 6-6 in FIG. 3;



FIG. 7 is a cross-sectional side view of the adapter assembly of FIGS. 2-5 taken along line 7-7 in FIG. 5;



FIG. 8 is an enlarged, perspective view of a coupling assembly and a transfer assembly of the adapter assembly of FIGS. 2-7;



FIG. 9 is a perspective side view of adapter assembly of FIGS. 2-7 with the housing assemblies removed;



FIG. 10 is an enlarged view of the indicated area of detail of FIG. 9;



FIG. 11 is an enlarged view of the indicated area of detail of FIG. 6;



FIG. 12 is an enlarged view of the indicated area of detail of FIG. 7;



FIG. 13 is a perspective end view of the transfer assembly of FIG. 8;



FIG. 14 is an enlarged view of the indicated area of detail of FIG. 6;



FIG. 15 is an enlarged view of the indicated area of detail of FIG. 7;



FIG. 16 is an enlarged view of the indicated area of detail of FIG. 9;



FIG. 17 is a perspective side view of the extension assembly of FIG. 1;



FIG. 18 is a perspective side view of an inner flexible band assembly of the extension assembly of FIG. 17;



FIG. 19 is a perspective side view of an outer flexible band assembly of the extension assembly of FIG. 17;



FIG. 20 is a perspective side view of the inner and outer flexible band assemblies of FIGS. 18 and 19 and an exploded view of a frame assembly of the extension assembly of FIG. 17;



FIG. 21 is a perspective side view of the inner and outer flexible band assemblies and frame assembly of FIG. 20;



FIG. 22 is an enlarged view of the indicated area of detail of FIG. 21;



FIG. 23 is a front, perspective view of the inner and outer flexible band assemblies and frame assembly of FIG. 20;



FIG. 24 is an enlarged view of the indicated area of detail of FIG. 23;



FIG. 25 is a cross-sectional end view taken along line 25-25 of FIG. 17;



FIG. 26 is a cross-sectional end view taken along line 26-26 of FIG. 17;



FIG. 27 is an enlarged perspective side view of a distal end of the inner and outer flexible band assemblies and frame assembly of FIG. 20 including a proximal seal member and first and second distal seal members;



FIG. 28 is an exploded perspective view of the proximal seal member and first and second distal seal members of FIG. 27;



FIG. 29 is an exploded view of a trocar assembly of the extension assembly of FIG. 17;



FIG. 29A is a perspective side view of a link assembly of the extension assembly of FIG. 17;



FIG. 29B is a cross-section side view of the link assembly of FIG. 29A;



FIG. 30 is a perspective side view of the trocar assembly of FIG. 29;



FIG. 31 is a cross-sectional side view taken along line 31-31 of FIG. 30;



FIG. 32 is a cross-sectional top view taken along line 32-32 of FIG. 17;



FIG. 33 is an enlarged cross-sectional view of the distal end of the extension assembly of FIG. 17;



FIG. 34 is a perspective side view of the adapter assembly of FIG. 3 connected to the extension assembly of FIG. 17 and an end effector and an anvil assembly connected to the extension assembly;



FIG. 35A is an enlarged cross-sectional top view of the indicated area of detail of FIG. 34;



FIG. 35B is an enlarged cross-sectional side view of the indicated area of detail in FIG. 34;



FIG. 36 is a perspective side view of an adapter assembly according to another embodiment of the present disclosure;



FIG. 37 is a cross-sectional side view taken along line 37-37 of FIG. 36;



FIG. 38 is an enlarged cross-sectional side view of the indicated area of detail of FIG. 37;



FIG. 39 is an exploded perspective view of a pusher assembly of the adapter assembly of FIG. 36;



FIG. 40 is a perspective side view of the pusher assembly of FIG. 39;



FIG. 41 is a cross-sectional side view taken along line 41-41 of FIG. 40;



FIG. 42 is a cross-sectional top view of the adapter assembly of FIG. 36 secured to the extension assembly of FIG. 17;



FIG. 43 is an enlarged cross-sectional top view of the indicated area of detail of FIG. 42, prior to full securement of the extension assembly to the adapter assembly;



FIG. 44 is an enlarged cross-sectional top view of the indicated area of detail of FIG. 42, with the extension assembly secured to the adapter assembly;



FIG. 45 is a perspective side view of the adapter assembly and extension assembly of FIG. 42, with outer sleeves removed;



FIG. 46 is a perspective side view of a pusher member in accordance with another embodiment of the present disclosure;



FIG. 47 is a cross-sectional side view taken along line 47-47 of FIG. 46; and



FIG. 48 is a perspective view, with parts separated, of the pusher member of FIGS. 46 and 47.





DETAILED DESCRIPTION OF EMBODIMENTS

Embodiments of the presently disclosed adapter assemblies and extension assemblies for surgical devices and/or handle assemblies are described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein the term “distal” refers to that portion of the adapter assembly or surgical device, or component thereof, farther from the user, while the term “proximal” refers to that portion of the adapter assembly or surgical device, or component thereof, closer to the user.


With reference to FIG. 1, an adapter assembly in accordance with an embodiment of the present disclosure, shown generally as adapter assembly 100, is configured for selective connection to a powered handheld electromechanical instrument shown, generally as surgical device 10. As illustrated in FIG. 1, the surgical device 10 is configured for selective connection with the adapter assembly 100, and, in turn, the adapter assembly 100 is configured for selective connection with an extension assembly 200. The extension assembly 200 is configured for selective connection with a tool assembly or end effector, e.g. tool assembly 30 (FIG. 34), including a loading unit, e.g. loading unit 40 (FIG. 34), and an anvil assembly, e.g., anvil assembly 50 (FIG. 34), for applying a circular array of staples (not shown) to tissue (not shown).


As illustrated in FIGS. 1 and 2, the surgical device 10 includes a handle housing 12 having a lower housing portion 14, an intermediate housing portion 16 extending from and/or supported on the lower housing portion 14, and an upper housing portion 18 extending from and/or supported on the intermediate housing portion 16. A distal half-section of the upper housing portion 18 defines a nose or connecting portion 18a configured to accept a corresponding drive coupling assembly 110 (FIG. 10) of the adapter assembly 100. For a detailed description of the structure and function of an exemplary electromechanical instrument, please refer to commonly owned U.S. Pat. Appl. Publ. No. 2012/0253329 (“the '329 application”), the contents of which is incorporated by reference herein in its entirety.


The adapter assembly 100 will now be described with reference to FIGS. 3-20. Referring initially to FIG. 3, the adapter assembly 100 includes a proximal end 102 configured for operable connection to the connecting portion 18a (FIG. 1) of the surgical device 10 (FIG. 1) and a distal end 104 configured for operable connection to the extension assembly 200 (FIG. 1).


Turning to FIGS. 3-5, from the proximal end 102 to the distal end 104 of the adapter assembly 100, the adapter assembly 100 includes a drive coupling assembly 110, a drive transfer assembly 130 operably connected to the drive coupling assembly 110, a first pusher assembly 160 operably connected to the drive transfer assembly 130, and a second pusher assembly 180 operably connected to the drive transfer assembly 130. Each of the drive transfer assembly 130 and the first and second pusher assemblies 160, 180 are operably maintained within an outer sleeve 106 (FIG. 3). As will be described in further detail below, a shaft 108 (FIG. 3) extends longitudinally through the adapter assembly 100 and is operably connected to the drive transfer assembly 130.


With reference to FIGS. 5-9, the drive coupling assembly 110 has a cylindrical profile and is configured to selectively secure the adapter assembly 100 to the surgical device 10 (FIG. 1). The drive coupling assembly 110 includes a connector housing 112 and a connector extension 114 fixedly connected to the connector housing 112 by a mounting plate 113. The connector housing 112 and the connector extension 114 operate to rotatably support a first rotatable proximal drive shaft 116, a second rotatable proximal drive shaft 118, and a third rotatable proximal drive shaft 120. The connector housing 112 and the connector extension 114 of the drive coupling assembly 110 also rotatably support the first, second, and third connector sleeves 122, 124, and 126, respectively. Each of the connector sleeves 122, 124, 126 is configured to mate with the respective first, second, and third drive connectors (not shown) of surgical device 10 (FIG. 1). Each of the connector sleeves 122, 124, 126 is further configured to mate with a proximal end 116a, 118a, 120a of the respective first, second and third proximal drive shafts 116, 118, 120.


The drive coupling assembly 110 also includes first, second and third biasing members 122a, 124a and 126a disposed distally of the respective first, second and third connector sleeves 122, 124, 126. Each of the biasing members 122a, 124a and 126a is disposed about the respective first, second, and third rotatable proximal drive shafts 122, 124 and 126 to help maintain the connector sleeves 122, 124, and 126 engaged with the distal end of the respective rotatable drive connectors (not shown) of the surgical device 10 when the adapter assembly 100 is connected to the surgical device 10. In particular, the first, second, and third biasing members 122a, 124a, and 126a function to bias the respective connector sleeves 122, 124, and 126 in a proximal direction.


For a detailed description of an exemplary drive coupling assembly, please refer to the '329 application, the contents of which were previously incorporated by reference herein.


With reference to FIGS. 9-13, the drive transfer assembly 130 has a cylindrical profile and operably connects the distal ends of the first, second, and third rotatable proximal drive shafts 116, 118, and 120 to the shaft 108, the first pusher assembly 160, and the second pusher assembly 180, respectively. The drive transfer assembly 130 includes a support plate 132 (FIGS. 11 and 12) secured to a proximal end of the connector housing 112 and a drive transfer housing 134 positioned adjacent the support plate 132. The support plate 132 and the housing 134 operate to rotatably support a first rotatable distal drive shaft 136, a second rotatable distal drive shaft 138 and a drive member 140.


The first and second rotatable distal drive shafts 136 and 138 are each operably connected to the respective first and second rotatable proximal drive shafts 116 and 118 of the drive coupling assembly 110 by a pair of gears. In particular, the distal ends of each of the first and second rotatable proximal drive shaft 116 and 118 include a geared portion 142a and 144a, respectively, which engages a proximal drive gear 142b and 144b on a proximal end of the respective first and second distal drive shafts 136 and 138. As shown, each of the respective paired geared portions and proximal drive gears 142a, 142b and 144a, 144b are the same size to provide a 1:1 gear ratio between the respective first and second rotatable proximal and distal drive shafts 116, 136 and 118, 138. In this manner, the respective first and second rotatable proximal and distal drive shafts 116, 136 and 118, 138 rotate at the same speed. However, it is envisioned that either or both of the paired geared portions and proximal drive gears may be of different sizes to alter the gear ratio between the first and second rotatable proximal and distal drive shafts 116, 136 and 118, 138.


A distal end of the third proximal drive shaft 120 of the drive coupling assembly 110 includes a geared portion 146a that engages a geared portion 146b formed on a proximal end of the drive member 140 of the drive transfer assembly 130. The size of the geared portion 146a on the third proximal drive shaft 120 and the geared portion 146b on the drive member 140 are the same size to provide a 1:1 gear ratio between the third proximal drive shaft 120 and the drive member 140. In this manner, the third proximal drive shaft 120 and the drive member 140 rotate at the same speed. However, it is envisioned that either or both of the geared portions 146a, 146b may be of different sizes to alter the gear ratio between the third proximal drive shaft 120 and the drive member 140. A distal end of the drive member 140 defines a socket 145 that receives a proximal end 108a of the shaft 108. Alternatively, the socket 145 may be configured to operably engage a proximal end 208a of a drive shaft (FIG. 17) of an extension assembly 200 (FIG. 17).


