The present invention relates to an adaptor with a first connection for a nebuliser and a second connection on the patient side an inhalation device having a chamber for the intermediate storage of an aerosol, having a first port for connection with a nebuliser that produces the aerosol and a second port on the patient side for delivering the aerosol and with a third port for breathable air and a nebuliser, particularly an inhaler, having such an adaptor or an inhalation device of this kind.
Nebulisers, particularly inhalers, serve to supply a user or patient with an aerosol, i.e. a nebulised fluid, which preferably comprises or contains a medicament or constitutes a medicament preparation. During administration, very precise dosing is often desirable or essential. It is therefore important that a dose dispensed in aerosol form by a nebuliser should be inhaled as completely as possible.
A starting point of the present invention is a nebuliser as described in principle in WO 91/14468 A1 and specifically in WO 97/12687 A1 (FIGS. 6a, 6b). The known nebuliser comprises a pressure generator for conveying and nebulising a medicament preparation. The medicament preparation is delivered in aerosol form through a mouthpiece.
A problem with nebulisers in general is that the triggering of the nebulisation and breathing in have to be co-ordinated. This may be difficult for individual users.
WO 2004/091704 A1 discloses an inhalation device for the intermediate storage of a generated aerosol in a chamber. The known inhalation device is provided for an MDI (Metered Dose Inhaler) and serves to slow down the aerosol, particularly by lengthening the flow path. For this reason, inhalation devices of this kind are also known as spacers. Moreover, the inhalation device serves to store the aerosol produced intermediately so that the user has sufficient time to inhaler the aerosol.
Respiration equipment and systems are used to supply a patient with a breathable gas, generally through at least one gas-carrying tube. In ventilated patients as well, treatment by inhalation may be provided in which an aerosol generated by a nebuliser is introduced into the breathable gas or is breathed-in or inhaled with the breathable gas.
WO 2007/141201 A1 discloses an adaptor having a first connection for a nebuliser and a second connection at the patient end. The known adaptor has a third connection for a breathing tube for supplying a breathing gas. The adaptor is thus designed for connection to a ventilator or ventilating tube. The breathable air supplied through it is conveyed to the first connection of the adaptor and there it is diverted alongside a nozzle of the associated nebuliser protruding into the second connection of the adaptor and together with the aerosol generated by the nebuliser it is expelled through the second connection.
The aim of the present invention is to provide a simple and/or universally useable adaptor for a nebuliser, an improved inhalation device having a chamber for the intermediate storage of an aerosol produced by a nebuliser, and a nebuliser comprising such an adaptor and/or an inhalation device of this kind.
According to a first aspect of the present invention, an adaptor is provided which has a first connection with an oval cross-section for connecting to an oval mouthpiece of a nebuliser. This provides a very simple means of connection to the associated nebuliser or its mouthpiece.
According to a second aspect of the present invention, an adaptor is provided which comprises a first connection having a connector for accommodating a nozzle of the nebuliser. This is a very simple means of ensuring a good fluidic connection to the associated nebuliser.
According to a third aspect of the present invention an adaptor is provided in which the first connection for the nebuliser and a second connection at the patient end are joined together with no diversions. In particular, the second connection is embodied for connecting to a tube or an inhalation device. This allows for a particularly simple construction and permits particularly universal use of the associated nebuliser together with the adaptor, particularly for attaching to restoration systems or the like. In view of its very simple structure the adaptor is preferably used as a disposable item or is used only once.
According to a fourth aspect of the present invention an inhalation device is provided having a chamber for intermediate storage of an aerosol, wherein the chamber is fluidically connected in valve-free manner on the inlet side to a first port for a nebuliser—at least when the nebuliser is attached—and is connected in parallel on the inlet side via an inlet valve to a port for supplying breathable air, so that breathable air can flow from the latter port through the inlet valve into the chamber. This allows in particular unimpeded or substantially loss-free inflow of aerosol into the chamber, so that the undesirable settling of nebulised fluid on a valve on the inlet side of the chamber can be avoided.
In particular, the chamber is also attached on the outlet side, in valve-free manner, to a patient-side port, so that the aerosol can flow out through the patient-side port largely unimpeded and without loss as it is removed from the chamber.
According to a fifth aspect of the present invention an inhalation device is provided having a chamber for the intermediate storage of aerosol, wherein the chamber comprises on the outlet side a plurality of outlet openings arranged at least substantially in a ring. This surprisingly allows relatively loss-free outflow of the aerosol from the chamber.
According to a sixth aspect of the present invention the adaptor is connected or connectable, more particularly in releasable manner, to an inhalation device having a chamber for the intermediate storage of aerosol. This makes it possible to produce a modular system of simple construction which can be used in highly universal manner. If necessary, the adaptor may also be exchanged or used only once, whereas the inhalation device can be used repeatedly, if necessary.
According to a seventh aspect of the present invention a nebuliser is provided in conjunction with an adaptor as mentioned above and/or an inhalation device as mentioned above. This allows particularly universal use of the nebuliser, particularly also in ventilated patients or in conjunction with ventilating equipment or systems.
The above-mentioned aspects of the present invention and the features and aspects of the invention that are apparent from the further description and claims may be implemented independently of one another and in any desired combinations.
Further advantages, features, properties and aspects of the present invention will become apparent from the claims and the following description of a preferred embodiment by reference to the drawings, wherein:
In the figures, the same reference numerals have been used for identical or similar parts where corresponding or comparable properties and advantages are achieved, even if the relevant description has not been repeated.
During the nebulisation of the medicament preparation 2, preferably a liquid, a respirable aerosol 14 (
The nebuliser 1 comprises the preferably insertable and optionally exchangeable container 3 holding the medicament preparation 2. The container 3 thus forms a reservoir for the medicament preparation 2 which is to be nebulised. Preferably, the container 3 contains a sufficient quantity of medicament preparation 2 or active substance for several doses of the medicament preparation 2, in order to allow a number of nebulisations or applications. A typical container 3 as disclosed in WO 96/06011 A1 holds a volume of about 2 to 10 ml. With regard to the preferred construction of the container 3 reference is additionally made to WO 00/49988 A2.
The container 3 is preferably substantially cylindrical or cartridge-shaped and can be inserted into the nebuliser 1 from below, after it has been opened, and optionally exchanged. It is preferably of rigid construction, the medicament preparation 2 being contained in particular in a collapsible bag 4 in the container 3.
The nebuliser 1 also comprises a conveying device, particularly a pressure generator 5, for conveying and nebulising the medicament preparation 2, particularly in a predetermined and optionally adjustable dosage amount in each case.
The nebuliser 1 or pressure generator 5 comprises in particular a holder 6 for the container 3 and associated drive spring 7 which is only partly shown, preferably having an associated locking element 8 which is manually operable to release it, a conveying element, preferably a conveying tube 9 in the form of a capillary, with an optional valve, particularly a non-return valve 10, a pressure chamber 11 and/or a delivery nozzle 12, particularly in the region of a mouthpiece 13.
The container 3 is fixed in the nebuliser 1 by means of the holder 6, particularly by a clamping or latching action, such that the conveying tube 9 protrudes into the container 3. The holder 6 may be constructed such that the container 3 can be exchanged.
When the drive spring 7 is axially tensioned, the holder 6 with the container 3 and the conveying tube 9 is moved downwards in the figures and the medicament preparation 2—or more precisely the next dose—is sucked out of the container 3 into the pressure chamber 11 of the pressure generator 5 through the non-return valve 10.
During the subsequent release of tension after actuation of the locking element 8, the medicament preparation 2 in the pressure chamber 11 is placed under pressure by moving the conveying tube 9 back up, with the non-return valve 10 now closed, by releasing the tension on the drive spring 7, so that this conveying tube 9 now acts as a pressure ram. This pressure expels the medicament preparation 2 through the delivery nozzle 12, where it is nebulised into the preferably respirable aerosol 14, as shown in
The user or patient (not shown) can inhale the aerosol 14, while preferably supply air can be sucked into the mouthpiece 13 through at least one supply air opening 15.
During the nebulisation process the container 3 is moved back into its original position by the drive spring 7. The container 3 thus performs a lifting movement during the tensioning process and during the nebulisation process.
The nebuliser 1 comprises in particular a first housing part (upper part) 16 and an inner part 17 which is rotatable relative thereto (
The second housing part 18 can be rotated relative to the first housing part 16, whereby the inner part 17 is also rotated. In this way the drive spring 7 is tensioned in the axial direction by means of a gear (not shown in detail) acting on the holder 6. During tensioning the container 3 is moved axially downwards or with its end portion (further) into the second housing part 18 or towards the end face thereof, until the container 3 assumes an end position shown in
The nebuliser 1 preferably has a device for forcibly ventilating the container 3.
When tensioning first takes place, the container 3 is preferably pierced in its base or opened. In particular, an axially acting spring 20 arranged in the housing part 18 comes to abut on the container base 21 and with a piercing element 22 pierces the container 3 or an in particular gas tight seal provided in the base for ventilation purposes when contact is first made.
The device for forcible ventilation is thus formed in this case by the piercing element 22, which is held or formed by the spring 20. However, other design solutions are also possible.
It should be noted that during the piercing for ventilation purposes only the outer shell of the container 3 is opened. The bag 4 containing the medicament preparation 2 remains undamaged. As the medicament formulation 2 is removed from the bag 4 through the conveying tube 9 the flexible bag 4 collapses. For pressure equalisation, ambient air can flow into the container 3 through the ventilation or piercing opening.
In order to use the nebuliser 1, first of all the container 3 has to be inserted. This is preferably done by removing or pulling out the second housing part 18. The container 3 is then axially inserted or pushed into the inner part 17. At the same time the container 3 is opened at the head end or attached. This is done by means of the conveying element, i.e. the conveying tube 9, which pierces a seal preferably provided at the head end of the container 3 and is then inserted through a septum at the head end of the container 3 into the interior of the bag 4. Thus the fluidic connection between the container 3 or more accurately between the bag 4 in the container 3 via the conveying tube 9 to the pressure generator 5 or pressure chamber 11 is produced.
Then the second housing part 18 is pushed on again. The nebuliser 1 can now be tensioned for the first time. At this stage the container 3 is then pierced at its base by the piercing element 22, i.e. forcibly ventilated, as explained previously.
Before being used for the first time and after the container 3 has been inserted and fluidically connected, the nebuliser 1 is preferably tensioned and actuated several times. This so-called priming displaces any air present in the medicament preparation 2 in the conveying tube 9 and in the pressure generator 5 to the delivery nozzle 12. The nebuliser 1 is then ready for inhalation.
