Filamentary materials such as wires, cables and the like are typically available to electricians or technicians in two forms, on reels or within non-reel cartons. The use of reels for the storage, transportation and dispensing of wire or cable is well known in the art. Presently, when electricians wish to dispense wire via a reel, they might attach the reel to a horizontal shaft of a pulling rack. For example, see Floyd U.S. Pat. No. D286,493. An electrician would then be able to pull the wire or cable tangentially off the reel.
However, as an electrician pulls the wire, the entire reel rotates and develops momentum. As a result, when the electrician stops pulling, the reel will continue to spin and release wire. The extra wire will often tangle or kink, requiring the electrician to untangle the wire and recoil the excess back on to the reel. Another problem with reel packages is disposal of the empty reel after all the wire has been removed.
Non-reel cartons eliminate the need for a reel and the attendant problem of recoiling. These cartons are sometimes also referred to as speed out cartons. Non-reel cartons utilize either conventional cardboard cartons or specialized cartons with dispensing guides. A single strand, or a multiconductor cable, of material is coiled with an open center (“air core”) and then placed into the carton. The strand is then dispensed through an opening in a wall of the carton. The coil is unwound from the center or innermost strand without rotating the entire coil. See Wise U.S. Pat. No. 4,019,636. While non-reel cartons eliminate the unraveling and recoiling problems associated with reels, these cartons have their own problems. For example, when a coil is unwound from the center of a carton placed on the floor, there can develop enough resistance to uncoiling that the entire carton may tend to slide in the direction of dispensing. This is especially true when the wire is required to make sharp bends as it feeds through a payout tube in the side of the carton. Any tangling of the wire within the carton exacerbates this problem.
Another problem with non-reel cartons has more to do with common industry practice than with the carton itself. Many electricians prefer to use a portable wire pulling rack on which they can mount several different sizes, types and colors of wire. This provides ready access to whatever type of wire is needed for a particular job. The pulling racks typically have one or more shafts on which are mounted reel type wire packages. Non-reel cartons have no structure that enables them to be mounted on such a rack. If a hole is punched in the non-reel carton to admit the shaft, there is a risk that doing so will damage the contents of the carton. Further, even if a shaft hole is successfully formed in the carton, the carton is not strong enough to support the weight of a full coil of wire on a shaft. Pulling forces would further degrade such a jury-rigged carton.
Another problem with existing non-reel cartons is the tendency of the cartons to tear at hand-hole openings. Such openings are provided to make it easy to grasp the carton and carry it. Often users will attempt to use one hand only to lift and carry the carton by the hand-hole opening. Depending on the contents of the carton, this can cause the carton to fail in the area surrounding the opening. The hand-hole then becomes useless and the carton must thereafter be lifted from the bottom, usually using two hands. Hand-hole failure can be a particular problem if the carton has been allowed to become damp or wet. Accordingly, this invention seeks to overcome these short comings by providing an adapter for non-reel cartons that allows such cartons to be used on a wire pulling rack.
The adapter of the present invention is constructed such that it allows a non-reel carton or container to be hung from a bar, rod or shaft of a wire pulling rack with only minor modifications to the carton. The adapter has a box structure formed by walls or plates that are engageable with at least a single surface of the carton. The box structure has walls in two or three perpendicular planes and is adapted for placement against the interior top surface of the carton or in a corner of the carton. The box structure mounts a shaft-receiving sleeve or channel. The sleeve or channel defines a passage through which a shaft may be placed. The sleeve or channel transfers gravity and pulling loads to the box structure which in turn spreads these loads over a large enough surface of the carton that the carton will not be damaged by mounting it on a wire pulling rack.
The adapter may take the form of a variety of shapes or structures. It may be manufactured from different materials, including, for example, metal, plastic or fiberglass. The adapter may also contain one or more apertures or openings, for example, to decrease the amount of material used in construction of the adapter, to increase the strength of the adapter, or to provide handholds for the combination of the adapter and carton. The configuration of the walls allows the adapter to be placed into a carton containing a non-reel coil of filamentary material.