The drive transfer assembly 130 also includes a drive connector 148 (FIG. 11) operably connecting the first rotatable distal drive shaft 136 to the first pusher assembly 160 and a tubular connector 150 operably connecting the second rotatable distal drive shaft 138 to the second pusher assembly 180. In particular, a distal end of the first rotatable distal drive shaft 136 includes a geared portion 152a that engages a geared portion 152b of the drive connector 148. A distal end of the second rotatable distal drive shaft 138 includes a geared portion 154a that engages a drive gear 154b secured to a distal end of the tubular connector 150.


As shown, the geared portion 152a of the first rotatable distal drive shaft 136 is smaller than the geared portion 152b of the drive connector 148 to provide a gear ratio of greater than 1:1 between the first rotatable distal drive shaft 136 and the drive connector 148. In this manner, the drive connector 148 rotates at a slower speed than the first rotatable distal drive shaft 136. Similarly, the geared portion 154a of the second rotatable distal drive shaft 138 is smaller than the drive gear 154b on the tubular connector 150 to provide a gear ratio of greater than 1:1 between the second rotatable distal drive shaft 138 and the drive connector 148. In this manner, the tubular connector 150 rotates at a slower speed than the second rotatable distal drive shaft 138. However, it is envisioned that each of the paired geared portions 152a, 152b, and the geared portion 154a and the drive gear 154b may be the same size to provide a gear ratio of 1:1 between the respective first rotatable distal drive shaft 136 and the drive connector 148 and between the second rotatable distal drive shaft 138 and the tubular connector 150.


With particular reference to FIGS. 9-13, the first pusher assembly 160 includes proximal and distal housing sections 162, 164 (FIG. 11), a planetary gear assembly 166 operably mounted within the proximal housing section 162, a screw member 168 (FIG. 11) operably connected to the planetary gear assembly 166 and rotatably supported within the distal housing section 164, and a pusher member 170 (FIG. 11) operably connected to the screw member 168 and slidably disposed within the distal housing section 164. The proximal housing section 162 includes a pair of longitudinal flanges 162a (FIG. 4; only one shown) and the distal housing section 164 includes a pair of longitudinally flattened portions 164a. Each of the flanges 162a and the flattened portions 164a of the respective proximal and distal housing sections 162, 164 engage an inner surface of the sleeve 106 to prevent rotation of the respective proximal housing section 162 and the distal housing section 164 relative to the sleeve 106 during operation of the surgical device 10.


The planetary gear assembly 166 includes first and second planetary gear systems 166a, 166b (FIG. 10). The first planetary gear system 166a of the first pusher assembly 160 includes a central drive gear 172a mounted on a distal end of the drive connector 148 of the drive transfer assembly 130 and a plurality of planetary gears 174a rotatably mounted to a rotatable support ring 176.


Each of the planetary gears 174a engages the central drive gear 172a and a toothed inner surface 165 of the proximal housing section 162. As central drive gear 172a rotates in a first direction, i.e., clockwise, each of the planetary gears 174a rotates in a second direction, i.e., counter-clockwise. As each of the planetary gears 174a rotates in the second direction, engagement of the planetary gears 174a with the toothed inner surface 165 of the distal housing section 162 causes the rotatable support ring 176 to rotate in the first direction. Conversely, rotation of the central drive gear 172a in the second direction causes rotation of each of the planetary gears 174a in the first direction thereby causing rotation of the rotatable support ring 176 in the second direction. The configuration of the first planetary gear system 166a provides a reduction in the gear ratio. In this manner, the speed of rotation of the rotatable support ring 174 is less than the speed of rotation of the central drive gear 172a.


The second planetary gear system 166b of the first pusher assembly 160 includes a central drive gear 172b securely affixed to the rotatable support ring 176 and a plurality of planetary gears 174b rotatably mounted to a proximal end surface 168a of the screw member 168. Each of the planetary gears 174b engages the central drive gear 172b and the toothed inner surface 165 of the proximal housing section 162. As the rotatable support ring 176 of the first planetary gear system 166a rotates in the first direction thereby causing the central drive gear 172b to also rotate in the first direction, each of the planetary gears 174b rotates in the second direction. As each of the planetary gears 174b rotates in the second direction, engagement of the planetary gears 174b with the toothed inner surface 165 of the proximal housing section 162 causes the screw member 168 to rotate in the first direction. Conversely, rotation of the central drive gear 172b in the second direction causes rotation of each of the planetary gears 174b in the first direction, thereby causing the screw member 168 to rotate in the second direction. The configuration of the second planetary gear system 166b provides a reduction in the gear ratio. In this manner, the speed of rotation of the screw member 168 is less than the speed of rotation of the central drive gear 172b.


The first and second planetary gear systems 166a, 166b operate in unison to provide a reduction in the gear ratio between the first rotatable proximal drive shaft 116 and the screw member 168. In this manner, the reduction in the speed of rotation of the screw member 168 relative to the drive connector 148 is a product of the reduction provided by the first and second planetary gear systems 166a, 166b.


The screw member 168 is rotatably supported within the proximal housing portion 162 and includes a threaded distal end 168b that operably engages a threaded inner surface 170a of the pusher member 170. As the screw member 168 is rotated in the first direction, engagement of the threaded distal end 168b of the screw member 168 with the threaded inner surface 170a of the pusher member 170 causes longitudinal advancement of the pusher member 170, as indicated by arrows “A” in FIG. 12. Conversely, rotation of the screw member 168 in the second direction causes retraction of the pusher member 170.


The pusher member 170 includes a pair of tabs 178 formed on a distal end thereof for engaging the connector extensions 240, 242 (FIG. 19) of the outer flexible band assembly 230 (FIG. 19) of the extension assembly 200 (FIG. 17). Although shown as tabs 178, it is envisioned that the pusher member 170 may include any structure suitable for selectively engaging the connector extensions 240, 242 of the outer flexible band 230 of the extension assembly 200.


With particular reference now to FIGS. 14-16, the second pusher assembly 180 is substantially similar to the first pusher assembly 160, and includes proximal and distal housing sections 182, 184, a planetary gear assembly 186 operably mounted within the proximal housing section 182, a screw member 188 operably connected to the planetary gear assembly 186 and rotatably supported within the distal housing section 184, and a pusher member 190 operably connected to the screw member 188 and slidably disposed within the distal housing section 184. Each of the proximal housing section 182 and the distal housing section 184 includes a pair of longitudinal flanges 182a, 184a (FIG. 4; only one shown), respectively, engaging an inner surface of the sleeve 106 of the adapter assembly 100 to prevent rotation of the respective proximal housing section 182 and the distal housing section 184 relative to the sleeve 106 during operation of the surgical device 10.


The planetary gear assembly 186 includes first and second planetary gear systems 186a, 186b (FIG. 16). The first planetary gear system 186a of the second pusher assembly 180 includes a central drive gear 192a mounted on a distal end of the tubular connector 150 of the drive transfer assembly 130 and a plurality of planetary gears 194a rotatably mounted to a rotatable support ring 196.


Each of the planetary gears 194a engages the central drive gear 192a and a toothed inner surface 185 of the proximal housing section 182. As central drive gear 192a rotates in a first direction, i.e., clockwise, each of the planetary gears 194a rotates in a second direction, i.e., counter-clockwise. As each of the planetary gears 194a rotates in the second direction, engagement of the planetary gears 194a with toothed inner surface 185 of the distal housing section 182 causes the rotatable support ring 196 to rotate in the first direction. Conversely, rotation of the central drive gear 192a in the second direction causes rotation of each of the planetary gears 194a in the first direction thereby causing rotation of the rotatable support ring 196 in the second direction. The configuration of the first planetary gear system 186a provides a reduction in the gear ratio. In this manner, the speed of rotation of the rotatable support ring 194 is less than the speed of rotation of the central drive gear 190a.


The second planetary gear system 186b of the second pusher assembly 180 includes a central drive gear 192b securely affixed to the rotatable support ring 196 and a plurality of planetary gears 194b rotatably mounted to a proximal end surface 188a of the screw member 188. Each of the planetary gears 194b engages the central drive gear 192b and the toothed inner surface 185 of the proximal housing section 182. As the rotatable support ring 196 of the first planetary gear system 186a rotates in the first direction thereby causing the central drive gear 192b to also rotate in the first direction, each of the planetary gears 174b rotates in the second direction. As each of the planetary gears 194b rotates in the second direction, engagement of the planetary gears 194b with the toothed inner surface 185 of the proximal housing section 182 causes the screw member 188 to rotate in the first direction. Conversely, rotation of the central drive gear 192b in the second direction causes rotation of each of the planetary gears 194b in the first direction, thereby causing the screw member 198 to rotate in the second direction. The configuration of the second planetary gear system 186b provides a reduction in the gear ratio. In this manner, the speed of rotation of the screw member 188 is less than the speed of rotation of the central drive gear 182b. The first and second planetary gear systems 186a, 186b operate in unison to provide a reduction in the gear ratio between the second rotatable proximal drive shaft 118 and the screw member 188. In this manner, the reduction in the speed of rotation of the screw member 188 relative to the tubular connector 150 is a product of the reduction provided by the first and second planetary gear systems 186a, 186b.


The screw member 188 is rotatably supported within the proximal housing portion 182 and includes a threaded distal end 188b that operably engages a threaded inner surface 190a of the pusher member 190. As the screw member 188 is rotated in the first direction, engagement of the threaded distal end 188b of the screw member 188 with the threaded inner surface 190a of the pusher member 190 causes longitudinal advancement of the pusher member 190. Conversely, rotation of the screw member 188 in the second direction causes retraction of the pusher member 190. The pusher member 190 includes a pair of longitudinal flanges 191 (FIG. 5; only one shown) that engage the distal housing section 184 of the second pusher assembly 180 for preventing rotation of the pusher member 190 relative to the distal housing section 184.


The pusher member 190 includes a pair of tabs 198 formed on a distal end thereof for engaging the connector extensions 220, 224 (FIG. 18) of the inner flexible band assembly 220 (FIG. 18) of the extension assembly 200 (FIG. 17). Although shown as tabs 198, it is envisioned that the pusher member 190 may include any structure suitable for selectively engaging the connector extensions 240, 242 of the outer flexible band 230 of the extension assembly 200.


The extension assembly 200 for operably connecting the adapter assembly 100 (FIG. 3) with a circular loading unit, e.g. the loading unit 40 (FIG. 34) and an anvil assembly, e.g., the anvil assembly 50 (FIG. 34) will be described with reference now to FIGS. 17-34. In particular, a proximal end 202 of the extension assembly 200 operably connects with the distal end 104 (FIG. 3) of the adapter assembly 100 (FIG. 3) and a distal end 204 of the extension assembly 200 operably connects with the loading unit 40 and the anvil assembly 50. As shown, the extension assembly 200 provides a slight curvature between the proximal and distal ends 202, 204. In an alternative embodiment, the extension assembly 200 may be straight or may include a greater curvature. Although the extension assembly 200 will be shown and described as being used to connect the loading unit 40 and the anvil assembly 50 to the adapter assembly 100 (FIG. 3), it is envisioned that the aspects of the present disclosure may be modified for use with various loading units, anvil assemblies, and adapter assemblies. Exemplary loading units and anvil assemblies are described in commonly owned U.S. Pat. No. 8,590,763 and U.S. patent application Ser. Nos. 14/056,301 and 14/149,355, the contents of each being incorporated herein by reference in their entirety.