The quantity of medicament preparation 2 delivered per spray or nebulisation process is preferably about 10 μl to 50 μl, more particularly about 10 μl to 20 μl, most preferably about 15 μl.
The drive spring 7 is preferably installed in a biased state in order to achieve a high spring pressure. In the proposed nebuliser 1 the pressurisation and conveying of the medicament preparation 2 during the nebulisation process namely takes place preferably only by spring force, and more particularly only by the force of the drive spring 7.
The nebuliser 1 is preferably constructed such that the medicament preparation 2 in the pressure generator 5 or in the pressure chamber 11 reaches a pressure of 5 MPa to 60 MPa, particularly about 10 MPa to 50 MPa during delivery. Particularly preferably, during the delivery or nebulisation of the medicament preparation 2, a pressure of about 5 MPa to 60 MPa, more particularly about 10 to 30 MPa, is reached at the delivery nozzle 12 or at the nozzle openings thereof. The medicament preparation 2 is then converted into the aerosol 14, the droplets of which have an aerodynamic diameter of up to 20 μm, preferably about 3 μm to 10 μm. The nebulising activity or nebulising effect is achieved or further assisted by preferably intercepting jets delivered by the delivery nozzle 12.
The nebuliser 1 is preferably constructed such that the aerosol 14 is delivered at low speed, particularly at a speed of less than 2 m/s, most preferably about 1.6 m/s or less (in each case measured at a distance of 10 cm from the delivery nozzle 12). The nebuliser 1 is thus preferably in the form of a so-called soft mist inhaler. The low delivery speed can be obtained or assisted by intercepting jets of the medicament preparation 2, which are delivered by the delivery nozzle 12 and/or by a suitable choice of spring force.
Particularly preferably, the construction of the nebuliser 1 is such that the aerosol generation lasts for at least 1 s and in particular at least 1.5 s. The time taken to nebulise a dose or to actuate the nebuliser 1 is thus at least 1 s, more particularly more than 1.5 s.
The adaptor 23 is preferably connected or connectible to the nebuliser 1 or its mouthpiece 13 in releasable and/or more particularly clamping or latching manner.
The adaptor 23 comprises a first connection 24 for the nebuliser 1, more accurately for fluidic and preferably also mechanical connection to the nebuliser 1 or its mouthpiece 13.
In the embodiment shown, the first connection 24 preferably comprises a connecting portion 25 which extends into the mouthpiece 13 and more particularly can be inserted therein. The connecting portion 25 is accordingly adapted in its outer contour to the inner contour of the mouthpiece 13. For example, on its outside, the connecting portion 25 tapers towards the free end and is thus embodied to the at least substantially complementary to a preferably slightly conical shape of the mouthpiece 13. However, other design solutions are also possible.
In the embodiment shown, the first connection 24 or its connecting portion 25 preferably has an oval cross-section for connecting to the preferably oval mouthpiece 13 of the nebuliser 1.
In the embodiment shown the connecting portion 25 preferably closes off a) the substantially annular intermediate space between the expulsion nozzle 12 projecting into the mouthpiece 13 and the inner wall of the mouthpiece 13 with a holder or a projection 37, and/or b) directly closes off the air supply openings 15, particularly so that supply air flows in through the supply air opening or openings 15 only to a lesser extent or not at all into the mouthpiece 13 when the nebuliser 1 or adaptor 23 is used.
The adaptor 23 preferably comprises a connector 26 or other particularly channel-like portion which, when the nebuliser 1 is attached, is associated with the expulsion nozzle 12, particularly covers or receives it or is arranged adjacent thereto, in order to receive or convey onwards the aerosol 14 dispensed by the nebuliser 1 or the expulsion nozzle 12.
In the embodiment shown, the connector 26 terminates at an axial spacing from the expulsion nozzle 12 or a holder associated with the expulsion nozzle 12, so that supply air or breathable air from a ventilation apparatus can flow into the connector 26 (laterally) with the aerosol 14 or flow past the expulsion nozzle 12.
However, it is theoretically also possible for the first connection 24 or connector 26 to be connectible (at least substantially) in leak-tight manner to the expulsion nozzle 12 or a projection 37 that holds or surrounds the expulsion nozzle 12, particularly preferably by fitting on the connector 26, so that no supply air or breathable air can flow past the expulsion nozzle 12 through or into the first connection 24.
The adaptor 23 has a second connection 27 at the patient end. The second connection 27 is preferably in the form of a tube or bore and/or comprises in particular an at least substantially round cross-section.
The second connection 27 is preferably configured for mechanical and/or fluidic connection to a tube, a ventilation apparatus or an inhalation device. However, the second connection 27 may also theoretically be in the form of a mouthpiece.
In the embodiment shown, the adaptor 23 preferably has a third connection 28 shown only in
The present invention preferably relates to use in a ventilated patient or with a ventilator. Accordingly, the term breathable air is generally used hereinafter. The term “breathable air” is preferably to be understood as being a ventilating gas which is provided by a ventilating apparatus or ventilating system for ventilating a patient. Theoretically, the breathable air may also be other supply air and/or exhaled air, particularly when the direction of flow is reversed. The term “breathable air” is therefore preferably to be understood very broadly, so as to cover these alternatives.
The third connection 28 is preferably formed by the adaptor 23 or moulded onto it.
Through the third connection 28, breathable air can preferably be supplied to the first connection 24 or second connection 27 via an annular channel 30 formed by or in the adaptor 23, so that the breathable air can be mixed with the aerosol 14 and/or expelled together with the aerosol 14 through the second connection 27.
In the embodiment shown, the breathable air preferably forms an enveloping current for the aerosol 14 emitted from the expulsion nozzle 12. This is preferably achieved here by guiding the breathable air at least substantially in an annular shape and/or with a twist in the region of the expulsion nozzle 12 and then enabling it to flow through the first connection 24 or connector 26, together with the aerosol 14 (which is not shown in
The aerosol 14 and the breathable air can then be delivered to the patient (not shown) through the second connection 27, for example by means of a ventilation tube attached thereto, using a face mask or the like.
It should be noted that the third connection 28 is purely optional. Instead of the third connection 28, supply air or breathable air can alternatively be supplied through the supply air opening or openings 15 of the nebuliser 1 or the like.
Further preferred embodiments are explained hereinafter. The previous remarks and explanations apply in a supplementary capacity, in particular, even if the description has not been repeated.
The adaptor 23 is preferably embodied as a disposable item or intended for single use. This makes economic sense because of the particularly simple structure of the adaptor 23 according to the second embodiment, as there is then no need to clean and more particularly sterilise the adaptor 23 after each use.
In the second embodiment the first connection 24 is fluidically connected to the second connection 27 without any branches and more particularly in one piece. In particular, the adaptor 23 does not have a third connection 28. Thus there is no supply of breathable air or supply air at least on the adaptor side.
Preferably, the first connection 24 or the adaptor 23 itself has an oval cross-section, in this case an oval outer contour, for connection to the preferably oval mouthpiece 13 of the nebuliser 1, in this case by insertion in the mouthpiece 13. The preferred oval shape is shown in the perspective view according to
The adaptor 23 is preferably constructed in one piece.
Preferably, the adaptor 23 is embodied as an injection moulded component and/or made of plastics.
In the second embodiment the first and second connections 24, 27 are joined together at least substantially by a preferably straight bore. The first connection 24 comprises a preferably hollow cylindrical inner contour for accommodating the expulsion nozzle 12 or the aerosol 14 emitted therefrom. Particularly preferably, a projection 37 of the nebuliser, which holds or surrounds the expulsion nozzle 12 and is particularly cylindrical, can be inserted in the first connection 24. Thus the expulsion nozzle 12 can be connected in substantially gas-tight manner to the first connection 24. In this case, no supply air can flow through the supply air openings 15 into the first connection 24.
However, it is theoretically also possible for supply air to flow through at least one supply air opening 15 of the nebuliser 1 or the like into the first connection 24 and together with the aerosol 14 to the second connection 27.
The second connection 27 (at the patient end) is preferably embodied as a bushing and/or undercut, so as to be connectable particularly by a latching and/or clamping action to a tube, an inhalation device, a mouthpiece, a face mask or the like. However, other design solutions are also possible.
In the third embodiment the adaptor 23 comprises a locking valve 31 which is necessarily open when the adaptor 23 is connected to the nebuliser 1 and is closed when the adaptor 23 is separated from the nebuliser 1.
In the embodiment shown the inhalation device 32 is not directly connected to the nebuliser 1 but is connected indirectly via the adaptor 23. This is a preferred embodiment. In particular, the adaptor 23 may be replaceable, particularly preferably if it is releasably connected or connectable to the inhalation device 32.
The inhalation device 32 preferably comprises a second port 34 on the patient side for dispensing breathable air and aerosol 14 (not shown) preferably mixed in via the adaptor 23.
The inhalation device 32 preferably comprises a third port 35 for supplying breathable air, particularly for connection to a tube, not shown here, of a ventilation apparatus or the like (not shown).
The schematic section according to
The locking valve 31 is preferably biased into the closed position and/or is configured to be self-closing, particularly by means of at least one restoring means (not shown) such as a spring or the like.
When the nebuliser 1 is used, the aerosol 14 produced by the nebuliser 1 is dispensed through the adaptor 23, in this case to the inhalation device 32. From there, the aerosol 14 can be supplied, in particular, together with breathable air, to a patient (not shown) who is being ventilated, in particular. The ventilation is carried out in particular by a corresponding supply of breathable air.
Additional embodiments of the inhalation device 32 are explained hereinafter. The remarks and explanations given previously apply particularly in a supplementary manner, even if the relevant description is not repeated.
As in the previous embodiment the inhalation device 32 may be attached to the nebuliser 1 via the adaptor 23. However, the first port 33 of the inhalation device 32 may also be configured for direct connection to the nebuliser 1 or mouthpiece 13. If desired, the adaptor 23 or the optional locking valve 31 thereof may also be integrated in the inhalation device 32 or its port 33. In particular, the first port 33 of the inhalation device 32 is then configured for fluidic and/or mechanical connection to the nebuliser 1 or its mouthpiece 13.
The inhalation device 32 preferably comprises a chamber 38 for the intermediate storage of the aerosol 14 (not shown) produced by the nebuliser 1. In particular, this is an inner chamber which is arranged within a housing 39 of the inhalation device 32.
