The present invention relates generally to devices for supporting cables and, in particular, to hangers for securing cables to support structures.
Cable hangers are commonly used to secure cables to structural members of antenna towers and or along tunnel walls. Generally, each cable is attached to a structural member by cable hangers mounted at periodically-spaced attachment points.
Antenna towers and/or tunnels may be crowded due to the large numbers of cables required for signal-carrying. Over time, as systems are added, upgraded and/or expanded, installation of additional cables may be required. To conserve space, it may be desirable for each set of cable hangers to secure more than a single cable. Certain cable hangers have been constructed to secure multiple cables; other cable hangers have a stackable construction that permits multiple cable hangers to be interlocked extending outwardly from each mounting point/structural member. Stacked and multiple-cable-type cable hangers significantly increase the number of cables mountable to a single attachment point.
One popular stackable cable hanger is discussed in U.S. Pat. No. 8,191,836 to Korczak, the disclosure of which is hereby incorporated herein in its entirety. Hangers disclosed therein have generally a U- or C-shaped profile with rounded arms. A locking projection extends from the free end of each arm, and the “root” of the hanger that spans the fixed ends of the arms has a large aperture. The hanger can hold a cable between the arms; gripping of the cable is enhanced by short fingers that extend inwardly from the arms to engage the cable. The locking projections of a hanger are inserted into a hole in the antenna tower (typically in the leg of the antenna tower) to secure the hanger to the tower. Hangers can be “stacked” onto each other by inserting the locking projections of one hanger into the large aperture of the next hanger. One variety of cable hanger of this type is the SNAP-STAK® hanger, available from CommScope, Inc. (Joliet, Ill.). Other cable hangers are shown in U.S. patent application Ser. No. 15/081,177, filed Mar. 25, 2016, Ser. No. 15/081,240, filed Mar. 25, 2016, and Ser. No. 15/335,614, filed Oct. 27, 2016, the disclosures of each of which are hereby incorporated herein by reference in full.
In some instances, it may be desirable to mount multiple stacks of cable hangers in close proximity. In such instances, it may be desirable to employ an adapter, such as that shown at 10 in
It may be desirable to provide additional configurations for mounting cable hangers.
As a first aspect, embodiments of the invention are directed to an adapter for mounting cable hangers to a mounting structure. The adapter comprises: a plurality of mounting panels, each mounting panel including a mounting hole, the mounting panels attached to each other at edges thereof, each mounting panel being disposed at an angle relative to its adjacent mounting panels; two base segments, each of the base segments attached to the edge of an endmost one of the mounting panels and extending therefrom toward the other of the base segments, wherein the mounting panels and the base segments define an interior of the adapter; and two locking arms, each of the locking arms extending from an end of a respective base segment away from the interior of the adapter, each of the locking arms including a locking feature, the locking arms extending generally parallel to each other and defining a gap therebetween. The adapter can be deflected from a relaxed state to a deflected state by forcing the locking arms toward each other. In the deflected state the adapter may be mounted to a mounting structure, with the locking arms inserted through a hole in the mounting structure and exerting outward pressure on edges of the hole, and the locking features maintaining the adapter in a mounted position on the mounting structure.
As a second aspect, embodiments of the invention are directed to an adapter for mounting cable hangers to a mounting structure, comprising: a set of first mounting panels, each first mounting panel including a mounting hole, the mounting panels being serially arranged and attached to each other at end edges thereof, each mounting panel being disposed at an angle relative to its adjacent mounting panels; and a set of second mounting panels, each second mounting panel being arranged normal to the first set of mounting panels, such that mounting panels of the second set share at least one side edge with a mounting panel of the first set. The adapter further comprises: two base segments, each of the base segments attached to the edge of endmost one of the mounting panels and extending therefrom toward the other of the base segments, wherein the mounting panels and the base segments define an interior of the adapter; and two locking arms, each of the locking arms extending from an end of a respective base segment away from the interior of the adapter, each of the locking arms including a locking feature, the locking arms extending generally parallel to each other and defining a gap therebetween. The adapter can be deflected from a relaxed state to a deflected state by forcing the locking arms toward each other. In the deflected state the adapter may be mounted to a mounting structure, with the locking arms inserted through a hole in the mounting structure and exerting outward pressure on edges of the hole, and the locking features maintaining the adapter in a mounted position on the mounting structure.
The present invention now is described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
Like numbers refer to like elements throughout. In the figures, the thickness of certain lines, layers, components, elements or features may be exaggerated for clarity.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the specification and relevant art and should not be interpreted in an idealized or overly formal sense unless expressly so defined herein. Well-known functions or constructions may not be described in detail for brevity and/or clarity.
As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. As used herein, phrases such as “between X and Y” and “between about X and Y” should be interpreted to include X and Y. As used herein, phrases such as “between about X and Y” mean “between about X and about Y.” As used herein, phrases such as “from about X to Y” mean “from about X to about Y.”