The extension assembly 200 includes an inner flexible band assembly 210 (FIG. 18), an outer flexible band assembly 230 (FIG. 19) slidably disposed about the inner flexible band assembly 210, a frame assembly 250 (FIG. 20) for supporting the inner and outer flexible band assemblies 210, 230, a trocar assembly 270 (FIG. 29) operably received through the inner and outer flexible band assemblies 210, 230, and a connector assembly 290 for securing the loading unit 40 (FIG. 34) to the extension assembly 200. An outer sleeve 206 (FIG. 17) is received about the frame assembly 250 and the trocar assembly 270 and the inner and outer flexible band assemblies 210, 230 are slidably received through the outer sleeve 206. As will be described in further detail below, the extension assembly 200 may include a drive shaft 208 operably connected to the trocar assembly 270 and extending through the proximal end 202 of the extension assembly 200.


With reference to FIG. 18, the inner flexible band assembly 210 includes first and second inner flexible bands 212, 214, a support ring 216, a support base 218, and first and second connection extensions 220, 222. The proximal ends 212a, 214a of the respective first and second inner flexible bands 212, 214 are laterally spaced apart and securely attached to the support ring 216. The distal ends 212b, 214b of the first and second inner flexible bands 212, 214 are laterally spaced apart and securely attached to a proximal end 218a of the support base 218. Each of the first and second inner flexible bands 212, 214 may be attached to the support ring 216 and/or the support base 218 in any suitable manner, including, for example, by press-fitting, welding, adhesives, and/or with mechanical fasteners. As will be described in further detail below, the inner flexible band assembly 210 is configured to be slidably received about the trocar assembly 270 (FIG. 28) and within the outer flexible band assembly 230 (FIG. 19) and the outer sleeve 206 (FIG. 17).


The first and second connection extensions 220, 222 of the inner flexible band assembly 210 extend proximally from the support ring 216 and operably connect the inner flexible band assembly 210 with the pusher member 190 (FIG. 15) of the second pusher assembly 180 (FIG. 15) of the adapter assembly 100 (FIG. 3). In particular, each of the first and second connection extensions 220, 222 define openings 221, 223 configured to receive tabs 198 (FIG. 15) of the pusher member 190 (FIG. 15) of the second pusher assembly 180. Receipt of the tabs 198 of the pusher member 190 within the openings 221, 223 of the respective first and second extensions 220, 222 secure the inner flexible band assembly 210 of the extension assembly 200 with the second pusher assembly 180 of the adapter assembly 100. The first and second connection extensions 220, 222 may be integrally formed with the support ring 216, or attached thereto in any suitable manner.


The support base 218 extends distally from the inner flexible bands 212, 214 and is configured to selectively connect the extension assembly 200 with the loading unit 40 (FIG. 34). Specifically, a distal end 218b of the support base 218 includes a flange 224 for operable engagement with an axially movable assembly (not shown) of the loading unit 40 (FIG. 34). In one embodiment, the flange 224 is configured for connection with a knife assembly (not shown) of the loading unit 40 (FIG. 34).


With reference now to FIG. 19, the outer flexible band assembly 230 is substantially similar to the inner flexible band assembly 210 and includes first and second flexible bands 232, 234 laterally spaced and connected on proximal ends 232a, 234a to a support ring 236 and on distal ends 232b, 234b to a proximal end 238a of a support base 238. Each of the first and second outer flexible bands 232, 234 may be attached to the support ring 236 and the support base 238 in any suitable manner, including, for example, by press-fitting, welding, adhesives, and/or with mechanical fasteners. As will be described in further detail below, the outer flexible band assembly 230 is configured to receive the trocar assembly 270 (FIG. 29) therethrough.


The first and second connection extensions 240, 242 of the outer flexible band assembly 230 extend proximally from the support ring 236 and operably connect the outer flexible band assembly 230 with the pusher member 170 (FIG. 12) of the first pusher assembly 160 (FIG. 12) of the adapter assembly 100 (FIG. 1). In particular, each of the first and second connection extensions 240, 242 define openings 241, 243 configured to receive the tabs 178 (FIG. 12) of the pusher member 170 of the first pusher assembly 180. Receipt of the tabs 178 of the pusher member 170 within the openings 241, 243 of the respective first and second extensions 240, 242 secures the outer flexible band assembly 230 of the extension assembly 200 with the first pusher assembly 180 of the adapter assembly 100. The first and second connection extensions 240, 242 may be integrally formed with the support ring 236, or attached thereto in any suitable manner.


The support base 238 extends distally from the outer flexible bands 232, 234 and is configured to selectively connect the extension assembly 200 with the loading unit 40 (FIG. 34). Specifically, a distal end 238b of the support base 238 includes a flange 244 for operable engagement with an axially movable assembly (not shown) of a loading unit (not shown). In one embodiment, the flange 244 is configured for connection with a staple pusher assembly (not shown) of the loading unit 40 (FIG. 34).


With reference now to FIGS. 20-26, the frame assembly 250 includes first and second proximal spacer members 252, 254, and first and second distal spacer members 256, 258. When secured together, the first and second proximal spacer members 252, 254 define a pair of inner longitudinal slots 253a for slidably receiving the first and second flexible bands 212, 214 (FIG. 18) of the inner flexible band assembly 210 (FIG. 18) and a pair of outer longitudinal slots 253b for slidably receiving the first and second flexible bands 232, 234 (FIG. 19) of the outer flexible band assembly 230 (FIG. 19). The first and second proximal spacer members 252, 254 further define a longitudinal passage 255 for receipt of the trocar assembly 270.


In one embodiment, and as shown, the first and second proximal spacer members 252, 254 are formed of plastic and are secured together with a snap-fit arrangement. Alternatively, the first and second proximal spacer members 252, 254 may be formed of metal or other suitable material and may be secured together in any suitable manner, including by welding, adhesives, and/or using mechanical fasteners.


The first and second distal spacer members 256, 258 define a pair of inner slots 257a for slidably receiving the first and second flexible bands 212, 214 (FIG. 18) of the inner flexible band assembly 210 (FIG. 18) and a pair of outer slots 257b for slidably receiving the first and second flexible bands 232, 234 (FIG. 19) of the outer flexible band assembly 230 (FIG. 19). The first and second distal spacer members 256, 258 further define a longitudinal passage 259 for receipt of the trocar assembly 270.


In one embodiment, and as shown, each of the first and second distal spacer members 256, 258 are secured about the inner and outer flexible band assemblies 210, 230 and to the outer sleeve 206 (FIG. 17) by a pair of screws 260a, 260b (FIG. 26). Alternatively, the first and second distal spacer members 256, 258 may be secured together in any suitable manner, including by welding, adhesives, and/or using mechanical fasteners. The first and second distal spacer members 256, 258 may be formed of metal or any other suitable material.


With reference now to FIGS. 27 and 28, the frame assembly 250 further includes a proximal seal member 262 and first and second distal seal members 264, 266. Each of the proximal seal member 262 and the first and second distal seal members 264, 266 include seals halves 262a, 262b, 264a, 264b, 266a, 266b, respectively. The proximal seal member 262 is received between the first and second proximal spacer members 252, 254 and the first and second distal spacer members 256, 258. The first half 264a of the first distal seal member 264 is secured to the first half 266a of the second distal seal member 266 and the second half 264b of the first distal seal member 264 is secured to the second half 266b of the second distal seal member 266. The proximal seal member 262 and the first and second distal seal members 264, 266 engage the outer sleeve 206 (FIG. 17), the inner and outer flexible bands 212, 214, 232, 234 of the respective inner and outer flexible band assemblies 210, 230 and the trocar assembly 270 (FIG. 28) in a sealing manner. In this manner, the proximal seal member 262 and the first and second distal seal members 264, 266 operate to provide a fluid tight seal between the distal end 204 and the proximal end 202 of the extension assembly 200.


With reference to FIGS. 29-32, the trocar assembly 270 of the extension assembly 200 includes an outer housing 272, a trocar member 274 slidably disposed within the tubular outer housing 272, and a drive screw 276 operably received within the trocar member 274 for axially moving the trocar member 274 relative to the tubular housing 272. In particular, the trocar member 274 includes a proximal end 274a having an inner threaded portion 273 which engages a threaded distal portion 276b of the drive screw 276. As the drive screw 276 is rotated within the trocar member 274, engagement of the inner threaded portion 273 of the trocar member 274 with the threaded distal portion 276b of the drive screw 276 causes longitudinal movement of the trocar member 274 within the outer housing 272 of the trocar assembly 270. Rotation of the drive screw 276 in a first direction causes longitudinal advancement of the trocar member 274 and rotation of the drive screw 276 in a second direction causes longitudinal retraction of the trocar member 274. A distal end 274b of the trocar member 274 is configured to selectively engage the anvil assembly 50 (FIG. 34).


A bearing assembly 278 is mounted to a proximal end 272a of the outer housing 272 of the trocar assembly 270 for rotatably supporting a proximal end 276a of the drive screw 276 relative to the outer housing 272 and the trocar member 274. The bearing assembly 278 includes a housing 278a, proximal and distal spacers 278b, proximal and distal retention clips 278c, proximal and distal bearings 278d, and a washer 278e. As shown, the proximal end 276a of the drive screw 276 includes a flange 276c for connection with a link assembly 280.


The link assembly 280 operably connects the transfer assembly 130 (FIG. 6) of the adapter assembly 100 with the trocar assembly 270 (FIG. 30) of the extension assembly 200. More particularly, the link assembly 280 transfers rotational energy from the drive member 140 (FIG. 6) of the transfer assembly 130 of the adapter assembly 100 through the curved outer tube 206 (FIG. 17) of the extension assembly 200 to the flange 276c (FIG. 29) on the proximal end 276a of the drive screw 276 of the trocar assembly 270 of the extension assembly 200.


With reference to FIGS. 29A and 29B, the link assembly 280 includes a coupling member 282, a first drive shaft 284, and a second drive shaft 286. A proximal end 282a of the coupling member 282 defines a recess 283a for receiving a distal end 284b of the first drive shaft 284. A distal end 282b of the coupling member 282 defines a recess 283a for operably receiving the flange 276c on the proximal end 276a of the drive screw 276. The coupling member 282 includes an annular flange 282c for rotatably receiving the coupling member 282 between the first and second proximal spacer members 252, 254 (FIG. 32). The proximal and distal ends 284a, 284b of the first drive shaft 284 define oversized openings 285a, 285b, respectively, for receiving pins 288a, 288b, respectively. A distal end 286b of the second drive shaft 286 defines a recess 287 for operably receiving the proximal end 284a of the drive shaft 284. A proximal end 286a of the drive shaft 286 includes a flange 286c for operable receipt within the socket 145 of the drive member 140 of the drive transfer assembly 130 of the adapter assembly 100 (FIG. 12).