The chamber 38 is fluidically connected to the first port 33 preferably directly, more particularly without a valve, especially so that at least when the nebuliser 1 is attached the aerosol 14 produced by the nebuliser 1 can flow into the chamber 38 in valve-free and if possible without any wastage. If the locking valve 31 is provided, this is open when the nebuliser 1 is attached and thus does not constitute a valve that has to be opened by the aerosol 14, or an obstacle to be overcome.
By the term “free from wastage” is meant in particular, in the present invention, that unwanted precipitation of the aerosol 14 or of the nebulised fluid is substantially prevented or at least minimised.
The chamber 38 is connected on the inlet side not only to the first port 33 but preferably in parallel on the inlet side to the third port 35 of the inhalation device 32, via an inlet valve 40, so that breathable air can flow from the third port 35 into the chamber 38 or through the chamber 38, particularly at least substantially parallel to the main direction of the flow of the aerosol 14.
The inlet valve 40 is schematically shown in
In the embodiment shown, the inlet valve 40 preferably comprises a plurality of inlet openings 41 which can be covered or closed off in particular by a common valve element 42, or a plurality of separate valve elements 42.
The inlet openings 41 are preferably arranged about a central or middle connecting channel 43 which connects the first port 33 to the chamber 38. However, other design solutions or arrangements are also possible.
On the outlet side the chamber 38 is preferably fluidically connected to the second port 34 of the inhalation device 32 in valve-free manner.
In the embodiment shown, the chamber 38 comprises a preferably central outlet opening 44 to which the second port 34 is attached, preferably on a straight extension of the main direction of flow of the aerosol 14 which is preferably at least substantially straight. However, other design solutions are also possible.
The inhalation device 32 preferably comprises an outlet valve 45 via which the second port 34 is attached to the third port 35 parallel to the chamber 38 such that breathable air can flow from the second port 34 past the chamber 38 through the outlet valve 45 to the third port 35. In particular, a flow path—in this embodiment and intermediate or annular chamber—is formed between the chamber 38 or a preferably substantially cylindrical wall that forms the chamber 38, on the one hand, and the housing 39, on the other hand, said intermediate or annular chamber allowing the breathable air to flow from the second port 34 through the outlet valve 45 to the third port 35.
The outlet valve 45 preferably comprises a plurality of valve openings 46 arranged particularly in a ring around a periphery of the intermediate chamber or annular chamber, which can be closed off by a common or a plurality of separate valve elements 47, in the embodiment shown.
The outlet valve 45 is preferably in the form of a one-way or non-return valve.
The outlet valve 45 or its valve element 47 is preferably embodied to be self-closing and/or (slightly) biased into the closed position.
The valve element 42 and/or 47 is preferably configured in one piece and/or may be deformed by elastic deformation from the closed position into an open position. However, other design solutions are also possible.
The outlet valve 45 is preferably arranged concentrically with the inlet valve 40 and/or adjacent to the inlet valve and/or arranged around the inlet valve 40. However, other design solutions or arrangements are also possible.
The inlet valve 40 and/or outlet valve 45 is preferably arranged in the region of the inlet of the chamber 38 or adjacent to the connecting channel 43.
It should be noted that the inlet valve 40 is preferably configured such that its valve element 42 opens towards the centre or towards the connecting channel 43 or the free end or free edge points towards the centre. In particular, this or another configuration ensures that breathed-in air 50 flowing into the chamber 38 flows in adjacent to the end of the connecting channel 43 in order to produce an additional Venturi effect, if required. However, other design solutions are also possible.
Generally speaking, it should be noted that the individual embodiments and alternatives and the respective features and aspects may be combined with one another in any desired manner but may also be implemented of one another.
The present invention proposes in particular a combination of the nebuliser 1 described above or some other nebuliser 1 with the adaptor 23 and the inhalation device 32. However, the adaptor 23 and the inhalation device 32 may also be used independently of one another in conjunction with the nebuliser 1 or with other nebulisers 1.
Furthermore, the present invention is directed to using the adaptor 23 and/or the inhalation device 32 with a ventilating apparatus or for ventilating a patient. However, the inhalation device 32 may also, in particular, be used for other purposes, for example as a so-called spacer. In this case the third port 35 can be omitted or it may be connected to the nebuliser 1. If necessary the breathable air or supply air can then be supplied through at least one supply air opening 15 of the nebuliser 1 or by some other method. Alternatively, the third port 35 may be used only for admitting breathed-out air 48.
To complete the disclosure of the present application and with regard to the preferred embodiment of the nebuliser 1, reference is hereby made, in precautionary manner, to the total disclosure of both WO 91/14468 A1 and also WO 97/12687 A1.
In contrast to free-standing appliances or the like, the proposed nebuliser 1 is preferably designed to be portable and in particular is a mobile hand-held device.
By virtue of its cylindrical shape and handy size of less than 9 to 15 cm long and 2 to 4 cm wide, the nebuliser 1 can be carried by the patient at all times. The nebuliser sprays a defined volume of the medicament preparation 2 by the application of high pressures through small nozzles, so as to form inhalable aerosols 14.
The nebuliser 1 operates purely mechanically, in particular. However, the nebuliser 1 may theoretically operate by any other method. In particular, the expression “conveying device” or “pressure generator” must be understood in very general terms. For example, the pressure required for the delivery and nebulisation may also be generated by propellant gas, a pump or by any other suitable method.
The nebuliser 1 is designed in particular for the brief nebulisation of the medicament preparation 2, for example for one to two breaths. However, it may also be designed or used for longer or continuous nebulisation.
Some preferred ingredients, compounds and/or formulations of the fluid or the medicament preparation 2 are listed below.
The compounds listed below may be used in the device according to the invention on their own or in combination. In the compounds mentioned below, W is a pharmacologically active substance and is selected (for example) from among the betamimetics, anticholinergics, corticosteroids, PDE4-inhibitors, LTD4-antagonists, EGFR-inhibitors, dopamine agonists, H1-antihistamines, PAF-antagonists and PI3-kinase inhibitors. Moreover, double or triple combinations of W may be combined and used in the device according to the invention. Combinations of W might be, for example:
The compounds used as betamimetics are preferably compounds selected from among albuterol, arformoterol, bambuterol, bitolterol, broxaterol, carbuterol, clenbuterol, fenoterol, formoterol, hexoprenaline, ibuterol, isoetharine, isoprenaline, levosalbutamol, mabuterol, meluadrine, metaproterenol, orciprenaline, pirbuterol, procaterol, reproterol, rimiterol, ritodrine, salmefamol, salmeterol, soterenol, sulphonterol, terbutaline, tiaramide, tolubuterol, zinterol, CHF-1035, HOKU-81, KUL-1248 and
The anticholinergics used are preferably compounds selected from among the tiotropium salts, preferably the bromide salt, oxitropium salts, preferably the bromide salt, flutropium salts, preferably the bromide salt, ipratropium salts, preferably the bromide salt, glycopyrronium salts, preferably the bromide salt, trospium salts, preferably the chloride salt, tolterodine. In the above-mentioned salts the cations are the pharmacologically active constituents. As anions the above-mentioned salts may preferably contain the chloride, bromide, iodide, sulphate, phosphate, methanesulphonate, nitrate, maleate, acetate, citrate, fumarate, tartrate, oxalate, succinate, benzoate or p-toluenesulphonate, while chloride, bromide, iodide, sulphate, methanesulphonate or p-toluenesulphonate are preferred as counter-ions. Of all the salts the chlorides, bromides, iodides and methanesulphonates are particularly preferred.
Other preferred anticholinergics are selected from among the salts of formula AC-1
wherein X− denotes an anion with a single negative charge, preferably an anion selected from among the fluoride, chloride, bromide, iodide, sulphate, phosphate, methanesulphonate, nitrate, maleate, acetate, citrate, fumarate, tartrate, oxalate, succinate, benzoate and p-toluenesulphonate, preferably an anion with a single negative charge, particularly preferably an anion selected from among the fluoride, chloride, bromide, methanesulphonate and p-toluenesulphonate, particularly preferably bromide, optionally in the form of the racemates, enantiomers or hydrates thereof. Of particular importance are those pharmaceutical combinations which contain the enantiomers of formula AC-1-en
wherein X− may have the above-mentioned meanings. Other preferred anticholinergics are selected from the salts of formula AC-2
wherein R denotes either methyl or ethyl and wherein X− may have the above-mentioned meanings. In an alternative embodiment the compound of formula AC-2 may also be present in the form of the free base AC-2-base.
Other specified compounds are:
The above-mentioned compounds may also be used as salts within the scope of the present invention, wherein instead of the methobromide the metho-X salts are used, wherein X may have the meanings given hereinbefore for X−.
As corticosteroids it is preferable to use compounds selected from among beclomethasone, betamethasone, budesonide, butixocort, ciclesonide, deflazacort, dexamethasone, etiprednol, flunisolide, fluticasone, loteprednol, mometasone, prednisolone, prednisone, rofleponide, triamcinolone, RPR-106541, NS-126, ST-26 and
PDE4-inhibitors which may be used are preferably compounds selected from among enprofyllin, theophyllin, roflumilast, ariflo (cilomilast), tofimilast, pumafentrin, lirimilast, arofyllin, atizoram, D-4418, Bay-198004, BY343, CP-325.366, D-4396 (Sch-351591), AWD-12-281 (GW-842470), NCS-613, CDP-840, D-4418, PD-168787, T-440, T-2585, V-11294A, CI-1018, CDC-801, CDC-3052, D-22888, YM-58997, Z-15370 and
The LTD4-antagonists used are preferably compounds selected from among montelukast, pranlukast, zafirlukast, MCC-847 (ZD-3523), MN-001, MEN-91507 (LM-1507), VUF-5078, VUF-K-8707, L-733321 and
EGFR-inhibitors which may be used are preferably compounds selected from among cetuximab, trastuzumab, ABX-EGF, Mab ICR-62 and
The dopamine agonists used are preferably compounds selected from among bromocriptin, cabergoline, alpha-dihydroergocryptine, lisuride, pergolide, pramipexol, roxindol, ropinirol, talipexol, tergurid and viozan, optionally in the form of the racemates, enantiomers, diastereomers thereof and optionally in the form of the pharmacologically acceptable acid addition salts, solvates or hydrates thereof. According to the invention the acid addition salts of the betamimetics are preferably selected from among the hydrochloride, hydrobromide, hydriodide, hydrosulphate, hydrophosphate, hydromethanesulphonate, hydronitrate, hydromaleate, hydroacetate, hydrocitrate, hydrofumarate, hydrotartrate, hydrooxalate, hydrosuccinate, hydrobenzoate and hydro-p-toluenesulphonate.