It will be understood that when an element is referred to as being “on”, “attached” to, “connected” to, “coupled” with, “contacting”, etc., another element, it can be directly on, attached to, connected to, coupled with or contacting the other element or intervening elements may also be present. In contrast, when an element is referred to as being, for example, “directly on”, “directly attached” to, “directly connected” to, “directly coupled” with or “directly contacting” another element, there are no intervening elements present. It will also be appreciated by those of skill in the art that references to a structure or feature that is disposed “adjacent” another feature may have portions that overlap or underlie the adjacent feature.
Spatially relative terms, such as “under”, “below”, “lower”, “over”, “upper”, “lateral”, “left”, “right” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is inverted, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the descriptors of relative spatial relationships used herein interpreted accordingly.
Also, as used herein, the terms “horizontal” and “vertical” are intended to encompass structures that may vary from precise horizontal or vertical orientations by a small amount (e.g., 5-10 degrees).
It will also be understood that, as used herein, the terms “example,” “exemplary,” and derivatives thereof are intended to refer to non-limiting examples and/or variants embodiments discussed herein, and are not intended to indicate preference for one or more embodiments discussed herein compared to one or more other embodiments.
Referring now to the drawings, a snap-in adapter for a cable hanger, designated broadly at 100, is shown in
Referring now to
The adapter 100 may be formed of a variety of materials, such as steel and other metals. The adapter 100 may be stamped from a sheet of material, such as steel, and bent by known methods into the configuration shown in
As can be seen in
As can be seen in
Although the adapter 100 is shown with three mounting panels 114a, 114b, 114c, other configurations with more or fewer mounting panels are contemplated. For example,
In the illustrated embodiment, the top panel 214d and the unseen bottom mounting panel are attached to the side edges of the mounting panel 214b. However, the top and bottom mounting panels may also be attached to the side edges of either of the other mounting panels 214a, 214c.
Also, although the adapters 100, 200 take generally a trapezoidal profile, those skilled in this art will appreciate that the adapters may be configured to take other profiles. For example, the mounting panels 114a, 114c may be generally perpendicular to the mounting panel 114b, such that the adapter has a square or rectangular profile. In other embodiments, the adapter may have only two mounting panels and therefore have a triangular profile. Pentagonal, hexagonal, and other profile shapes are also contemplated.
The adapters 100, 200 illustrated and described herein may be formed of a variety of materials, such as steel and other metals. In some embodiments, the adapters may be stamped from a sheet of material, such as steel, and bent by known methods into the configuration shown.
The foregoing is illustrative of the present invention and is not to be construed as limiting thereof. Although exemplary embodiments of this invention have been described, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the claims. The invention is defined by the following claims, with equivalents of the claims to be included therein.
This application claims priority from and the benefit of U.S. Provisional Patent Application No. 62/420,594, filed Nov. 11, 2016, the disclosure of which is hereby incorporated herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1376284 | Kohn | Apr 1921 | A |
1452497 | Fischer | Apr 1923 | A |
2032413 | Hall | Mar 1936 | A |
2179406 | Fitzpatrick | Nov 1939 | A |
2375513 | Bach | Aug 1945 | A |
2453980 | Hartmann | Nov 1948 | A |
2470814 | Hain | May 1949 | A |
2495848 | Kiesel | Jan 1950 | A |
2560845 | Carpenter et al. | Jul 1951 | A |
2605865 | Liptay | Aug 1952 | A |
2723431 | Di Renzo | Nov 1955 | A |
2746110 | Bedford, Jr. | May 1956 | A |
2990150 | Weigel et al. | Jun 1961 | A |
3042352 | Stamper | Jul 1962 | A |
3050578 | Huebner | Aug 1962 | A |
3163712 | Cochran | Dec 1964 | A |
3404858 | Levy | Oct 1968 | A |
3430904 | Soltysik | Mar 1969 | A |
3485467 | Fuchs et al. | Dec 1969 | A |
3501117 | Soltysik | Mar 1970 | A |
3536281 | Meehan et al. | Oct 1970 | A |
3599915 | Soltysik | Aug 1971 | A |
3916089 | Sloan | Oct 1975 | A |
3981048 | Moody et al. | Sep 1976 | A |
4244542 | Mathews | Jan 1981 | A |