With particular reference to FIG. 29B, the proximal end 284a of the first drive shaft 284 is operably received within the recess 287 in the distal end 286b of the second drive shaft 286. The distal end 284b of the first drive shaft 284 is pivotally secured within the recess 283a of the coupling member 282 by the pin 288a received through the oversized opening 285b in the distal end 284b of the first drive shaft 284. The proximal end 284a of the first drive shaft 284 is pivotally secured within the recess 287 in the distal end 286b of the second drive shaft 286 by the pin 288b received through the oversized opening 285a in the proximal end 284a of the first drive shaft 284. The recesses 283a and 287 of the coupling member 282 and the second drive shaft 286, respectively, and the oversized openings 285a, 285b of the first drive shaft 284 are configured to permit pivoting of the second drive shaft 286 relative to the first drive shaft 284 and pivoting of the first drive shaft 284 relative to the coupling member 282 as each of the first and second drive shafts 284, 286, and the coupling member 282 are rotated about their respective longitudinal axes to transfer rotational force from the transfer assembly 130 (FIG. 6) of the adapter assembly 100 to the trocar assembly 270 (FIG. 30) of the extension assembly 200.


With reference now to FIGS. 32 and 33, the connector assembly 290 of the extension assembly 200 includes a tubular connector 292 attached to a distal end 206b of the outer sleeve 206 and about distal ends of the inner and outer flexible assemblies 210, 230 (FIG. 26) and the trocar assembly 270. In particular, a proximal end 292a of the tubular connector 292 is received within and securely attached to the distal end 206b of the outer sleeve 206 by a retaining clip 294. An O-ring 296 forms a fluid tight seal between the tubular connector 292 of the connector assembly 290 and the outer sleeve 206. A distal end 292b of the tubular connector 292 is configured to selectively engage a proximal end of the loading unit 40 (FIG. 34). The distal end 292b of the tubular connector 292 engages the circular loading unit 40 with a snap-fit arrangement, bayonet coupling, or in another suitable manner.


With reference now to FIGS. 34 and 35, the extension assembly 200 is connected to the adapter assembly 100 by receiving the proximal end 202 (FIG. 17) of the extension assembly 200 within the distal end 104 of the adapter assembly 100. In particular, the first and second connection extensions 220, 222, 240, 242 of respective inner and outer flexible band assemblies 210, 230 are received within the sleeve 106 of the adapter assembly 100 such that tabs 178 of the pusher member 170 of the first pusher assembly 160 of the adapter assembly 100 are received within the openings 241, 243 of the respective first and second connection extensions 240, 242 of the outer flexible band assembly 230. In this manner, the outer flexible band assembly 230 is secured with the first pusher assembly 160. Additionally, the tabs 198 of the pusher member 190 of the second pusher assembly 180 of the adapter assembly 100 are received within the openings 221, 223 of the first and second connection extensions 221, 223 of the inner flexible band assembly 210 to secure the inner flexible band assembly 210 with the second pusher assembly 180.


As noted above, adapter assembly 100 may include a drive shaft 108 (FIG. 3) that extends from the distal end 104 of the adapter assembly 100. Prior to receipt of the proximal portion 202 of the extension assembly 200 within the distal end 104 of the extension assembly 100, the drive shaft 108 is removed from the adapter assembly 100. As the proximal portion 202 of the extension assembly 200 is received within the distal end 102 of the adapter assembly 100, the proximal end 286a (FIG. 17) of the second drive shaft 286 (FIG. 17) is received within the socket 145 of the drive member 140 of the drive transfer assembly 130 of the extension assembly 100 (FIG. 12).


After the extension assembly 200 is operably engaged with the adapter assembly 100, and the adapter assembly 100 is operably engaged with the surgical device 10 (FIG. 1), the loading unit 40 (FIG. 34) of the end effector 30 (FIG. 34) may be attached to the connector assembly 290 of the extension assembly 200 and an anvil assembly 50 (FIG. 34) may be attached to the distal end 274b of the trocar 274 of the extension assembly 200 in a conventional manner. During actuation of the loading unit 40 and the anvil assembly 50, longitudinal advancement of the pusher member 190 of the second pusher assembly 180 of the adapter assembly 100, as described above, and as indicated by arrows “C” in FIG. 35A, causes longitudinal advancement of the outer flexible band assembly 230 of the extension assembly 200 and longitudinal advancement of the pusher member 170 of the first pusher assembly 160, as described above, and as indicated by arrows “D” in FIG. 35A, causes longitudinal advancement of the inner flexible band assembly 210. Rotation of the drive shaft 108 in a first direction, as described above, and as indicated by arrow “E”, causes advancement of the trocar 274 of the extension assembly 200. Conversely, longitudinal retraction of the pusher member 190 causes longitudinal retraction of the outer flexible band assembly 230, longitudinal retraction of the pusher member 170 causes longitudinal retraction of the inner flexible band assembly 210, and rotation of the drive shaft 108 in a second direction causes retraction of the trocar 274 of the extension assembly 200.


In embodiments, the inner flexible band assembly 210 operably connects the second pusher assembly 180 of the adapter assembly 100 with a knife assembly (not shown) of the loading unit 40 (FIG. 34) of the end effector 30 (FIG. 34) attached to the connector assembly 290 of the extension assembly 200. The outer flexible band assembly 230 operably connects the first pusher assembly 160 of the adapter assembly 100 with a staple driver assembly (not shown) of the loading unit 40. The trocar assembly 270 operably connects the drive transfer assembly 130 of the adapter assembly 100 to the anvil assembly 50 (FIG. 34) of the end effector 30 (FIG. 34). In this manner, operation of the second pusher assembly 160 causes longitudinal movement of the inner flexible band assembly 210 which causes longitudinal movement of the knife assembly, operation of the first pusher assembly 180 causes longitudinal movement of the outer flexible band assembly 230 which causes longitudinal movement of the staple driver assembly, and operation of the drive transfer assembly 130 causes longitudinal movement of the trocar 274 which causes longitudinal movement of the anvil assembly 50 relative to the loading unit 40.


By stacking the first and second pusher assemblies 160, 180 of the adapter assembly 100, as described, and positioning the drive shaft 108 of the transfer assembly 130 through the first and second pusher assemblies 160, 180, the adapter assembly 100 can perform three functions through an access port or other opening (not shown) having a small diameter, e.g., 21 mm. Similarly, by configuring the inner flexible band assembly 210 within the outer flexible band assembly 230 and receiving the trocar assembly 270 through the inner and outer flexible band assemblies 210, 230, the extension assembly 200 can perform three functions through an access port or other opening (not shown) having a small diameter, e.g., 21 mm.


With reference now to FIGS. 36-45, an adapter assembly according to another embodiment of the present disclosure is shown as adapter assembly 300. Adapter assembly 300 is substantially similar to adapter assembly 100 described hereinabove and will only be described as relates to the differences therebetween.


As will become apparent from the following description, the configuration of adapter assembly 300 permits rotation of a distal portion 304 of adapter assembly 300 about a longitudinal axis “x” (FIG. 37), relative to a proximal portion 302 of adapter assembly 300. In this manner, an end effector, e.g. the end effector 30 (FIG. 34) secured to the distal portion 304 of the adapter assembly 300 or an end effector secured to an extension assembly, e.g., the extension assembly 200 (FIG. 17) which is secured to the distal portion 304 of the adapter assembly 300 is rotatable about the longitudinal axis “x” independent of movement of the surgical device (not shown) to which the adapter assembly 300 is attached.


With particular reference to FIG. 37, the adapter assembly 300 includes a base 306 and a support structure 308 rotatable relative to the base 306 along the longitudinal axis “x” of the adapter assembly 300. A rotation handle 310 is rotatably secured to the base 306 and is fixedly secured to a proximal end of support structure 308. The rotation handle 310 permits longitudinal rotation of the distal portion 304 of the adapter assembly 300 relative to the proximal end 302 of the adapter assembly 300. A latch 312 (FIG. 36) is mounted to the rotation handle 310 and selectively secures the rotation handle 310 in a fixed longitudinal position.


With reference still to FIG. 37, the proximal portion 302 of the adapter assembly 300 includes a drive coupling assembly 320 and a drive transfer assembly 330 operably connected to the drive coupling assembly 320. The distal portion 304 of the adapter assembly 300 includes a first pusher assembly 340 operably connected to the drive transfer assembly 330, and a second pusher assembly 380 operably connected to the drive transfer assembly 330. The drive coupling assembly 320 and the drive transfer assembly 330 are mounted within the base 306 and remain rotationally fixed relative to the surgical device (not shown) to which the adapter assembly 300 is attached. The first pusher assembly 340 and the second pusher assembly 380 are mounted within the support structure 308 and are rotatable relative to the surgical device (not shown) to which the adapter assembly 300 is attached.


The drive coupling assembly 320 is configured to selectively secure adapter assembly 300 to a surgical device (not shown). For a detailed description of an exemplary surgical device and drive coupling assembly, please refer to commonly owned U.S. patent application Ser. No. 14/550,183, filed Nov. 21, 2014, the content of which is incorporated by reference herein in its entirety.


With continued reference to FIGS. 36 and 37, the rotation handle 310 of the adapter assembly 300 is rotatably secured to the base 306. The latch 312 is configured to lock the rotation handle 310 relative to the base 306. Proximal movement of the latch 312, as indicated by arrow “F” in FIG. 36, disengages the latch 312 from the base 306 to permit rotation of the rotation handle 310 relative to the base 306. For a detailed description of an exemplary rotation handle and latch mechanism, please refer to commonly owned U.S. Provisional Patent Application Ser. No. 62/066,518 (now U.S. patent application Ser. No. 14/875,766, filed on Oct. 6, 2015), the content of which is incorporated by reference herein in its entirety.


The support structure 308 is fixedly received about the first and second drive pusher assemblies 340, 380 and is rotatable relative to the base 306. As noted above, the rotation handle 310 is fixedly secured to the proximal end of the support structure 308 to facilitate rotation of the support structure 308 relative to the base 306. The support structure 308 is retained within the outer sleeve 305 of the adapter assembly 300 and is configured to maintain axial alignment of the first and second drive pusher assemblies 340, 380. For a detailed description of an exemplary support structure, please refer to commonly owned U.S. Provisional Patent Application Ser. No. 62/066,518, the content of which was previously incorporated by reference herein.


The drive transfer assembly 330, the first pusher assembly 340, and the second drive pusher assembly 380 of the adapter assembly 300 are substantially identical to the respective drive transfer assembly 130, first pusher assembly 160, and second drive pusher assembly 180 of the adapter assembly 100 described hereinabove, and therefore, will only be described as relates to the differences therebetween.


Briefly, the first pusher assembly 340 includes a planetary gear assembly 346 operably supported within a proximal housing section 342 and a screw member 348 operably connected to the planetary gear assembly 346 and rotatably supported within a distal housing section 344. The first pusher assembly 340 further includes a pusher member 350 operably connected to the screw member 348 and slidably disposed within the distal housing section 344.