H1-Antihistamines which may be used are preferably compounds selected from among epinastine, cetirizine, azelastine, fexofenadine, levocabastine, loratadine, mizolastine, ketotifen, emedastine, dimetindene, clemastine, bamipine, cexchlorpheniramine, pheniramine, doxylamine, chlorophenoxamine, dimenhydrinate, diphenhydramine, promethazine, ebastine, desloratidine and meclozine, optionally in the form of the racemates, enantiomers, diastereomers thereof and optionally in the form of the pharmacologically acceptable acid addition salts, solvates or hydrates thereof. According to the invention the acid addition salts of the betamimetics are preferably selected from among the hydrochloride, hydrobromide, hydriodide, hydrosulphate, hydrophosphate, hydromethanesulphonate, hydronitrate, hydromaleate, hydroacetate, hydrocitrate, hydrofumarate, hydrotartrate, hydroxalate, hydrosuccinate, hydrobenzoate and hydro-p-toluenesulphonate.
In addition, inhalable macromolecules as disclosed in EP 1 003 478 A1 or CA 2297174 A1 may also be used.
In addition, the compound may be selected from among the ergot alkaloid derivatives, the triptans, the CGRP-inhibitors, the phosphodiesterase-V inhibitors, optionally in the form of the racemates, enantiomers or diastereomers thereof, optionally in the form of the pharmacologically acceptable acid addition salts, the solvates and/or hydrates thereof.
Examples of ergot alkaloid derivatives are dihydroergotamine and ergotamine.
Number | Date | Country | Kind |
---|---|---|---|
09006673 | May 2009 | EP | regional |
This is a continuation application of U.S. patent application Ser. No. 13/321,281, issued as U.S. Pat. No. 9,265,910, which is a national stage application of International Application No. PCT/EP2010/002740, filed May 5, 2010, which claims priority to EP 09006673, filed May 18, 2009, the entire disclosures of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1828864 | Hopkins | Oct 1931 | A |
2015970 | Schoene | Oct 1935 | A |
2127401 | Gillican | Aug 1938 | A |
2161071 | McGrath et al. | Jun 1939 | A |
2321428 | Schloz | Jun 1943 | A |
2329311 | Waters | Sep 1943 | A |
2362103 | Smith | Nov 1944 | A |
2651303 | Johnson et al. | Sep 1953 | A |
2720969 | Kendall | Oct 1955 | A |
2793776 | Lipari | May 1957 | A |
2974880 | Stewart et al. | Mar 1961 | A |
3032823 | Sherman et al. | May 1962 | A |
3157179 | Allen et al. | Nov 1964 | A |
3172568 | Modderno | Mar 1965 | A |
3196587 | Hayward et al. | Jul 1965 | A |
3223289 | Bouet | Dec 1965 | A |
3299603 | Shaw | Jan 1967 | A |
3354883 | Southerland | Nov 1967 | A |
3440144 | Anderson et al. | Apr 1969 | A |
3457694 | Tatibana | Jul 1969 | A |
3491803 | Galik | Jan 1970 | A |
3502035 | Fedit | Mar 1970 | A |
3580249 | Takaoka | May 1971 | A |
3590557 | Vogel | Jul 1971 | A |
3632743 | Geller et al. | Jan 1972 | A |
3655096 | Easter | Apr 1972 | A |
3674060 | Ruekberg | Jul 1972 | A |
3675825 | Morane | Jul 1972 | A |
3802604 | Morane et al. | Apr 1974 | A |
3820698 | Franz | Jun 1974 | A |
3842836 | Ogle | Oct 1974 | A |
3858580 | Ogle | Jan 1975 | A |
3861851 | Schiemann | Jan 1975 | A |
3870147 | Orth | Mar 1975 | A |
3924741 | Kachur et al. | Dec 1975 | A |
3933279 | Maier | Jan 1976 | A |
3946732 | Hurscham | Mar 1976 | A |
3949751 | Birch et al. | Apr 1976 | A |
3951310 | Steiman | Apr 1976 | A |
3953995 | Haswell et al. | May 1976 | A |
3973603 | Franz | Aug 1976 | A |
4012472 | Lindsey | Mar 1977 | A |
4031892 | Hurschman | Jun 1977 | A |
4036439 | Green | Jul 1977 | A |
4048997 | Raghavachari et al. | Sep 1977 | A |
4067499 | Cohen | Jan 1978 | A |
4094317 | Wasnich | Jun 1978 | A |
4126559 | Cooper | Nov 1978 | A |
4153689 | Hirai et al. | May 1979 | A |
4174035 | Wiegner | Nov 1979 | A |
4177938 | Brina | Dec 1979 | A |
4178928 | Tischlinger | Dec 1979 | A |
4195730 | Hunt | Apr 1980 | A |
4245788 | Wright | Jan 1981 | A |
4275840 | Staar | Jun 1981 | A |
4315570 | Silver et al. | Feb 1982 | A |
4338765 | Ohmori et al. | Jul 1982 | A |
4377106 | Workman et al. | Mar 1983 | A |
4456016 | Nowacki et al. | Jun 1984 | A |
4467965 | Skinner | Aug 1984 | A |
4476116 | Anik | Oct 1984 | A |
4515586 | Mendenhall et al. | May 1985 | A |
4516967 | Kopfer | May 1985 | A |
4603794 | DeFord et al. | Aug 1986 | A |
4677975 | Edgar et al. | Jul 1987 | A |
4727985 | McNeirney et al. | Mar 1988 | A |
4749082 | Gardiner et al. | Jun 1988 | A |
4796614 | Nowacki et al. | Jan 1989 | A |
4805377 | Carter | Feb 1989 | A |
4813210 | Masuda et al. | Mar 1989 | A |
4821923 | Skorka | Apr 1989 | A |
4840017 | Miller et al. | Jun 1989 | A |
4863720 | Burghart et al. | Sep 1989 | A |
4868582 | Dreinhoff | Sep 1989 | A |
4885164 | Thurow | Dec 1989 | A |
4905450 | Hansen et al. | Mar 1990 | A |
4926613 | Hansen | May 1990 | A |
4951661 | Sladek | Aug 1990 | A |
4952310 | McMahan et al. | Aug 1990 | A |
4964540 | Katz | Oct 1990 | A |
RE33444 | Lerner | Nov 1990 | E |
4973318 | Holm et al. | Nov 1990 | A |
4979941 | Ogle, II | Dec 1990 | A |
4982875 | Pozzi et al. | Jan 1991 | A |
5014492 | Fiorini et al. | May 1991 | A |
5025957 | Ranalletta et al. | Jun 1991 | A |
5059187 | Sperry et al. | Oct 1991 | A |
5060791 | Zulauf | Oct 1991 | A |
5067655 | Farago et al. | Nov 1991 | A |
5156918 | Marks et al. | Oct 1992 | A |
5174366 | Nagakura et al. | Dec 1992 | A |
5207217 | Cocozza et al. | May 1993 | A |
5230884 | Evans et al. | Jul 1993 | A |
5237797 | Varlet | Aug 1993 | A |
5246142 | DiPalma et al. | Sep 1993 | A |
5261565 | Drobish et al. | Nov 1993 | A |
5263842 | Fealey | Nov 1993 | A |
5271153 | Reiboldt et al. | Dec 1993 | A |
5282304 | Reiboldt et al. | Feb 1994 | A |
5282549 | Scholz et al. | Feb 1994 | A |
5284133 | Burns et al. | Feb 1994 | A |
5289948 | Moss et al. | Mar 1994 | A |
5339990 | Wilder | Aug 1994 | A |
5352196 | Haber et al. | Oct 1994 | A |
5380281 | Tomellini et al. | Jan 1995 | A |
5385140 | Smith | Jan 1995 | A |
5394866 | Ritson et al. | Mar 1995 | A |
5408994 | Wass et al. | Apr 1995 | A |
5433343 | Meshberg | Jul 1995 | A |
5435282 | Haber et al. | Jul 1995 | A |
5435884 | Simmons et al. | Jul 1995 | A |
5451569 | Wong et al. | Sep 1995 | A |
5456522 | Beach | Oct 1995 | A |
5456533 | Streiff et al. | Oct 1995 | A |
5472143 | Bartels et al. | Dec 1995 | A |
5482030 | Klein | Jan 1996 | A |
5487378 | Robertson et al. | Jan 1996 | A |
5497944 | Weston et al. | Mar 1996 | A |
5499750 | Manifold | Mar 1996 | A |
5499751 | Meyer | Mar 1996 | A |
5503869 | Van Oort | Apr 1996 | A |
5509404 | Lloyd et al. | Apr 1996 | A |
5518147 | Peterson et al. | May 1996 | A |
5533994 | Meyer | Jul 1996 | A |
5541569 | Jang | Jul 1996 | A |
5544646 | Lloyd et al. | Aug 1996 | A |
5547094 | Bartels et al. | Aug 1996 | A |
5569191 | Meyer | Oct 1996 | A |
5574006 | Yanagawa | Nov 1996 | A |
5579760 | Kohler | Dec 1996 | A |
5584285 | Salter | Dec 1996 | A |
5593069 | Jinks | Jan 1997 | A |
5599297 | Chin et al. | Feb 1997 | A |
5603943 | Yanagawa | Feb 1997 | A |
5614172 | Geimer | Mar 1997 | A |
5622162 | Johansson et al. | Apr 1997 | A |
5622163 | Jewett et al. | Apr 1997 | A |
5643868 | Weiner et al. | Jul 1997 | A |
5662098 | Yoshida | Sep 1997 | A |
5662271 | Weston et al. | Sep 1997 | A |
5676930 | Jager et al. | Oct 1997 | A |
5685846 | Michaels, Jr. | Nov 1997 | A |
5697242 | Halasz et al. | Dec 1997 | A |
5709202 | Lloyd et al. | Jan 1998 | A |
5722598 | Werding | Mar 1998 | A |