4295618 | Morota et al. | Oct 1981 | A |
4306697 | Mathews | Dec 1981 | A |
4344480 | Boyer et al. | Aug 1982 | A |
4669156 | Guido et al. | Jun 1987 | A |
4795856 | Farmer | Jan 1989 | A |
4813639 | Midkiff et al. | Mar 1989 | A |
5035383 | Rainville | Jul 1991 | A |
5085384 | Kasubke | Feb 1992 | A |
5320312 | Hoenninger | Jun 1994 | A |
5393021 | Nelson | Feb 1995 | A |
5587555 | Rinderer | Dec 1996 | A |
5833188 | Studdiford et al. | Nov 1998 | A |
5876000 | Ismert | Mar 1999 | A |
5921520 | Wisniewski | Jul 1999 | A |
5971329 | Hickey | Oct 1999 | A |
6317933 | Suenaga | Nov 2001 | B1 |
6323430 | Finona | Nov 2001 | B1 |
6354543 | Paske | Mar 2002 | B1 |
6899305 | Korczak et al. | May 2005 | B2 |
7131792 | Doverspike | Nov 2006 | B2 |
7384018 | Moretto | Jun 2008 | B2 |
7500644 | Naudet et al. | Mar 2009 | B2 |
7651056 | Tjerrild | Jan 2010 | B2 |
7997546 | Andersen et al. | Aug 2011 | B1 |
8020811 | Nelson | Sep 2011 | B2 |
8191836 | Korczak | Jun 2012 | B2 |
8439316 | Feige | May 2013 | B2 |
9127789 | Caspari et al. | Sep 2015 | B2 |
9206927 | Carter et al. | Dec 2015 | B2 |
9759880 | Chamberlain et al. | Sep 2017 | B2 |
9841123 | White | Dec 2017 | B1 |
9853434 | Vaccaro | Dec 2017 | B2 |
9866004 | Vaccaro et al. | Jan 2018 | B2 |
9879803 | Leng | Jan 2018 | B2 |
9903510 | Joshi | Feb 2018 | B2 |
9995414 | Joshi et al. | Jun 2018 | B2 |
10215308 | Bartos | Feb 2019 | B2 |
20020005463 | Korczak et al. | Jan 2002 | A1 |
20030173470 | Geiger | Sep 2003 | A1 |
20040113027 | Nakanishi | Jun 2004 | A1 |
20040251386 | Mizukoshi et al. | Dec 2004 | A1 |
20050109887 | Catapano | May 2005 | A1 |
20050109890 | Korczak et al. | May 2005 | A1 |
20050253025 | Benoit et al. | Nov 2005 | A1 |
20060237217 | Glew | Oct 2006 | A1 |
20060249633 | Korczak et al. | Nov 2006 | A1 |
20070120023 | Martinez et al. | May 2007 | A1 |
20070246616 | Budagher | Oct 2007 | A1 |
20080093510 | Oh et al. | Apr 2008 | A1 |
20090230256 | Widlacki et al. | Sep 2009 | A1 |
20090242715 | Kosidlo et al. | Oct 2009 | A1 |
20090294602 | Korczak | Dec 2009 | A1 |
20100084520 | Ohno | Apr 2010 | A1 |
20110107719 | Kodi | May 2011 | A1 |
20110226913 | Feige | Sep 2011 | A1 |
20110260025 | Aoshima et al. | Oct 2011 | A1 |
20110283515 | Korczak | Nov 2011 | A1 |
20120045608 | Huchet et al. | Feb 2012 | A1 |
20120085577 | Eshima et al. | Apr 2012 | A1 |
20120305724 | Diez Herrera et al. | Dec 2012 | A1 |
20130104494 | Evangelista et al. | May 2013 | A1 |
20130146720 | Meyers et al. | Jun 2013 | A1 |
20130146721 | White | Jun 2013 | A1 |
20130175407 | Williams et al. | Jul 2013 | A1 |
20130320182 | Kataoka et al. | Dec 2013 | A1 |
20140054425 | Jang | Feb 2014 | A1 |
20140260083 | Zhang et al. | Sep 2014 | A1 |
20150136473 | Jafari et al. | May 2015 | A1 |
20150155669 | Chamberlain et al. | Jun 2015 | A1 |
20150159781 | Wilson et al. | Jun 2015 | A1 |
20160281881 | Vaccaro et al. | Sep 2016 | A1 |
20160281883 | Vaccaro et al. | Sep 2016 | A1 |
20160327187 | Brown | Nov 2016 | A1 |
20160341340 | Gomes Fernandes | Nov 2016 | A1 |
20180172183 | Joshi et al. | Jun 2018 | A1 |
Number | Date | Country |
---|---|---|
2145985 | Feb 1973 | FR |
2012002323 | Jan 2012 | JP |
2012-222986 | Nov 2012 | JP |
WO 02095956 | Nov 2002 | WO |
WO 2008082595 | Jul 2008 | WO |
Entry |
---|
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration corresponding to International Application No. PCT/US2017/062730 dated Mar. 13, 2018. |
Notification of Transmittal of the Internationai Search Report and the Written Opinion of the International Searching Authority, or the Declaration corresponding to International Application No. PCT/US2017/062743 dated Mar. 12, 2018. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration corresponding to International Application No. PCT/US2017/060115 dated Feb. 14, 2018. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration corresponding to International Application No. PCT/US2017/065801 dated Apr. 13, 2018. |
Notification of Transmittal of the International Search Report and Written Opinion of the International Searching Authority, or the Declaration corresponding to International Application No. PCT/US2017/068510 dated Apr. 17, 2018. |
U.S. Appl. No. 15/081,177, filed Mar. 25, 2016, Vaccaro et al. |
U.S. Appl. No. 15/081,240, filed Mar. 25, 2016, Vaccaro. |
U.S. Appl. No. 15/335,614, filed Oct. 27, 2016, Joshi et al. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration corresponding to International Application No. PCT/US2017/056109 dated Jan. 24, 2018. |
Number | Date | Country | |
---|---|---|---|
20180135778 A1 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
62420594 | Nov 2016 | US |