With particular reference to FIGS. 38-41, the pusher member 350 includes a substantially cylindrical body 352 having a threaded proximal inner surface 352a and opposed planar outer surfaces 354, 356. Retainers 358, 360 extend from the respective planar outer surfaces 354, 356. Each of the retainers 358, 360 includes a pair of elongate flanges 358a, 358b, 360a, 360b, respectively, and a connector 358c, 360c, respectively, connecting a proximal end of the elongate flanges 358a, 358b, 360a, 360b, respectively. Each of the retainers 358, 360 defines a longitudinal slot 359, 361, respectively, between respective elongate flanges 358a, 358b, 360a, 360b.


A pawl assembly 362, 364 is received within each of the longitudinal slots 359, 361, respectively. The pawl assemblies 362, 364 each include a plurality of pawl members 362a-e, 364a-e, respectively (collectively, pawls 366, 368, respectively), and pivot pins 363, 365. The pawls 366, 368 are secured within the respective longitudinal slots 359, 361 by the pivot pins 363, 365, respectively, received through openings 367, 369, respectively, formed in the respective distal ends 366b, 368b of the pawls 366, 368, respectively. The pawls 366, 368 each include a curved profile and are formed of a resilient material. Protrusions 370, 372 are formed on an outer curved surface of the respective pawls 366, 368 proximal to the distal ends 366b, 368b, respectively. The protrusions 370, 372 each include a flat proximal facing surface 370a, 372a, respectively, and a slanted or inclined distal facing surface 370b, 372b. As will be described in further detail below, the protrusions 370, 372 are configured to be received within openings 241, 243 (FIG. 43) of respective connector extensions 240, 242 (FIG. 43) of outer flexible band 230 (FIG. 42) of the extension assembly 200 (FIG. 42) to secure the outer flexible band 230 to the pusher member 350 of the first pusher assembly 340 when the extension assembly 200 is secured to the adapter assembly 300.


With particular reference to FIGS. 40 and 41, the pawls 366, 368 of the pawl assemblies 362, 364, respectively, are received within respective longitudinal slots 359, 361 of retainers 358, 360, respectively, with the respective distal ends 366b, 368b secured to retainers 358, 360, respectively, by pivot pins 363, 365, respectively. The proximal ends 366a, 368a of the pawls 366, 368, respectively, are received under the respective connectors 358c, 360c of the retainers 358, 360, respectively, and engage the planar surfaces 354, 356, respectively, of the cylindrical body 352 of the pusher member 350. The pawls 366, 368 are configured such that the protrusions 370, 372, respectively, extend above the elongate flanges 358a, 358b, 360a, 360b, respectively, of the retainers 358, 360, respectively, when the respective pawls 366, 368 are in a first or initial position (FIG. 40).


With reference now to FIGS. 42 and 43, the curved profile of pawls 366, 368 is such that an inward force applied to the protrusions 370, 372, respectively, when the respective inclined distal surfaces 370b, 372b are engaged by connector extensions 240, 242, respectively, of outer flexible band 230 (FIG. 42) of the extension assembly 200 (FIG. 42) cause the pawls 366, 368 to flex inwardly. As the pawls 366, 368 flex inwardly the protrusions 370, 372, respectively, are positioned below the respective retainers 358, 360, thereby allowing connector extensions 240, 242 of outer flexible band 230 to pass over the respective retainers 358, 360. Once the openings 241, 243 of respective connector extensions 240, 242 align with the protrusions 370, 372, respectively, of the respective pawls 366, 368, the pawls 366, 368, respectively spring back to the initial position (FIG. 45), causing the protrusions 370, 372, respectively, to be received within the respective openings 241, 243 of the connector extensions 240, 242, respectively, such that the outer flexible band 230 (FIG. 42) of the extension assembly 200 (FIG. 42) is secured to the first pusher member 340.


Once the connector extensions 240, 242 of the outer flexible band 230 of the extension assembly 200 are received over the pawls 366, 368, respectively, and once the protrusions 370, 372 are received within respective openings 241, 243 of the respective connector extensions 240, 242, engagement of the connector extensions 240, 242 by the flat proximal surface 370a, 372a of the protrusions 370, 372, respectively, prevents the connector extensions 240, 242 from being disengaging from the first pusher assembly 340 during operation of the adapter assembly 300 and the extension assembly 200.


The adapter assembly 300 operates in a substantially similar manner to adapter assembly 100 described hereinabove. In addition, adapter assembly 300 is configured to permit rotation of an end effector, e.g., end effector 30 (FIG. 34) attached to adapter assembly 300 or attached to an extension assembly that is attached to adapter assembly 300 to be selectively rotated about longitudinal axis “x” (FIG. 36) during use.


Any of the components described herein may be fabricated from either metals, plastics, resins, composites or the like taking into consideration strength, durability, wearability, weight, resistance to corrosion, ease of manufacturing, cost of manufacturing, and the like.


With reference now to FIGS. 46-48, a pusher member, in accordance with another embodiment of the present disclosure, is generally designated as 400. Pusher member 400 may be utilized in adapter assemblies 100 and/or 300 in place of any of pusher members 170, 190, and/or 350.


Pusher member 400 includes a composite body 410 that is formed of two or more materials to reduce the input torque required to longitudinally advance and retract the pusher member 400 while providing sufficient strength to distribute the load against the inner and/or outer flexible band assemblies 210, 230 (see e.g., FIGS. 18-19) of the extension assembly (see e.g., FIG. 17) to effect a function of an end effector (see e.g., FIG. 34), as described above. The composite body 410 includes an outer housing 420, a threaded insert 440 disposed within and keyed to the outer housing 420, and a retaining ring 450 secured to the outer housing 420 for retaining the threaded insert 440 within the outer housing 420.


The outer housing 420 includes a proximal housing region 422 having a central bore 422a defined in an inner surface 424 of the proximal housing region 422, and longitudinal apertures 422b defined through the inner surface 424 and an outer surface 426 of the proximal housing region 422 in opposed relation relative to each other. Proximal tabs 428 are formed on a distal end of the proximal housing region 422 in opposed relation relative to each other. The proximal tabs 428 protrude laterally from the outer surface 426 of the outer housing 420 to push and/or aid in the longitudinal advancement of the connector extensions 240, 242 of the outer flexible band assembly 230 (see e.g., FIG. 19) or the connector extensions 220, 224 of the inner flexible band assembly 220 (see e.g., FIG. 18) of the extension assembly 200 (see e.g., FIG. 17) depending upon the pusher assembly 160, 180, 340, and/or 380 (see e.g., FIGS. 12, 15, 37) with which the pusher member 400 is used.


The outer housing 420 includes a distal housing region 430 having a central bore 430a defined in an inner surface 432 of the distal housing region 430. The central bore 430a of the distal housing region 430 is smaller in dimension than the central bore 422a of the proximal housing region 422 such that an end wall 434 of the distal housing region 430 is disposed at a distal end of the central bore 422a of the proximal housing region 422. Distal tabs 436 are formed on the distal housing region 430 in opposed relation relative to each other. The distal tabs 436 are longitudinally aligned with the proximal tabs 428, and are disposed in spaced relation relative to the proximal tabs 428. The distal tabs 436 protrude laterally from the outer housing 420 to engage and move the connector extensions 240, 242 of the outer flexible band assembly 230 (see e.g., FIG. 19) or the connector extensions 220, 224 of the inner flexible band assembly 220 (see e.g., FIG. 18) of the extension assembly 200 (see e.g., FIG. 17), as described above.


The threaded insert 440 includes a body portion 442 configured and dimensioned to be retained with the central bore 422a of the proximal housing region 422 of the outer housing 420. The body portion 442 of the threaded insert 440 has a threaded central bore 442a defined through an inner surface 444 of the body portion 442 that is configured to threadingly engage the screw member 168, 188, or 348 of the pusher assembly 160, 180, or 340 (see e.g., FIGS. 12, 15, 37) with which the pusher member 400 is used, to axially move the pusher member 400, as described above. The body portion 442 of the threaded insert 440 includes longitudinal rails 446 formed on an outer surface 448 of the body portion 442 in opposed relation relative to each other, and protrude laterally therefrom. The longitudinal rails 446 are configured and dimensioned to engage and extend laterally through the longitudinal apertures 422b of the proximal housing region 422 of the outer housing 420 to prevent rotational movement of the threaded insert 440 relative to the outer housing 420. The longitudinal rails 446 extend laterally beyond the outer wall 426 of the proximal housing region 422 of the outer housing 420 and are keyed to the distal housing section 164, 184, or 344 of the pusher assembly 160, 180, or 340 (see e.g., FIGS. 12, 15, 37) in which the pusher member 400 is used, such that the pusher member 400 is slidably disposed within the distal housing section 164, 184, or 344.


The retaining ring 450 includes an annular body 452 defining an opening 452a therethrough. The opening 452a of the retaining ring 450 has a cross-sectional dimension that is substantially the same as the cross-sectional dimension of the central bore 422a of the proximal housing region 422 of the outer housing 420 to allow uninhibited engagement of the screw member 168, 188, or 348 of the pusher assembly 160, 180, or 340 (see e.g., FIGS. 12, 15, 37) with which the pusher member 400 is used, with the threaded central bore 442a of the threaded insertion 440 of the pusher member 400. The retaining ring 450 is fixedly secured to the outer housing 420, to lock the threaded insert 440 between the end wall 434 of the distal housing region 430 of the outer housing 420 and the retaining ring 450, to prevent axial movement of the threaded insert 440 relative to the outer housing 420. The retaining ring 450 may be secured to the outer housing 420 by welding, swaging, staking, crimping, soldering, brazing, bonding (e.g., gluing or cementing), and/or mechanical fastening (e.g., riveting, pinning, bayonet coupling, barb fitting, etc.), among other securing techniques within the purview of those skilled in the art.


The outer housing 420 is integrally and/or monolithically formed of a first material. The first material is a metal such as, for example, stainless steel, to provide load supporting strength for effecting a function of an end effector of the presently described surgical devices. The threaded insert 440 is integrally and/or monothically formed of a second material. The second material is a polymer such as, for example, polyether ether ketone (PEEK), to reduce the input torque for advancing the pusher member 400. The retaining ring 450 is integrally and/or monolithically formed of a third material. The third material is a metal which may be the same as, or different from, the first material of the outer housing 420.


The threaded insert 440 is formed of any suitable polymeric material to reduce friction forces generated between the inner surface 444 of the threaded insert 440 and the screw member 168, 188, or 348 of the pusher assembly 160, 180, or 340 (see e.g., FIGS. 12, 15, 37) with which the pusher member 400 is used, as well as between the longitudinal rails 446 of the threaded insert 440 and the distal housing section 164, 184, or 344 (see e.g., FIGS. 12, 15, 37), thereby improving the efficiency of the pusher member 400 over pusher members formed entirely of metal. The outer housing 420 is formed of any suitable metallic material to distribute the load across a larger area, thereby reducing the stress on the threaded insert 440 and allowing the pusher member 400 to push at a greater force than a pusher member made entirely of a polymer.