5738087 | King | Apr 1998 | A |
5740967 | Simmons et al. | Apr 1998 | A |
5763396 | Weiner et al. | Jun 1998 | A |
5775321 | Alband | Jul 1998 | A |
5782345 | Guasch et al. | Jul 1998 | A |
5827262 | Neftel et al. | Oct 1998 | A |
5829435 | Rubsamen et al. | Nov 1998 | A |
5833088 | Kladders et al. | Nov 1998 | A |
5848588 | Foley | Dec 1998 | A |
5868287 | Kurokawa et al. | Feb 1999 | A |
5881718 | Mortensen et al. | Mar 1999 | A |
5884620 | Gonda et al. | Mar 1999 | A |
5902298 | Niedospial, Jr. et al. | May 1999 | A |
5934272 | Lloyd et al. | Aug 1999 | A |
5935101 | Kato et al. | Aug 1999 | A |
5941244 | Yamazaki et al. | Aug 1999 | A |
5950016 | Tanaka | Sep 1999 | A |
5950403 | Yamaguchi et al. | Sep 1999 | A |
5951882 | Simmons et al. | Sep 1999 | A |
5964416 | Jaeger et al. | Oct 1999 | A |
5975370 | Durliat | Nov 1999 | A |
5997263 | Van Lintel et al. | Dec 1999 | A |
6041777 | Faithfull | Mar 2000 | A |
6041969 | Parise | Mar 2000 | A |
6053368 | Geimer | Apr 2000 | A |
6062430 | Fuchs | May 2000 | A |
6098618 | Jennings et al. | Aug 2000 | A |
6109479 | Ruckdeschel | Aug 2000 | A |
6110247 | Birmingham et al. | Aug 2000 | A |
6116233 | Denyer | Sep 2000 | A |
6119853 | Garrill et al. | Sep 2000 | A |
6120492 | Finch et al. | Sep 2000 | A |
6123068 | Lloyd et al. | Sep 2000 | A |
6131566 | Ashurst et al. | Oct 2000 | A |
6145703 | Opperman | Nov 2000 | A |
6149054 | Cirrillo et al. | Nov 2000 | A |
6152296 | Shih | Nov 2000 | A |
6171972 | Mehregany et al. | Jan 2001 | B1 |
6176442 | Eicher et al. | Jan 2001 | B1 |
6179118 | Garrill et al. | Jan 2001 | B1 |
6186409 | Srinath et al. | Feb 2001 | B1 |
6199766 | Fox et al. | Mar 2001 | B1 |
6223933 | Hochrainer et al. | May 2001 | B1 |
6224568 | Morimoto et al. | May 2001 | B1 |
6237589 | Denyer et al. | May 2001 | B1 |
6259654 | de la Huerga | Jul 2001 | B1 |
6267154 | Felicelli et al. | Jul 2001 | B1 |
6279786 | de Pous et al. | Aug 2001 | B1 |
6302101 | Py | Oct 2001 | B1 |
6315173 | Di Giovanni et al. | Nov 2001 | B1 |
6319943 | Joshi et al. | Nov 2001 | B1 |
6336453 | Scarrott et al. | Jan 2002 | B1 |
6341718 | Schilthuizen et al. | Jan 2002 | B1 |
6349856 | Chastel | Feb 2002 | B1 |
6352152 | Anderson et al. | Mar 2002 | B1 |
6352181 | Eberhard et al. | Mar 2002 | B1 |
6363932 | Forchione | Apr 2002 | B1 |
6375048 | van der Meer et al. | Apr 2002 | B1 |
6392962 | Wyatt | May 2002 | B1 |
6395331 | Yan et al. | May 2002 | B1 |
6401710 | Scheuch et al. | Jun 2002 | B1 |
6401987 | Oechsel et al. | Jun 2002 | B1 |
6402055 | Jaeger et al. | Jun 2002 | B1 |
6405872 | Ruther et al. | Jun 2002 | B1 |
6412659 | Kneer | Jul 2002 | B1 |
6419167 | Fuchs | Jul 2002 | B1 |
6423298 | McNamara et al. | Jul 2002 | B2 |
6427682 | Klimowicz et al. | Aug 2002 | B1 |
6446054 | Mayorga Lopez | Sep 2002 | B1 |
6457658 | Srinath et al. | Oct 2002 | B2 |
6464108 | Corba | Oct 2002 | B2 |
6481435 | Hochrainer et al. | Nov 2002 | B2 |
6491897 | Freund et al. | Dec 2002 | B1 |
6503362 | Bartels et al. | Jan 2003 | B1 |
6513519 | Gallem | Feb 2003 | B2 |
6543448 | Smith et al. | Apr 2003 | B1 |
6548647 | Dietz et al. | Apr 2003 | B2 |
6550477 | Casper et al. | Apr 2003 | B1 |
6565743 | Poirier et al. | May 2003 | B1 |
6578741 | Ritsche et al. | Jun 2003 | B2 |
6581596 | Truitt et al. | Jun 2003 | B1 |
6584976 | Japuntich et al. | Jul 2003 | B2 |
6606990 | Stapleton et al. | Aug 2003 | B2 |
6620438 | Pairet et al. | Sep 2003 | B2 |
6626309 | Jansen et al. | Sep 2003 | B1 |
6640805 | Castro et al. | Nov 2003 | B2 |
6641782 | Mauchan et al. | Nov 2003 | B1 |
6669176 | Rock | Dec 2003 | B2 |
6679254 | Rand et al. | Jan 2004 | B1 |
6685691 | Freund et al. | Feb 2004 | B1 |
6698421 | Attolini | Mar 2004 | B2 |
6706726 | Meissner et al. | Mar 2004 | B2 |
6708846 | Fuchs et al. | Mar 2004 | B1 |
6725858 | Loescher | Apr 2004 | B2 |
6729328 | Goldemann | May 2004 | B2 |
6732731 | Tseng | May 2004 | B1 |
6745763 | Webb | Jun 2004 | B2 |
6779520 | Genova et al. | Aug 2004 | B2 |
6789702 | O'Connor et al. | Sep 2004 | B2 |
6792945 | Davies et al. | Sep 2004 | B2 |
6823862 | McNaughton | Nov 2004 | B2 |
6825441 | Katooka et al. | Nov 2004 | B2 |
6846413 | Kadel et al. | Jan 2005 | B1 |
6866039 | Wright et al. | Mar 2005 | B1 |
6889690 | Crowder et al. | May 2005 | B2 |
6890517 | Drechsel et al. | May 2005 | B2 |
6915901 | Feinberg et al. | Jul 2005 | B2 |
6929004 | Bonney et al. | Aug 2005 | B1 |
6932962 | Backstrom et al. | Aug 2005 | B1 |
6942127 | Raats | Sep 2005 | B2 |
6964759 | Lewis et al. | Nov 2005 | B2 |
6977042 | Kadel et al. | Dec 2005 | B2 |
6978916 | Smith | Dec 2005 | B2 |
6986346 | Hochrainer et al. | Jan 2006 | B2 |
6988496 | Eicher et al. | Jan 2006 | B1 |
6994083 | Foley et al. | Feb 2006 | B2 |
7040311 | Hochrainer et al. | May 2006 | B2 |
7066408 | Sugimoto et al. | Jun 2006 | B2 |
7090093 | Hochrainer et al. | Aug 2006 | B2 |
7131441 | Keller et al. | Nov 2006 | B1 |
7258716 | Shekarriz et al. | Aug 2007 | B2 |
7314187 | Hochrainer et al. | Jan 2008 | B2 |
7331340 | Barney | Feb 2008 | B2 |
7341208 | Peters et al. | Mar 2008 | B2 |
7380575 | Stricklin | Jun 2008 | B2 |
7417051 | Banholzer et al. | Aug 2008 | B2 |
7451876 | Bossi et al. | Nov 2008 | B2 |
7470422 | Freund et al. | Dec 2008 | B2 |
7556037 | Klein | Jul 2009 | B2 |
7559597 | Mori | Jul 2009 | B2 |
7571722 | Wuttke et al. | Aug 2009 | B2 |
7579358 | Boeck et al. | Aug 2009 | B2 |
7611694 | Schmidt | Nov 2009 | B2 |
7611709 | Bassarab et al. | Nov 2009 | B2 |
7621266 | Kladders et al. | Nov 2009 | B2 |
7645383 | Kadel et al. | Jan 2010 | B2 |
7652030 | Moesgaard et al. | Jan 2010 | B2 |
7665461 | Zierenberg et al. | Feb 2010 | B2 |
7681811 | Geser et al. | Mar 2010 | B2 |
7686014 | Boehm et al. | Mar 2010 | B2 |
7717299 | Greiner-Perth | May 2010 | B2 |
7723306 | Bassarab et al. | May 2010 | B2 |
7743945 | Lu et al. | Jun 2010 | B2 |
7779838 | Hetzer et al. | Aug 2010 | B2 |
7802568 | Eicher et al. | Sep 2010 | B2 |
7819342 | Spallek et al. | Oct 2010 | B2 |
7823584 | Geser et al. | Nov 2010 | B2 |
7837235 | Geser et al. | Nov 2010 | B2 |
7849851 | Zierenberg et al. | Dec 2010 | B2 |
7896264 | Eicher et al. | Mar 2011 | B2 |
7980243 | Hochrainer | Jul 2011 | B2 |
7994188 | Disse | Aug 2011 | B2 |
3062626 | Freund et al. | Nov 2011 | A1 |
8167171 | Moretti | May 2012 | B2 |
8479725 | Hausmann et al. | Jul 2013 | B2 |
8495901 | Hahn et al. | Jul 2013 | B2 |
8650840 | Holakovsky et al. | Feb 2014 | B2 |
8651338 | Leak et al. | Feb 2014 | B2 |
8656910 | Boeck et al. | Feb 2014 | B2 |
8733341 | Boeck et al. | May 2014 | B2 |
8734392 | Stadelhofer | May 2014 | B2 |
8950393 | Holakovsky et al. | Feb 2015 | B2 |
8960188 | Bach et al. | Feb 2015 | B2 |
8997735 | Zierenberg et al. | Apr 2015 | B2 |
9027854 | Moser et al. | May 2015 | B2 |
9192734 | Hausmann et al. | Nov 2015 | B2 |
9238031 | Schmelzer et al. | Jan 2016 | B2 |
20010008632 | Freund et al. | Jul 2001 | A1 |
20010028308 | De La Huerga | Oct 2001 | A1 |
20010032643 | Hochrainer et al. | Oct 2001 | A1 |
20010035182 | Rubin et al. | Nov 2001 | A1 |
20020000225 | Schuler et al. | Jan 2002 | A1 |
20020005195 | Shick et al. | Jan 2002 | A1 |
20020007155 | Freund et al. | Jan 2002 | A1 |
20020046751 | MacRae | Apr 2002 | A1 |
20020060255 | Benoist | May 2002 | A1 |
20020074429 | Hettrich et al. | Jun 2002 | A1 |
20020079285 | Jansen et al. | Jun 2002 | A1 |
20020092523 | Connelly et al. | Jul 2002 | A1 |