Four-sided knobs 12 extend outwardly from the side walls 10. The top edges of the knobs are flush with the upper surface of the top wall. Openings 14 extend fully through the knobs. As explained below, when the adapter 1 is inserted into a carton, the knobs 12 provide a guide and support for a rod or shaft to be inserted into the openings 14 and through the adapter 1. In this embodiment, the knobs 12 are generally square. However, the knobs 12 could have other shapes or they could be placed in different locations with respect to the top plate and back walls.
An aperture through the top plate 2 defines a handhold 16. The handhold 16 is designed to be comfortable to grip and to carry the combination of the adapter 1 and a carton.
The underside 6 of top plate 2 has two depending walls or ribs 13 and 15. Ribs 13 and 15, together with the portion of the top plate 2 between them and the knobs 12, define a shaft-receiving sleeve. A passageway or channel 17 is defined by the ribs 13, 15 and the portion of the top plate 2 between the ribs. Channel 17 aligns with openings 14 in the knobs 12. The passageway 17 extends from one side wall 10 to the other side wall 10. The openings 14 and the channel or passageway 17 allow a bar, dowel, shaft, or rod (not shown) to be passed through the adapter 1 such that the adapter 1 may be hung from a pulling rack on the bar, dowel, shaft, or rod. The openings 14 and the passageway 17 may have different configurations to receive different shapes or sizes of rods or shafts. That is, while the openings 14 are shown with a circular cross section, the cross section could be non-circular to provide an anti-rotation feature. Also, while the channel 17 is shown open to the bottom, the fourth side of the channel may also be enclosed to fully shield a rod or shaft inserted therein.
As shown in
The adapter is preferably installed in a corner of the carton, although it could be otherwise. Placement of the adapter in a corner allows the carton to hang on a shaft at an angle so that gravity and pulling loads are spread on to two perpendicular walls. The adapter has a simple, one-piece construction that is quick and easy to install. By converting a non-reel carton for use with a pulling rack, a wire supplier can reduce the amount of inventory formerly needed for different types of packages. The adapter allows a non-reel carton to provide the benefits of a reel while avoiding its disadvantages.
The adapter may have an alternate box structure that allows the adapter to fit inside a carton or container. As shown in
An opening 42 through the top plate 32 defines a handhold. The handhold 42 is designed to be comfortable to grip and to carry the combination of the adapter 31 and a carton. Typically, non-reel cartons containing filamentary material have an opening for a handhold at the top of the carton. The handhold 42 aligns with this opening in the top of the carton. An electrician or other user of these cartons accesses this handhold by pushing into the carton one or more partially perforated flaps. The perforated flaps of the carton will pass through the handhold opening 42 of the top plate 32 and further aid in securing the adapter to the interior of a carton. This also allows the carton to be conveniently grasped at the handhold and carried without risk of tearing or damaging the carton, even if the carton is wet.
Several other smaller openings 44, may be added to the top plate to reduce the amount of material required to manufacture the adapter 31. Similarly, optional grooves 46 along the trailing edge 48, leading edge 49, and the top plate 32 may be added to further reduce the material require to manufacture the adapter 31. The grooves 46 may also further aid in securing the adapter within the carton.
The underside 50 of the top plate 32 has three depending structures, a front rib 36 and interior rib 38 and a stiffening wall 34. Ribs 36 and 38 together with a portion of the underside 50 of the top plate 32 define a shaft-receiving channel or passageway 40. The passageway 40 extends outwardly past the sides of the top plate 32. The channel or passageway 40 allows a bar, dowel, shaft, or rod (not shown) to be passed through the adapter 31 such that the adapter 31 may be hung from a pulling rack on the bar, dowel, shaft, or rod. While the channel 40 is shown open to the bottom, the fourth side of the channel may also be enclosed to fully or partially shield a rod or shaft inserted therein.