While each of the outer housing 420, the threaded insert 440, and the retaining ring 450 of the pusher member 400 is described as being integrally and/or monolithically formed, it should be understood that one or more portions of the outer housing 420, the threaded insert 440, and/or the retaining ring 450 can be separately formed of any suitable metallic and/or polymeric material and affixed to the respective component. Persons skilled in the art will understand that one or more of any of the components, or portions thereof, can be formed using known forming and/or fastening techniques such as molding, casting, milling, welding, etc. For example, the outer housing 420 and the retaining ring 450 can be casted and/or milled, the threaded insert 440 can be injection molded in the outer housing 420, and the retaining ring 450 can be welded to the outer housing 420.


Persons skilled in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments. It is envisioned that the elements and features illustrated or described in connection with one exemplary embodiment may be combined with the elements and features of another without departing from the scope of the present disclosure. As well, one skilled in the art will appreciate further features and advantages of the disclosure based on the above-described embodiments. Accordingly, the disclosure is not to be limited by what has been particularly shown and described, except as indicated by the appended claims.

Claims
  • 1. A surgical assembly for operably connecting an end effector to an electrosurgical instrument, the surgical assembly comprising: an adapter assembly including: a drive coupling assembly;a drive transfer assembly operably received through the drive coupling assembly and including first and second rotatable shafts;a first pusher assembly operably connected to the first rotatable shaft for converting rotational motion from the first rotatable shaft to longitudinal movement to perform a first function, the first pusher assembly including a first pusher member having an outer housing formed of a first material, and a threaded insert formed of a second material and disposed within and coaxial with the outer housing, wherein the threaded insert is axially and rotationally fixed relative to the outer housing; anda second pusher assembly operably connected to the second rotatable shaft for converting rotational motion from the second rotatable shaft to longitudinal movement to perform a second function, the second pusher assembly including a second pusher member having an outer housing formed of a first material, and a threaded insert formed of a second material; andan extension assembly operably connected to a distal end of the adapter assembly, the extension assembly including a flexible band assembly releasably secured to the first pusher member of the first pusher assembly.
  • 2. The surgical assembly of claim 1, wherein the first material of the outer housing is a metal.
  • 3. The surgical assembly of claim 2, wherein the second material of the threaded insert is a polymer.
  • 4. The surgical assembly of claim 3, wherein the metal is stainless steel.
  • 5. The surgical assembly of claim 4, where the polymer is polyether ether ketone.
  • 6. The surgical assembly of claim 1, wherein the outer housing of the first pusher member includes first and second distal tabs extending laterally therefrom.
  • 7. The surgical assembly of claim 6, wherein the flexible band assembly includes first and second connector members, and each of the first and second connector members is configured to engage a respective one of the first and second distal tabs.
  • 8. The surgical assembly of claim 1, wherein the threaded insert of the first pusher member includes an inner surface defining a threaded central bore.
  • 9. The surgical assembly of claim 8, wherein the adapter assembly includes a screw member threadingly engaged with the inner surface of the threaded insert of the first pusher member.
  • 10. The surgical assembly of claim 1, wherein the outer housing includes first and second apertures disposed therethrough, and the threaded insert includes an outer surface having first and second longitudinal rails extending laterally therefrom, and each of the first and second longitudinal rails of the threaded insert are keyed to a respective one of the first and second apertures of the outer housing.
  • 11. The surgical assembly of claim 1, further including a drive member operably connected to a third rotatable shaft of the drive transfer assembly for transferring rotational motion from the third rotatable shaft to perform a third function.
  • 12. The surgical assembly of claim 1, wherein the first material is different from the second material.
  • 13. A surgical assembly for operably connecting an end effector to an electrosurgical instrument, the surgical assembly comprising: an adapter assembly including, a drive coupling assembly;a drive transfer assembly operably received through the drive coupling assembly and including a first rotatable shaft; anda first pusher assembly operably connected to the first rotatable shaft for converting rotational motion from the first rotatable shaft to longitudinal movement to perform a first function, the first pusher assembly including a first pusher member having an outer housing formed of a first material, and a threaded insert formed of a second material and disposed within the outer housing, wherein the outer housing of the first pusher member includes: first and second distal tabs extending laterally therefrom; andfirst and second proximal tabs extending laterally therefrom, wherein each of the first and second proximal tabs is aligned with a respective one of the first and second distal tabs; andan extension assembly operably connected to a distal end of the adapter assembly, the extension assembly including a flexible band assembly operably connectable to the first pusher member of the first pusher assembly, wherein the flexible band assembly includes first and second connector members, and each of the first and second connector members is configured to engage a respective one of the first and second distal tabs.
  • 14. A surgical assembly for operably connecting an end effector to an electrosurgical instrument, the surgical assembly comprising: an adapter assembly including, a drive coupling assembly;a drive transfer assembly operably received through the drive coupling assembly and including a first rotatable shaft; anda first pusher assembly operably connected to the first rotatable shaft for converting rotational motion from the first rotatable shaft to longitudinal movement to perform a first function, the first pusher assembly including a first pusher member having an outer housing formed of a first material, a threaded insert formed of a second material and disposed within the outer housing, and a retaining ring fixedly secured to a proximal end of the outer housing to secure the threaded insert within the outer housing; andan extension assembly operably connected to a distal end of the adapter assembly, the extension assembly including a flexible band assembly operably connectable to the first pusher member of the first pusher assembly.
  • 15. The surgical assembly of claim 14, wherein the retaining ring is formed of a third material.
  • 16. The surgical assembly of claim 15, wherein the third material of the retaining ring is a metal.
  • 17. The surgical assembly of claim 16, wherein the metal is stainless steel.
  • 18. A surgical assembly for operably connecting an end effector to an electrosurgical instrument, the surgical assembly comprising: an adapter assembly including: a drive coupling assembly;a drive transfer assembly operably received through the drive coupling assembly and including first and second rotatable shafts;a first pusher assembly operably connected to the first rotatable shaft for converting rotational motion from the first rotatable shaft to longitudinal movement to perform a first function, the first pusher assembly including a first pusher member having an outer housing formed of a first material, and a threaded insert formed of a second material and disposed within the outer housing, wherein the threaded insert is axially and rotationally fixed relative to the outer housing; anda second pusher assembly operably connected to the second rotatable shaft for converting rotational motion from the second rotatable shaft to longitudinal movement to perform a second function, the second pusher assembly being disposed distal of the first pusher assembly; andan extension assembly operably connected to a distal end of the adapter assembly, the extension assembly including a flexible band assembly releasably secured to the first pusher member of the first pusher assembly.
  • 19. The surgical assembly of claim 18, wherein the second pusher assembly includes a second pusher member having an outer housing formed of a first material, and a threaded insert formed of a second material.
  • 20. The surgical assembly of claim 19, wherein the first material is different from the second material.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a Continuation-in-Part Application claiming the benefit of and priority to U.S. patent application Ser. No. 14/875,766, filed on Oct. 6, 2015, which claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 62/066,518, filed on Oct. 21, 2014, the entire contents of each of which are incorporated by reference herein. The present application also claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 62/251,930, filed on Nov. 6, 2015, the entire contents of each of which are incorporated by reference herein.