20020111363 | Drechsel et al. | Aug 2002 | A1 |
20020129812 | Litherland et al. | Sep 2002 | A1 |
20020137764 | Drechsel et al. | Sep 2002 | A1 |
20020176788 | Moutafis et al. | Nov 2002 | A1 |
20030039915 | Holt et al. | Feb 2003 | A1 |
20030064032 | Lamche et al. | Apr 2003 | A1 |
20030066524 | Hochrainer et al. | Apr 2003 | A1 |
20030085254 | Katooka et al. | May 2003 | A1 |
20030098023 | Drachmann | May 2003 | A1 |
20030106827 | Cheu et al. | Jun 2003 | A1 |
20030145849 | Drinan et al. | Aug 2003 | A1 |
20030178020 | Scarrott | Sep 2003 | A1 |
20030181478 | Drechsel et al. | Sep 2003 | A1 |
20030183225 | Knudsen | Oct 2003 | A1 |
20030187387 | Wirt et al. | Oct 2003 | A1 |
20030191151 | Chaudry et al. | Oct 2003 | A1 |
20030194379 | Brugger et al. | Oct 2003 | A1 |
20030196660 | Haveri | Oct 2003 | A1 |
20030209238 | Peters et al. | Nov 2003 | A1 |
20030226907 | Geser et al. | Dec 2003 | A1 |
20040004138 | Hettrich et al. | Jan 2004 | A1 |
20040010239 | Hochrainer et al. | Jan 2004 | A1 |
20040015126 | Zierenberg et al. | Jan 2004 | A1 |
20040019073 | Drechsel et al. | Jan 2004 | A1 |
20040055907 | Marco | Mar 2004 | A1 |
20040060476 | Sirejacob | Apr 2004 | A1 |
20040069799 | Gee et al. | Apr 2004 | A1 |
20040092428 | Chen et al. | May 2004 | A1 |
20040094147 | Schyra et al. | May 2004 | A1 |
20040134494 | Papania et al. | Jul 2004 | A1 |
20040134824 | Chan et al. | Jul 2004 | A1 |
20040139700 | Powell et al. | Jul 2004 | A1 |
20040143235 | Freund et al. | Jul 2004 | A1 |
20040166065 | Schmidt | Aug 2004 | A1 |
20040182867 | Hochrainer et al. | Sep 2004 | A1 |
20040184994 | DeStefano et al. | Sep 2004 | A1 |
20040194524 | Jentzsch | Oct 2004 | A1 |
20040210199 | Atterbury et al. | Oct 2004 | A1 |
20040231667 | Horton et al. | Nov 2004 | A1 |
20050028815 | Deaton et al. | Feb 2005 | A1 |
20050028816 | Fishman et al. | Feb 2005 | A1 |
20050061314 | Davies et al. | Mar 2005 | A1 |
20050089478 | Govind et al. | Apr 2005 | A1 |
20050098172 | Anderson | May 2005 | A1 |
20050126469 | Lu | Jun 2005 | A1 |
20050131357 | Denton et al. | Jun 2005 | A1 |
20050158394 | Staniforth et al. | Jul 2005 | A1 |
20050159441 | Hochrainer et al. | Jul 2005 | A1 |
20050183718 | Wuttke et al. | Aug 2005 | A1 |
20050191246 | Bechtold-Peters et al. | Sep 2005 | A1 |
20050194472 | Geser et al. | Sep 2005 | A1 |
20050239778 | Konetzki et al. | Oct 2005 | A1 |
20050247305 | Zierenberg et al. | Nov 2005 | A1 |
20050250704 | Bassarab et al. | Nov 2005 | A1 |
20050250705 | Bassarab et al. | Nov 2005 | A1 |
20050255119 | Bassarab et al. | Nov 2005 | A1 |
20050263618 | Spallek et al. | Dec 2005 | A1 |
20050268909 | Bonney et al. | Dec 2005 | A1 |
20050268915 | Wassenaar et al. | Dec 2005 | A1 |
20050269359 | Raats | Dec 2005 | A1 |
20060002863 | Schmelzer et al. | Jan 2006 | A1 |
20060016449 | Eicher et al. | Jan 2006 | A1 |
20060035874 | Lulla et al. | Feb 2006 | A1 |
20060037612 | Herder et al. | Feb 2006 | A1 |
20060067952 | Chen | Mar 2006 | A1 |
20060086828 | Bougamont et al. | Apr 2006 | A1 |
20060150971 | Lee et al. | Jul 2006 | A1 |
20060196500 | Hochrainer et al. | Sep 2006 | A1 |
20060225734 | Sagaser et al. | Oct 2006 | A1 |
20060239930 | Lamche et al. | Oct 2006 | A1 |
20060254579 | Grychowski et al. | Nov 2006 | A1 |
20060279588 | Yearworth et al. | Dec 2006 | A1 |
20060282045 | Wilkinson et al. | Dec 2006 | A1 |
20060285987 | Jaeger et al. | Dec 2006 | A1 |
20060289002 | Hetzer et al. | Dec 2006 | A1 |
20060293293 | Muller et al. | Dec 2006 | A1 |
20070062518 | Geser et al. | Mar 2007 | A1 |
20070062519 | Wuttke et al. | Mar 2007 | A1 |
20070062979 | Dunne | Mar 2007 | A1 |
20070090205 | Kunze et al. | Apr 2007 | A1 |
20070090576 | Geser et al. | Apr 2007 | A1 |
20070107720 | Boeck et al. | May 2007 | A1 |
20070119449 | Boehm et al. | May 2007 | A1 |
20070137643 | Bonney et al. | Jun 2007 | A1 |
20070163574 | Rohrschneider et al. | Jul 2007 | A1 |
20070183982 | Berkel et al. | Aug 2007 | A1 |
20070210121 | Stadelhofer et al. | Sep 2007 | A1 |
20070221211 | Sagalovich | Sep 2007 | A1 |
20070272763 | Dunne et al. | Nov 2007 | A1 |
20070298116 | Bechtold-Peters et al. | Dec 2007 | A1 |
20080017192 | Southby et al. | Jan 2008 | A1 |
20080029085 | Lawrence et al. | Feb 2008 | A1 |
20080060640 | Waldner | Mar 2008 | A1 |
20080083408 | Hodson et al. | Apr 2008 | A1 |
20080092885 | von Schuckmann | Apr 2008 | A1 |
20080156321 | Bowman et al. | Jul 2008 | A1 |
20080197045 | Metzger et al. | Aug 2008 | A1 |
20080249459 | Godfrey et al. | Oct 2008 | A1 |
20080264412 | Meyer et al. | Oct 2008 | A1 |
20080265198 | Warby | Oct 2008 | A1 |
20080283553 | Cox et al. | Nov 2008 | A1 |
20080299049 | Stangl | Dec 2008 | A1 |
20080308580 | Gaydos et al. | Dec 2008 | A1 |
20090032427 | Cheu et al. | Feb 2009 | A1 |
20090060764 | Mitzlaff et al. | Mar 2009 | A1 |
20090075990 | Schmidt | Mar 2009 | A1 |
20090114215 | Boeck et al. | May 2009 | A1 |
20090166379 | Wright et al. | Jul 2009 | A1 |
20090170839 | Schmidt | Jul 2009 | A1 |
20090185983 | Freund et al. | Jul 2009 | A1 |
20090197841 | Kreher et al. | Aug 2009 | A1 |
20090202447 | Kreher et al. | Aug 2009 | A1 |
20090211576 | Lehtonen et al. | Aug 2009 | A1 |
20090221626 | Schmidt | Sep 2009 | A1 |
20090235924 | Holakovsky et al. | Sep 2009 | A1 |
20090272664 | Marshall et al. | Nov 2009 | A1 |
20090293870 | Brunnberg et al. | Dec 2009 | A1 |
20090306065 | Schmidt | Dec 2009 | A1 |
20090308772 | Abrams | Dec 2009 | A1 |
20090314287 | Spallek et al. | Dec 2009 | A1 |
20090317337 | Schmidt | Dec 2009 | A1 |
20100018524 | Jinks et al. | Jan 2010 | A1 |
20100018997 | Faneca Llesera | Jan 2010 | A1 |
20100044393 | Moretti | Feb 2010 | A1 |
20100056559 | Schmelzer et al. | Mar 2010 | A1 |
20100084531 | Schuchman | Apr 2010 | A1 |
20100095957 | Corbacho | Apr 2010 | A1 |
20100144784 | Schmelzer et al. | Jun 2010 | A1 |
20100168710 | Braithwaite | Jul 2010 | A1 |
20100237102 | Margheritis | Sep 2010 | A1 |
20100242557 | Spreitzer et al. | Sep 2010 | A1 |
20100242954 | Hahn et al. | Sep 2010 | A1 |
20100313884 | Elliman | Dec 2010 | A1 |
20110005517 | Boeck et al. | Jan 2011 | A1 |
20110041842 | Bradshaw et al. | Feb 2011 | A1 |
20110168175 | Dunne et al. | Jul 2011 | A1 |
20110239594 | Nottingham et al. | Oct 2011 | A1 |
20110245780 | Helmer et al. | Oct 2011 | A1 |
20110268668 | Lamche et al. | Nov 2011 | A1 |
20110277753 | Dunne et al. | Nov 2011 | A1 |
20110290239 | Bach et al. | Dec 2011 | A1 |
20110290242 | Bach et al. | Dec 2011 | A1 |
20110290243 | Bach et al. | Dec 2011 | A1 |
20120090603 | Dunne et al. | Apr 2012 | A1 |
20120132199 | Kiesewetter | May 2012 | A1 |
20120138049 | Wachtel | Jun 2012 | A1 |
20120138713 | Schuy et al. | Jun 2012 | A1 |
20120260913 | Bach et al. | Oct 2012 | A1 |
20120325204 | Holakovsky et al. | Dec 2012 | A1 |
20130012908 | Yeung | Jan 2013 | A1 |
20130056888 | Holakovsky et al. | Mar 2013 | A1 |
20130125880 | Holakovsky et al. | May 2013 | A1 |
20130125881 | Holakovsky et al. | May 2013 | A1 |
20130126389 | Holakovsky et al. | May 2013 | A1 |
20130206136 | Herrmann et al. | Aug 2013 | A1 |
20130269687 | Besseler et al. | Oct 2013 | A1 |
20140121234 | Kreher et al. | May 2014 | A1 |
20140190472 | Holakovsky et al. | Jul 2014 | A1 |
20140228397 | Schmelzer et al. | Aug 2014 | A1 |
20140331994 | Holakovsky et al. | Nov 2014 | A1 |
20150040890 | Besseler et al. | Feb 2015 | A1 |