Along the trailing edge 48 is a right angle corner where the top plate 32 connects with the stiffening wall 34. The stiffening wall 34 may have numerous configurations and may contain openings 52 of various sizes and shapes. The openings may be added to reduce the amount of material needed to manufacture the adapter 31.
Similarly, the front rib 36 and interior rib 38 may have numerous configurations and shapes. As shown in
The adapter 31 is installed within carton against the interior top surface of the carton. Placement of the adapter 31 along the top of the carton allows the carton to hang on a shaft at an angle so that gravity and pulling loads are spread along the top surface or wall of the carton. The adapter has a simple, one-piece construction that is quick and easy to install. By converting a non-reel carton for use with a pulling rack, a wire supplier can reduce the amount of inventory formerly needed for different types of packages. The adapter allows a non-reel carton to provide the benefits of a reel while avoiding its disadvantages.
The first embodiment of the adapter 1 and second embodiment of the adapter 31 may have other configurations and structures. For example, the back wall of first embodiment of the adapter 1 may be deleted. In this case, it may be desirable to have the ends of the side walls butt up against an end wall of the carton. Alternately, the two-sided box structure could be located remote from an end wall of the carton. In any case, the box structure must be designed to fit around a non-reel coil of filamentary material (wire, cable, etc.) enclosed within a carton. In another alternate embodiment, the back wall 4 of the first embodiment of the adapter 1 could be extended from that shown so a payout opening could be formed in the wall.
The first embodiment of the adapter 1 and second embodiment of the adapter 31 may also contain additional apertures or openings, for example, to decrease the amount of material used in construction of the adapter or to provide handholds for both the adapter and the carton. Accordingly, while the top plate and side walls are shown as largely continuous surfaces of the first embodiment of the adapter 1, it could be otherwise so long as the top plate prevents concentration of loads between the shaft and the carton. It may also be manufactured from different materials.
This application claims the benefit of U.S. Provisional Application Serial No. 60/722,643, filed Sep. 30,2005.
Number | Name | Date | Kind |
---|---|---|---|
851367 | Mossberg | Apr 1907 | A |
922695 | Haas | May 1909 | A |
2890821 | Becker | Jun 1959 | A |
3178092 | Munana et al. | Apr 1965 | A |
3184053 | Eldridge | May 1965 | A |
3229812 | Metzger | Jan 1966 | A |
3982712 | Bassett | Sep 1976 | A |
4006854 | Gibson et al. | Feb 1977 | A |
4019636 | Wise | Apr 1977 | A |
4160533 | Kotzur et al. | Jul 1979 | A |
4179030 | Hayes et al. | Dec 1979 | A |
4306687 | Hadtke | Dec 1981 | A |
4373687 | Zicko | Feb 1983 | A |
4406419 | Kotzur | Sep 1983 | A |
D286493 | Floyd | Nov 1986 | S |
4817796 | Camillo et al. | Apr 1989 | A |
4830305 | Guggi et al. | May 1989 | A |
4956908 | Morse et al. | Sep 1990 | A |
5246111 | Shibazaki | Sep 1993 | A |
5447237 | Carter et al. | Sep 1995 | A |
5529186 | Bass | Jun 1996 | A |
5642812 | Hale | Jul 1997 | A |
5704479 | Barnett et al. | Jan 1998 | A |
5979812 | Kotzur et al. | Nov 1999 | A |
6059220 | Lassiter | May 2000 | A |
6341691 | Voss | Jan 2002 | B1 |
6766627 | Kotzur et al. | Jul 2004 | B2 |
6935040 | Alrutz et al. | Aug 2005 | B2 |
7007799 | Cote | Mar 2006 | B2 |
7168654 | Silverbrook et al. | Jan 2007 | B2 |
7204452 | Wilkinson et al. | Apr 2007 | B2 |
7347395 | Horn | Mar 2008 | B2 |
Number | Date | Country | |
---|---|---|---|
20070075171 A1 | Apr 2007 | US |
Number | Date | Country | |
---|---|---|---|
60722643 | Sep 2005 | US |