US Referenced Citations (459)
Number Name Date Kind
2777340 Hettwer et al. Jan 1957 A
2957353 Babacz Oct 1960 A
3111328 Di Rito et al. Nov 1963 A
3695058 Keith, Jr. Oct 1972 A
3734515 Dudek May 1973 A
3759336 Marcovitz et al. Sep 1973 A
4162399 Hudson Jul 1979 A
4606343 Conta et al. Aug 1986 A
4705038 Sjostrom et al. Nov 1987 A
4722685 de Estrada et al. Feb 1988 A
4823807 Russell et al. Apr 1989 A
4874181 Hsu Oct 1989 A
5129118 Walmesley Jul 1992 A
5129570 Schulze et al. Jul 1992 A
5152744 Krause et al. Oct 1992 A
5301061 Nakada et al. Apr 1994 A
5312023 Green et al. May 1994 A
5326013 Green et al. Jul 1994 A
5350355 Sklar Sep 1994 A
5383874 Jackson et al. Jan 1995 A
5383880 Hooven Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5395033 Byrne et al. Mar 1995 A
5400267 Denen et al. Mar 1995 A
5411508 Bessler et al. May 1995 A
5413267 Solyntjes et al. May 1995 A
5427087 Ito et al. Jun 1995 A
5433721 Hooven et al. Jul 1995 A
5467911 Tsuruta et al. Nov 1995 A
5476379 Disel Dec 1995 A
5487499 Sorrentino et al. Jan 1996 A
5518163 Hooven May 1996 A
5518164 Hooven May 1996 A
5526822 Burbank et al. Jun 1996 A
5529235 Boiarski et al. Jun 1996 A
5535934 Boiarski et al. Jul 1996 A
5535937 Boiarski et al. Jul 1996 A
5540375 Bolanos et al. Jul 1996 A
5540706 Aust et al. Jul 1996 A
5542594 McKean et al. Aug 1996 A
5549637 Crainich Aug 1996 A
5553675 Pitzen et al. Sep 1996 A
5562239 Boiarski et al. Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5609560 Ichikawa et al. Mar 1997 A
5626587 Bishop et al. May 1997 A
5632432 Schulze et al. May 1997 A
5645209 Green et al. Jul 1997 A
5647526 Green et al. Jul 1997 A
5653374 Young et al. Aug 1997 A
5658300 Bito et al. Aug 1997 A
5662662 Bishop et al. Sep 1997 A
5667517 Hooven Sep 1997 A
5693042 Boiarski et al. Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5713505 Huitema Feb 1998 A
5762603 Thompson Jun 1998 A
5779130 Alesi et al. Jul 1998 A
5782396 Mastri et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5792573 Pitzen et al. Aug 1998 A
5797536 Smith et al. Aug 1998 A
5820009 Melling et al. Oct 1998 A
5863159 Lasko Jan 1999 A
5908427 McKean et al. Jun 1999 A
5954259 Viola et al. Sep 1999 A
5964774 McKean et al. Oct 1999 A
5993454 Longo Nov 1999 A
6010054 Johnson et al. Jan 2000 A
6017354 Culp et al. Jan 2000 A
6032849 Mastri et al. Mar 2000 A
6045560 McKean et al. Apr 2000 A
6090123 Culp et al. Jul 2000 A
6126651 Mayer Oct 2000 A
6129547 Cise et al. Oct 2000 A
6165169 Panescu et al. Dec 2000 A
6239732 Cusey May 2001 B1
6241139 Milliman et al. Jun 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6264087 Whitman Jul 2001 B1
6302311 Adams et al. Oct 2001 B1
6315184 Whitman Nov 2001 B1
6321855 Barnes Nov 2001 B1
6329778 Culp et al. Dec 2001 B1
6343731 Adams et al. Feb 2002 B1
6348061 Whitman Feb 2002 B1
6368324 Dinger et al. Apr 2002 B1
6371909 Hoeg et al. Apr 2002 B1
6434507 Clayton et al. Aug 2002 B1
6443973 Whitman Sep 2002 B1
6461372 Jensen et al. Oct 2002 B1
6488197 Whitman Dec 2002 B1
6491201 Whitman Dec 2002 B1
6533157 Whitman Mar 2003 B1
6537280 Dinger et al. Mar 2003 B2
6610066 Dinger et al. Aug 2003 B2
6611793 Burnside et al. Aug 2003 B1
6645218 Cassidy et al. Nov 2003 B1
6654999 Stoddard et al. Dec 2003 B2
6681979 Whitman Jan 2004 B2
6695199 Whitman Feb 2004 B2
6698643 Whitman Mar 2004 B2
6699177 Wang et al. Mar 2004 B1
6716233 Whitman Apr 2004 B1
6743240 Smith et al. Jun 2004 B2
6783533 Green et al. Aug 2004 B2
6792390 Burnside et al. Sep 2004 B1
6793652 Whitman et al. Sep 2004 B1
6817508 Racenet et al. Nov 2004 B1
6830174 Hillstead et al. Dec 2004 B2
6835199 McGuckin, Jr. et al. Dec 2004 B2
6846308 Whitman et al. Jan 2005 B2
6846309 Whitman et al. Jan 2005 B2
6849071 Whitman et al. Feb 2005 B2
6860892 Tanaka et al. Mar 2005 B1
6899538 Matoba May 2005 B2
6905057 Swayze et al. Jun 2005 B2
6959852 Shelton, IV et al. Nov 2005 B2
6964363 Wales et al. Nov 2005 B2
6981628 Wales Jan 2006 B2
6981941 Whitman et al. Jan 2006 B2
6986451 Mastri et al. Jan 2006 B1
6988649 Shelton, IV et al. Jan 2006 B2
7032798 Whitman et al. Apr 2006 B2
RE39152 Aust et al. Jun 2006 E
7055731 Shelton, IV et al. Jun 2006 B2
7059508 Shelton, IV et al. Jun 2006 B2
7077856 Whitman Jul 2006 B2
7111769 Wales et al. Sep 2006 B2
7122029 Koop et al. Oct 2006 B2
7140528 Shelton, IV Nov 2006 B2
7141049 Stern et al. Nov 2006 B2
7143923 Shelton, IV et al. Dec 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7143926 Shelton, IV et al. Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7172104 Scirica et al. Feb 2007 B2
7225964 Mastri et al. Jun 2007 B2
7238021 Johnson Jul 2007 B1
7246734 Shelton, IV Jul 2007 B2
7252660 Kunz Aug 2007 B2
7328828 Ortiz et al. Feb 2008 B2
7364061 Swayze et al. Apr 2008 B2
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7404508 Smith et al. Jul 2008 B2
7407078 Shelton, IV et al. Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7419080 Smith et al. Sep 2008 B2
7422139 Shelton, IV et al. Sep 2008 B2
7431189 Shelton, IV et al. Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7448525 Shelton, IV et al. Nov 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7464847 Viola et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7481347 Roy Jan 2009 B2
7481824 Boudreaux et al. Jan 2009 B2
7487899 Shelton, IV et al. Feb 2009 B2
7549564 Boudreaux Jun 2009 B2
7565993 Milliman et al. Jul 2009 B2
7568603 Shelton, IV et al. Aug 2009 B2
7575144 Ortiz et al. Aug 2009 B2
7588175 Timm et al. Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7637409 Marczyk Dec 2009 B2
7641093 Doll et al. Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7670334 Hueil et al. Mar 2010 B2
7673780 Shelton, IV et al. Mar 2010 B2
7699835 Lee et al. Apr 2010 B2
7721931 Shelton, IV et al. May 2010 B2
7738971 Swayze et al. Jun 2010 B2
7740159 Shelton, IV et al. Jun 2010 B2
7743960 Whitman et al. Jun 2010 B2
7758613 Whitman Jul 2010 B2
7766210 Shelton, IV et al. Aug 2010 B2
7770773 Whitman et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7793812 Moore et al. Sep 2010 B2
7799039 Shelton, IV et al. Sep 2010 B2
7802712 Milliman et al. Sep 2010 B2
7803151 Whitman Sep 2010 B2
7822458 Webster, III et al. Oct 2010 B2
7845534 Viola et al. Dec 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7857185 Swayze et al. Dec 2010 B2
7870989 Viola et al. Jan 2011 B2
7900805 Shelton, IV et al. Mar 2011 B2
7905897 Whitman et al. Mar 2011 B2
7918230 Whitman et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922719 Ralph et al. Apr 2011 B2
7947034 Whitman May 2011 B2
7951071 Whitman et al. May 2011 B2
7954682 Giordano et al. Jun 2011 B2
7959051 Smith et al. Jun 2011 B2
7963433 Whitman et al. Jun 2011 B2
7967178 Soirica et al. Jun 2011 B2
7967179 Olson et al. Jun 2011 B2
7992758 Whitman et al. Aug 2011 B2
8011550 Aranyi et al. Sep 2011 B2
8016178 Olson et al. Sep 2011 B2
8016855 Whitman et al. Sep 2011 B2
8016858 Whitman Sep 2011 B2
8020743 Shelton, IV Sep 2011 B2
8025199 Whitman et al. Sep 2011 B2
8035487 Malackowski Oct 2011 B2
8052024 Viola et al. Nov 2011 B2
8114118 Knodel et al. Feb 2012 B2
8127975 Olson et al. Mar 2012 B2
8132705 Viola et al. Mar 2012 B2
8152516 Harvey et al. Apr 2012 B2
8157150 Viola et al. Apr 2012 B2
8157151 Ingmanson et al. Apr 2012 B2
8182494 Yencho et al. May 2012 B1
8186555 Shelton, IV et al. May 2012 B2
8186587 Zmood et al. May 2012 B2
8220367 Hsu Jul 2012 B2
8235273 Olson et al. Aug 2012 B2
8241322 Whitman et al. Aug 2012 B2
8272554 Whitman et al. Sep 2012 B2
8292150 Bryant Oct 2012 B2
8292888 Whitman Oct 2012 B2
8342379 Whitman et al. Jan 2013 B2
8348130 Shah et al. Jan 2013 B2
8348855 Hillely et al. Jan 2013 B2
8353440 Whitman et al. Jan 2013 B2
8357144 Whitman et al. Jan 2013 B2
8365633 Simaan et al. Feb 2013 B2
8365972 Aranyi et al. Feb 2013 B2
8371492 Aranyi et al. Feb 2013 B2
8372057 Cude et al. Feb 2013 B2
8391957 Carlson et al. Mar 2013 B2
8403926 Nobis et al. Mar 2013 B2
8418904 Wenchell et al. Apr 2013 B2
8424739 Racenet et al. Apr 2013 B2
8454585 Whitman Jun 2013 B2
8505802 Viola et al. Aug 2013 B2
8517241 Nicholas et al. Aug 2013 B2
8523043 Ullrich et al. Sep 2013 B2
8551076 Duval et al. Oct 2013 B2
8561871 Rajappa et al. Oct 2013 B2
8561874 Scirica Oct 2013 B2
8590763 Milliman Nov 2013 B2
8602287 Yates et al. Dec 2013 B2
8623000 Humayun et al. Jan 2014 B2
8627995 Smith et al. Jan 2014 B2
8632463 Drinan et al. Jan 2014 B2
8636766 Milliman et al. Jan 2014 B2
8647258 Aranyi et al. Feb 2014 B2
8652121 Quick et al. Feb 2014 B2
8657174 Yates et al. Feb 2014 B2
8657177 Scirica et al. Feb 2014 B2
8672206 Aranyi et al. Mar 2014 B2
8696552 Whitman Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8715306 Faller et al. May 2014 B2
8758391 Swayze et al. Jun 2014 B2
8806973 Ross et al. Aug 2014 B2
8808311 Heinrich et al. Aug 2014 B2
8820605 Shelton, IV Sep 2014 B2
8851355 Aranyi et al. Oct 2014 B2
8858571 Shelton, IV et al. Oct 2014 B2
8875972 Weisenburgh, II et al. Nov 2014 B2
8888762 Whitman Nov 2014 B2
8893946 Boudreaux et al. Nov 2014 B2
8899462 Kostrzewski et al. Dec 2014 B2
8905289 Patel et al. Dec 2014 B2
8919630 Milliman Dec 2014 B2
8931680 Milliman Jan 2015 B2
8939344 Olson et al. Jan 2015 B2
8950646 Viola Feb 2015 B2
8960519 Whitman et al. Feb 2015 B2
8961396 Azarbarzin et al. Feb 2015 B2
8967443 McCuen Mar 2015 B2
8968276 Zemlok et al. Mar 2015 B2
8968337 Whitfield et al. Mar 2015 B2
8992422 Spivey et al. Mar 2015 B2
9016545 Aranyi et al. Apr 2015 B2
9023014 Chowaniec et al. May 2015 B2
9033868 Whitman et al. May 2015 B2
9055943 Zemlok et al. Jun 2015 B2
9064653 Prest et al. Jun 2015 B2
9072515 Hall et al. Jul 2015 B2
9113847 Whitman et al. Aug 2015 B2
9113875 Viola et al. Aug 2015 B2
9113876 Zemlok et al. Aug 2015 B2
9113899 Garrison et al. Aug 2015 B2
9216013 Scirica et al. Dec 2015 B2
9282961 Whitman et al. Mar 2016 B2
9282963 Bryant Mar 2016 B2
9295522 Kostrzewski Mar 2016 B2
9307986 Hall et al. Apr 2016 B2
20010031975 Whitman et al. Oct 2001 A1
20020049454 Whitman et al. Apr 2002 A1
20020165541 Whitman Nov 2002 A1
20030038938 Jung et al. Feb 2003 A1
20030165794 Matoba Sep 2003 A1
20040111012 Whitman Jun 2004 A1
20040133189 Sakurai Jul 2004 A1
20040153124 Whitman Aug 2004 A1