20150040893 | Besseler et al. | Feb 2015 | A1 |
20150041558 | Besseler et al. | Feb 2015 | A1 |
20150114387 | Bach et al. | Apr 2015 | A1 |
20150122247 | Besseler et al. | May 2015 | A1 |
20150258021 | Kreher et al. | Sep 2015 | A1 |
20150306087 | Schmelzer et al. | Oct 2015 | A1 |
20150320947 | Eicher et al. | Nov 2015 | A1 |
20150320948 | Eicher et al. | Nov 2015 | A1 |
Number | Date | Country |
---|---|---|
2005201364 | Jul 2006 | AU |
1094549 | Jan 1981 | CA |
2233981 | Apr 1997 | CA |
2237853 | Jun 1997 | CA |
2251828 | Oct 1997 | CA |
2275392 | Jul 1998 | CA |
2297174 | Feb 1999 | CA |
2343123 | Apr 2000 | CA |
2434872 | Aug 2002 | CA |
2497059 | Mar 2004 | CA |
2497680 | Mar 2004 | CA |
2513167 | Oct 2004 | CA |
2557020 | Sep 2005 | CA |
2653183 | Dec 2007 | CA |
2653422 | Dec 2007 | CA |
1125426 | Jun 1996 | CN |
1849174 | Oct 2006 | CN |
101247897 | Aug 2008 | CN |
1653651 | Jul 1971 | DE |
2754100 | Jun 1978 | DE |
4117078 | Nov 1992 | DE |
19625027 | Jan 1997 | DE |
19615422 | Nov 1997 | DE |
19653969 | Jun 1998 | DE |
19902844 | Nov 1999 | DE |
10007591 | Nov 2000 | DE |
10104367 | Aug 2002 | DE |
10300983 | Jul 2004 | DE |
102004031673 | Jan 2006 | DE |
202006017793 | Jan 2007 | DE |
01102006025871 | Dec 2007 | DE |
83175 | Jul 1957 | DK |
140801 | Nov 1979 | DK |
0018609 | Nov 1980 | EP |
0289332 | Nov 1988 | EP |
0289336 | Nov 1988 | EP |
0354507 | Feb 1990 | EP |
0364235 | Apr 1990 | EP |
0372777 | Jun 1990 | EP |
0386800 | Sep 1990 | EP |
0412524 | Feb 1991 | EP |
0505123 | Sep 1992 | EP |
0520571 | Dec 1992 | EP |
0622311 | Nov 1994 | EP |
0642992 | Mar 1995 | EP |
0679443 | Nov 1995 | EP |
0735048 | Oct 1996 | EP |
0778221 | Jun 1997 | EP |
0845253 | Jun 1998 | EP |
0845265 | Jun 1998 | EP |
0860210 | Aug 1998 | EP |
0916428 | May 1999 | EP |
0965355 | Dec 1999 | EP |
0970751 | Jan 2000 | EP |
1003478 | May 2000 | EP |
1017469 | Jul 2000 | EP |
1025923 | Aug 2000 | EP |
1068906 | Jan 2001 | EP |
1075875 | Feb 2001 | EP |
1092447 | Apr 2001 | EP |
1157689 | Nov 2001 | EP |
1211628 | Jun 2002 | EP |
1245244 | Oct 2002 | EP |
1312418 | May 2003 | EP |
1375385 | Jan 2004 | EP |
1521609 | Apr 2005 | EP |
1535643 | Jun 2005 | EP |
1595564 | Nov 2005 | EP |
1595822 | Nov 2005 | EP |
1726324 | Nov 2006 | EP |
1736193 | Dec 2006 | EP |
1795221 | Jun 2007 | EP |
1813548 | Aug 2007 | EP |
2135632 | Dec 2009 | EP |
2262348 | Nov 2006 | ES |
2505688 | Nov 1982 | FR |
2604363 | Apr 1988 | FR |
2673608 | Sep 1992 | FR |
2756502 | Jun 1998 | FR |
1524431 | Sep 1978 | GB |
2081396 | Feb 1982 | GB |
2101020 | Jan 1983 | GB |
2279273 | Jan 1995 | GB |
2291135 | Jan 1996 | GB |
2332372 | Jun 1999 | GB |
2333129 | Jul 1999 | GB |
2347870 | Sep 2000 | GB |
2355252 | Apr 2001 | GB |
2398253 | Aug 2004 | GB |
0700839.4 | Jul 2008 | GB |
S5684246 | Jul 1981 | JP |
H01288265 | Nov 1989 | JP |
H0228121 | Jan 1990 | JP |
057246 | Feb 1993 | JP |
05-53470 | Mar 1993 | JP |
H06312019 | Nov 1994 | JP |
H07118164 | May 1995 | JP |
H07118166 | May 1995 | JP |
07323086 | Dec 1995 | JP |
H08277226 | Oct 1996 | JP |
H092442 | Jan 1997 | JP |
H0977073 | Mar 1997 | JP |
H09315953 | Dec 1997 | JP |
2001518428 | Oct 2001 | JP |
2001346878 | Dec 2001 | JP |
2002504411 | Feb 2002 | JP |
03511212 | Mar 2003 | JP |
2003299717 | Oct 2003 | JP |
2004-502502 | Jan 2004 | JP |
2004097617 | Apr 2004 | JP |
2005511210 | Apr 2005 | JP |
2005144459 | Jun 2005 | JP |
2007517529 | Jul 2007 | JP |
2007245144 | Sep 2007 | JP |
2007534379 | Nov 2007 | JP |
2008119489 | May 2008 | JP |
2008541808 | Nov 2008 | JP |
2010526620 | Aug 2010 | JP |
2010540371 | Dec 2010 | JP |
8100674 | Mar 1981 | WO |
8200785 | Mar 1982 | WO |
8300288 | Feb 1983 | WO |
8303054 | Sep 1983 | WO |
8605419 | Sep 1986 | WO |
8706137 | Oct 1987 | WO |
8803419 | May 1988 | WO |
8900889 | Feb 1989 | WO |
8900947 | Feb 1989 | WO |
8902279 | Mar 1989 | WO |
8903672 | May 1989 | WO |
8903673 | May 1989 | WO |
8905139 | Jun 1989 | WO |
9009780 | Sep 1990 | WO |
9009781 | Sep 1990 | WO |
9114468 | Oct 1991 | WO |
9206704 | Apr 1992 | WO |
9217231 | Oct 1992 | WO |
9221332 | Dec 1992 | WO |
9222286 | Dec 1992 | WO |
9313737 | Jul 1993 | WO |
9324164 | Dec 1993 | WO |
9325321 | Dec 1993 | WO |
9407607 | Apr 1994 | WO |
9417822 | Aug 1994 | WO |
9425371 | Nov 1994 | WO |
9427653 | Dec 1994 | WO |
9503034 | Feb 1995 | WO |
9532015 | Nov 1995 | WO |
9600050 | Jan 1996 | WO |
9606011 | Feb 1996 | WO |
9606581 | Mar 1996 | WO |
9623522 | Aug 1996 | WO |
9701329 | Jan 1997 | WO |
9706813 | Feb 1997 | WO |
9706842 | Feb 1997 | WO |
9712683 | Apr 1997 | WO |
9712687 | Apr 1997 | WO |
9720590 | Jun 1997 | WO |
9723208 | Jul 1997 | WO |
9727804 | Aug 1997 | WO |
9735562 | Oct 1997 | WO |
9741833 | Nov 1997 | WO |
9812511 | Mar 1998 | WO |
9827959 | Jul 1998 | WO |
9831346 | Jul 1998 | WO |
9839043 | Sep 1998 | WO |
9901227 | Jan 1999 | WO |
9907340 | Feb 1999 | WO |
9911563 | Mar 1999 | WO |
9916530 | Apr 1999 | WO |
9943571 | Sep 1999 | WO |
9962495 | Dec 1999 | WO |
9965464 | Dec 1999 | WO |
0001612 | Jan 2000 | WO |
0023037 | Apr 2000 | WO |
0023065 | Apr 2000 | WO |
0027543 | May 2000 | WO |
0033965 | Jun 2000 | WO |
0037336 | Jun 2000 | WO |
0049988 | Aug 2000 | WO |
0064779 | Nov 2000 | WO |
0113885 | Mar 2001 | WO |
0128489 | Apr 2001 | WO |
0164182 | Sep 2001 | WO |
0185097 | Nov 2001 | WO |
0187392 | Nov 2001 | WO |
0197888 | Dec 2001 | WO |
0198175 | Dec 2001 | WO |
0198176 | Dec 2001 | WO |
0204054 | Jan 2002 | WO |
0205879 | Jan 2002 | WO |
0217988 | Mar 2002 | WO |
0232899 | Apr 2002 | WO |
0234411 | May 2002 | WO |
02070141 | Sep 2002 | WO |
02089887 | Nov 2002 | WO |
03002045 | Jan 2003 | WO |
03014832 | Feb 2003 | WO |
03020253 | Mar 2003 | WO |
03022332 | Mar 2003 | WO |
03035030 | May 2003 | WO |
03037159 | May 2003 | WO |
03037259 | May 2003 | WO |
03049786 | Jun 2003 | WO |
03050031 | Jun 2003 | WO |
03053350 | Jul 2003 | WO |
03057593 | Jul 2003 | WO |
03059547 | Jul 2003 | WO |
03068299 | Aug 2003 | WO |
03087097 | Oct 2003 | WO |
03097139 | Nov 2003 | WO |
2004019985 | Mar 2004 | WO |
2004022052 | Mar 2004 | WO |
2004022132 | Mar 2004 | WO |
2004022244 | Mar 2004 | WO |
2004024157 | Mar 2004 | WO |
2004033954 | Apr 2004 | WO |
2004062813 | Jul 2004 | WO |
2004078236 | Sep 2004 | WO |
2004089551 | Oct 2004 | WO |
2004091704 | Oct 2004 | WO |
2004098689 | Nov 2004 | WO |
2005000476 | Jan 2005 | WO |
2005004844 | Jan 2005 | WO |
2005014175 | Feb 2005 | WO |
2005020953 | Mar 2005 | WO |
2005030211 | Apr 2005 | WO |
2005055976 | Jun 2005 | WO |
2005077445 | Aug 2005 | WO |
2005079997 | Sep 2005 | WO |
2005080001 | Sep 2005 | WO |
2005080002 | Sep 2005 | WO |
2005087299 | Sep 2005 | WO |
2005107837 | Nov 2005 | WO |
2005109948 | Nov 2005 | WO |
2005112892 | Dec 2005 | WO |
2005112996 | Dec 2005 | WO |
2005113007 | Dec 2005 | WO |
2006011638 | Feb 2006 | WO |
2006018392 | Feb 2006 | WO |
2006027595 | Mar 2006 | WO |
2006037636 | Apr 2006 | WO |
2006037948 | Apr 2006 | WO |
2006042297 | Apr 2006 | WO |
2006045813 | May 2006 | WO |
2006110080 | Oct 2006 | WO |
2006125577 | Nov 2006 | WO |
2006126014 | Nov 2006 | WO |
2007011475 | Jan 2007 | WO |
2007022898 | Mar 2007 | WO |
2007030162 | Mar 2007 | WO |
2007049239 | May 2007 | WO |
2007060104 | May 2007 | WO |
2007060105 | May 2007 | WO |
2007060106 | May 2007 | WO |
2007060107 | May 2007 | WO |
2007060108 | May 2007 | WO |
2007062721 | Jun 2007 | WO |
2007090822 | Aug 2007 | WO |