20040176751 Weitzner et al. Sep 2004 A1
20040193146 Lee et al. Sep 2004 A1
20050125027 Knodel et al. Jun 2005 A1
20050131442 Yachia et al. Jun 2005 A1
20050165328 Heske et al. Jul 2005 A1
20060142656 Malackowski et al. Jun 2006 A1
20060142740 Sherman et al. Jun 2006 A1
20060142744 Boutoussov Jun 2006 A1
20060241692 McGuckin et al. Oct 2006 A1
20060259073 Miyamoto et al. Nov 2006 A1
20060278680 Viola et al. Dec 2006 A1
20060284730 Schmid et al. Dec 2006 A1
20070023476 Whitman et al. Feb 2007 A1
20070023477 Whitman et al. Feb 2007 A1
20070029363 Popov Feb 2007 A1
20070084897 Shelton et al. Apr 2007 A1
20070102472 Shelton May 2007 A1
20070152014 Gillum Jul 2007 A1
20070175947 Ortiz et al. Aug 2007 A1
20070175949 Shelton et al. Aug 2007 A1
20070175950 Shelton et al. Aug 2007 A1
20070175951 Shelton et al. Aug 2007 A1
20070175955 Shelton et al. Aug 2007 A1
20070175961 Shelton et al. Aug 2007 A1
20070270784 Smith et al. Nov 2007 A1
20080029570 Shelton et al. Feb 2008 A1
20080029573 Shelton et al. Feb 2008 A1
20080029574 Shelton et al. Feb 2008 A1
20080029575 Shelton et al. Feb 2008 A1
20080036206 Li-guo Feb 2008 A1
20080058801 Taylor et al. Mar 2008 A1
20080109012 Falco et al. May 2008 A1
20080110958 McKenna et al. May 2008 A1
20080147089 Loh et al. Jun 2008 A1
20080167736 Swayze et al. Jul 2008 A1
20080185419 Smith et al. Aug 2008 A1
20080188841 Tomasello et al. Aug 2008 A1
20080197167 Viola et al. Aug 2008 A1
20080208195 Shores et al. Aug 2008 A1
20080237296 Boudreaux et al. Oct 2008 A1
20080251561 Eades et al. Oct 2008 A1
20080255413 Zemlok et al. Oct 2008 A1
20080255607 Zemlok Oct 2008 A1
20080262654 Omori et al. Oct 2008 A1
20080308603 Shelton et al. Dec 2008 A1
20090012533 Barbagli et al. Jan 2009 A1
20090090763 Zemlok et al. Apr 2009 A1
20090099876 Whitman Apr 2009 A1
20090138006 Bales et al. May 2009 A1
20090171147 Lee et al. Jul 2009 A1
20090182193 Whitman et al. Jul 2009 A1
20090206136 Moore Aug 2009 A1
20090209990 Yates et al. Aug 2009 A1
20090254094 Knapp et al. Oct 2009 A1
20090299141 Downey et al. Dec 2009 A1
20100023022 Zeiner et al. Jan 2010 A1
20100069942 Shelton, IV Mar 2010 A1
20100193568 Scheib et al. Aug 2010 A1
20100211053 Ross et al. Aug 2010 A1
20100225073 Porter et al. Sep 2010 A1
20110071508 Duval et al. Mar 2011 A1
20110077673 Grubac et al. Mar 2011 A1
20110121049 Malinouskas et al. May 2011 A1
20110125138 Malinouskas et al. May 2011 A1
20110139851 McCuen Jun 2011 A1
20110155783 Rajappa et al. Jun 2011 A1
20110155786 Shelton, IV Jun 2011 A1
20110172648 Jeong Jul 2011 A1
20110174099 Ross et al. Jul 2011 A1
20110184245 Xia et al. Jul 2011 A1
20110204119 McCuen Aug 2011 A1
20110218522 Whitman Sep 2011 A1
20110276057 Conlon et al. Nov 2011 A1
20110290854 Timm et al. Dec 2011 A1
20110295242 Spivey et al. Dec 2011 A1
20110295269 Swensgard et al. Dec 2011 A1
20120000962 Racenet et al. Jan 2012 A1
20120074199 Olson et al. Mar 2012 A1
20120089131 Zemlok Apr 2012 A1
20120104071 Bryant May 2012 A1
20120116368 Viola May 2012 A1
20120143002 Aranyi et al. Jun 2012 A1
20120172924 Allen, IV Jul 2012 A1
20120211542 Racenet Aug 2012 A1
20120223121 Viola et al. Sep 2012 A1
20120245428 Smith et al. Sep 2012 A1
20120253329 Zemlok et al. Oct 2012 A1
20120310220 Malkowski et al. Dec 2012 A1
20120323226 Chowaniec et al. Dec 2012 A1
20120330285 Hartoumbekis et al. Dec 2012 A1
20130018361 Bryant Jan 2013 A1
20130093149 Saur et al. Apr 2013 A1
20130098966 Kostrzewski Apr 2013 A1
20130181035 Willman Jul 2013 A1
20130184704 Beardsley et al. Jul 2013 A1
20130214025 Zemlok et al. Aug 2013 A1
20130274722 Kostrzewski et al. Oct 2013 A1
20130282052 Aranyi et al. Oct 2013 A1
20130292451 Viola et al. Nov 2013 A1
20130313304 Shelton, IV et al. Nov 2013 A1
20130317486 Nicholas et al. Nov 2013 A1
20130319706 Nicholas et al. Dec 2013 A1
20130324978 Nicholas et al. Dec 2013 A1
20130324979 Nicholas et al. Dec 2013 A1
20130334281 Williams Dec 2013 A1
20140005677 Shelton, IV Jan 2014 A1
20140012236 Williams et al. Jan 2014 A1
20140012237 Pribanic et al. Jan 2014 A1
20140012289 Snow et al. Jan 2014 A1
20140025046 Williams et al. Jan 2014 A1
20140110455 Ingmanson et al. Apr 2014 A1
20140207125 Applegate et al. Jul 2014 A1
20140207182 Zergiebel et al. Jul 2014 A1
20140207185 Goble et al. Jul 2014 A1
20140236173 Scirica et al. Aug 2014 A1
20140236174 Williams et al. Aug 2014 A1
20140276932 Williams et al. Sep 2014 A1
20140299647 Scirica et al. Oct 2014 A1
20140303668 Nicholas et al. Oct 2014 A1
20140358129 Zergiebel et al. Dec 2014 A1
20140361068 Aranyi et al. Dec 2014 A1
20140365235 DeBoer et al. Dec 2014 A1
20140373652 Zergiebel et al. Dec 2014 A1
20150014392 Williams et al. Jan 2015 A1
20150048144 Whitman Feb 2015 A1
20150076205 Zergiebel Mar 2015 A1
20150080912 Sapre Mar 2015 A1
20150108201 Williams Apr 2015 A1
20150112381 Richard Apr 2015 A1
20150122870 Zemlok et al. May 2015 A1
20150133224 Whitman et al. May 2015 A1
20150133957 Kostrzewski May 2015 A1
20150150547 Ingmanson et al. Jun 2015 A1
20150150574 Richard et al. Jun 2015 A1
20150157320 Zergiebel et al. Jun 2015 A1
20150157321 Zergiebel et al. Jun 2015 A1
20150164502 Richard et al. Jun 2015 A1
20150190133 Penna et al. Jul 2015 A1
20150201931 Zergiebel et al. Jul 2015 A1
20150272577 Zemlok et al. Oct 2015 A1
20150297199 Nicholas et al. Oct 2015 A1
20150303996 Calderoni Oct 2015 A1
20150320420 Penna et al. Nov 2015 A1
20150327850 Kostrzewski Nov 2015 A1
20150342601 Williams et al. Dec 2015 A1
20150342603 Zergiebel et al. Dec 2015 A1
20150374366 Zergiebel et al. Dec 2015 A1
20150374370 Zergiebel et al. Dec 2015 A1
20150374371 Richard et al. Dec 2015 A1
20150374372 Zergiebel et al. Dec 2015 A1
20150374449 Chowaniec et al. Dec 2015 A1
20150380187 Zergiebel et al. Dec 2015 A1
20160095585 Zergiebel et al. Apr 2016 A1
20160095596 Scirica et al. Apr 2016 A1
20160106406 Cabrera et al. Apr 2016 A1
20160113648 Zergiebel et al. Apr 2016 A1
20160113649 Zergiebel et al. Apr 2016 A1
Foreign Referenced Citations (23)
Number Date Country
2451558 Jan 2003 CA
2824590 Apr 2014 CA
102247182 Nov 2011 CN
102551840 Jul 2012 CN
102008053842 May 2010 DE
0705571 Apr 1996 EP
1769754 Apr 2007 EP
2055243 May 2009 EP
2316345 May 2011 EP
2333509 Jun 2011 EP
2668910 Dec 2013 EP
2684530 Jan 2014 EP
2883504 Jun 2015 EP
2333509 Feb 2010 ES
08-038488 Feb 1996 JP
2005-125075 May 2005 JP
20120022521 Mar 2012 KR
2006026520 Mar 2006 WO
2008045333 Apr 2008 WO
2011108840 Sep 2011 WO
2012040984 Apr 2012 WO
20120166499 Dec 2012 WO
2015041845 Mar 2015 WO
Non-Patent Literature Citations (31)
Entry
Partial European Search Report issued in corresponding European Application No. 15190643 dated Feb. 26, 2016.
Extended European Search Report corresponding to International Application No. EP 15 15 1076.5 dated Apr. 22, 2015.
Japanese Office Action corresponding to International Application No. JP 2011-084092 dated Jan. 14, 2016.
Extended European Search Report corresponding to International Application No. EP 12 19 7970.2 dated Jan. 28, 2016.
Chinese Office Action corresponding to International Application No. CN 201210560638.1 dated Oct. 21, 2015.
Office Action corresponding to International Application No. EP 14 15 9056.2 dated Oct. 26, 2015.
Australian Examination Report No. 1 corresponding to International Application No. AU 2015200153 dated Dec. 11, 2015.
Australian Examination Report No. 1 corresponding to International Application No. AU 2014204542 dated Jan. 7, 2016.
Chinese Office Action corresponding to International Application No. CN 201310125449.6 dated Feb. 3, 2016.
Extended European Search Report corresponding to International Application No. EP 15 19 0245.9 dated Jan. 28, 2016.
Extended European Search Report corresponding to International Application No. EP 15 16 7793.7 dated Apr. 5, 2016.
European Office Action corresponding to International Application No. EP 14 18 4882.0 dated Apr. 25, 2016.
Extended European Search Report corresponding to International Application No. EP 14 19 6704.2 dated Sep. 24, 2015.
International Search Report and Written Opinion corresponding to Int'l Appln. No. PCT/US2015/051837, dated Dec. 21, 2015.
Extended European Search Report corresponding to International Application No. EP 14 19 7563.1 dated Aug. 5, 2015.
Extended European Search Report corresponding to International Application No. EP 15 16 6899.3 dated Feb. 3, 2016.
Extended European Search Report corresponding to International Application No. EP 14 19 9783.3 dated Dec. 22, 2015.
Extended European Search Report corresponding to International Application No. EP 15 17 3807.7 dated Nov. 24, 2015
Extended European Search Report corresponding to International Application No. EP 15 19 0760.7 dated Apr. 1, 2016.
Extended European Search Report corresponding to International Application No. EP 15 17 3803.6 dated Nov. 24, 2015.
Extended European Search Report corresponding to International Application No. EP 15 17 3804.4 dated Nov. 24, 2015.
Extended European Search Report corresponding to International Application No. EP 15 18 8539.9 dated Feb. 17, 2016.
Extended European Search Report corresponding to International Application No. EP 15 17 3910.9 dated Nov. 13, 2015.
European Office Action corresponding to International Application No. EP 14 15 2236.7 dated Aug. 11, 2015.
Extended European Search Report corresponding to International Application No. EP 15 18 4915.5 dated Jan. 5, 2016.
Chinese Office Action dated Dec. 12, 2018, issued in Chinese Appln. No. 201510843610.
Japanese Office Action dated May 28, 2019 (received Jun. 20, 2019), issued in JP Appln. No. 2015-206306.
European Search Report dated Dec. 6, 2019, issued in EP Appln. No. 19192171.
European Search Report dated Dec. 13, 2019, issued in EP Appln. No. 19191409.
Chinese Office Action dated Sep. 4, 2019, issued in CN Appln. No. 201510843610.
Australian Office Action dated Jul. 23, 2019, issued in AU Appln. No. 2015243004.
Related Publications (1)
Number Date Country
20160354088 A1 Dec 2016 US
Provisional Applications (2)
Number Date Country
62066518 Oct 2014 US
62251930 Nov 2015 US
Continuation in Parts (1)
Number Date Country
Parent 14875766 Oct 2015 US
Child 15238049 US