2007101557 | Sep 2007 | WO |
2007128381 | Nov 2007 | WO |
2007134965 | Nov 2007 | WO |
2007134966 | Nov 2007 | WO |
2007134967 | Nov 2007 | WO |
2007134968 | Nov 2007 | WO |
2007141201 | Dec 2007 | WO |
2007141203 | Dec 2007 | WO |
2008023017 | Feb 2008 | WO |
2008047035 | Apr 2008 | WO |
2008077623 | Jul 2008 | WO |
2008124666 | Oct 2008 | WO |
2008138936 | Nov 2008 | WO |
2008146025 | Dec 2008 | WO |
2009006137 | Jan 2009 | WO |
2009047021 | Apr 2009 | WO |
2009047173 | Apr 2009 | WO |
2009050978 | Apr 2009 | WO |
2009090245 | Jul 2009 | WO |
2009103510 | Aug 2009 | WO |
2009115200 | Sep 2009 | WO |
2010005946 | Jan 2010 | WO |
2010006870 | Jan 2010 | WO |
2010094305 | Aug 2010 | WO |
2010094413 | Aug 2010 | WO |
2010112358 | Oct 2010 | WO |
2010133294 | Nov 2010 | WO |
2011006711 | Jan 2011 | WO |
2011064160 | Jun 2011 | WO |
2011064163 | Jun 2011 | WO |
2011064164 | Jun 2011 | WO |
2011131779 | Oct 2011 | WO |
2011154295 | Dec 2011 | WO |
2011160932 | Dec 2011 | WO |
02012130757 | Oct 2012 | WO |
2012159914 | Nov 2012 | WO |
2012160047 | Nov 2012 | WO |
2012160052 | Nov 2012 | WO |
2012161685 | Nov 2012 | WO |
2012162305 | Nov 2012 | WO |
2013110601 | Aug 2013 | WO |
2013152861 | Oct 2013 | WO |
2013152894 | Oct 2013 | WO |
2015018901 | Feb 2015 | WO |
2015018903 | Feb 2015 | WO |
2015018904 | Feb 2015 | WO |
2015169431 | Nov 2015 | WO |
2015169732 | Nov 2015 | WO |
199901520 | Dec 1999 | ZA |
Entry |
---|
Abstract in English for JPS5684246, 1979. |
Abstract in English of JPH0977073, 1997. |
International Search Report for PCT/EP2009/001619 mailed Jun. 10, 2009. |
International Search Report for corresponding PCT/EP2010/000796; date of mailing: Oct. 28, 2010. |
Ackermann et al.; Quantitative Online Detection of Low-Concentrated Drugs via a SERS Microfluidic System; ChemPhysChem; 2007; vol. 8; No. 18; pp. 2665-2670. |
Cras et al., “Comparison of chemical cleaning methods of glass in preparation for silanization”. Biosensors & Bioelectronics, vol. 14, 1999, pp. 683-688. |
Elwenspoek et al., “Silicon Micromachining”, Chapter 3, Mechanical Microsensors, Springer-Verlag Berlin Heidelberg, 2001, 4 pages. |
Han et al.; Surface activation of thin silicon oxides by wet cleaning and silanization; Thin Solid Films; 2006; vol. 510; No. 1-2; pp. 175-180. |
Henkel et al.; Chip modules for generation and manipulation of fluid segments for micro serial flow processes; Chemical Engineering Journal; 2004; vol. 101; pp. 439-445. |
Hoffmann et al., “Mixed self-assembled monolayers (SAMs) consisting of methoxy-tri(ethylene glycol)-terminated and alkyl-terminated dimethylchlorosilanes control the non-specific adsorption of proteins at oxidic surfaces”. Journal of Colloid and Interface Science, vol. 295, 2006, pp. 427-435. |
Husseini et al., “Alkyl Monolayers on Silica Surfaces Prepared Using Neat, Heated Dimethylmonochlorosilanes with Low Vapor Pressures”. Langmuir, vol. 19, 2003, pp. 5169-5171. |
International Search Report for PCT/EP2010/053668; date of mailing: Nov. 8, 2010. |
Kutchoukov et al., “Fabrication of nanofluidic devices using glass-to-glass anodic bonding” Sensors and Actuators A, vol. 114, 2004, pp. 521-527. |
Mandal et al., “Cytophobic surface modification of microfluidic arrays for in situ parallel peptide synthesis and cell adhesion assays”. Biotechnology Progress, vol. 23, No. 4, 2007, pp. 972-978 (Author Manuscript Available in PMC, Sep. 21, 2009, 19 pages). |
Wang et al.; Self-Assembled Silane Monolayers: Fabrication with Nanoscale Uniformity; Langmuir; 2005; vol. 21; No. 5; pp. 1848-1857. |
Chen F-K et al., “A study of forming pressure in the tube-hydroforming process”. Journal of Materials Processing Technology, 192-193, 2007, p. 404-409. |
International Search Report and Written Opinion for PCT/EP2010/057937 mailed Jul. 20, 2010. |
International Search Report and Written Opinion for PCT/EP2009/005949 mailed Jan. 20, 2010. |
International Search Report and Written Opinion for PCT/EP2012/058905 mailed Oct. 19, 2012. |
International Search Report and Written Opinion for PCT/EP2012/059454 mailed Jan. 14, 2013. |
International Search Report and Written Opinion for PCT/EP2012/059463 mailed Oct. 25, 2012. |
International Search Report and Written Opinion for PCT/EP2013/001068 mailed on Jun. 5, 2013. |
International Search Report for PCT/EP2008/011112 mailed Sep. 3, 2009. |
International Search Report for PCT/EP2009/001153; date of mailing: May 20, 2009. |
Abstract in English of FR2604363, Sep. 30, 1986. |
International Search Report and Written Opinion for PCT/EP2010/067896, mailed Apr. 13, 2011. |
International Search Report and Written Opinion for PCT/EP2010/067902 mailed May 2, 2011. |
International Search Report for PCT/EP2012/055209 mailed Jan. 6, 2012. |
International Search Report and Written Opinion for PCT/EP2010/067901, mailed Apr. 14, 2011. |
“Activate”. Collins English Dictionary, London: Collins, 2000, 2 pages. [Retrieved at http://search.credoreference.com/content/entry/hcengdict/activate/0 on Jun. 12, 2014]. |
International Search Report, Form PCT/ISA/210, for corresponding PCT/EP2011/059088; date of mailing: Sep. 26, 2011. |
International Search Report and Written Opinion for PCT/EP2015/000903 mailed Nov. 5, 2015. |
International Search Report and Written Opinion for PCT/EP2015/059691 mailed Oct. 8, 2015. |
Beasley R et al: “Preservatives in Nebulizer solutions: Risks without Benefit” Pharmacotherapy, Boston, US, Bd. 18, Nr. 1, Jan. 1998, pp. 130-139. |
International Search Report and Written Opinion for PCT/EP2007/054488 mailed Jul. 18, 2007. |
International Search Report and Written Opinion for PCT/EP2007/054490 mailed Jul. 17, 2007. |
Beasley R et al: “Preservatives in Nebulizer solutions: Risks without Benefit” Pharmacotherapy, Boston, US, Bd. 18, Nr. 1, Jan. 1998. |
JP2005144459—English language abstract only. |
International Search Report and Written Opinion for PCT/EP2013/054324 mailed on Jun. 5, 2013. |
International Search Report for PCT/EP2010/002740, 13 pages, mailed Nov. 12, 2010. |
International Search Report and Written Opinion for PCT/EP2014/067001 mailed Sep. 9, 2014. |
International Search Report and Written Opinion for PCT/EP2014/067004 mailed Jan. 10, 2014. |
International Search Report and Written Opinion for PCT/EP2014/067006 mailed Nov. 24, 2014. |
International Search Report for PCT/EP199804803 mailed Dec. 15, 1998. |
Abstract in English for DE4117078, 1992. |
International Search Report for PCT/EP1999/07589 mailed Mar. 1, 2000. |
International Search Report and Written Opinion for PCT/EP04006768 mailed on Sep. 24, 2004. |
International Search Report and Written Opinion for PCT/EP2005/004792 mailed on Aug. 4, 2015. |
International Search Report and Written Opinion for PCT/EP2005/001947 mailed on May 19, 2005. |
Abstract in English of DE10007591, 2000. |
Abstract in English for DE19902844, 1999. |
International Search Report and Written Opinion for PCT/EP2005/055560 mailed Mar. 2, 2006. |
International Search Report and Written Opinion for PCT/EP2005/068399 mailed on Jun. 25, 2007. |
International Search Report and Written Opinion for PCT/EP2006/068397 mailed Feb. 21, 2007. |
International Search Report and Written Opinion for PCT/EP2006/068398 mailed on May 10, 2007. |
International Search Report and Written Opinion for PCT/EP2006/068396 mailed Apr. 23, 2007. |
International Search Report and Written Opinion for PCT/EP2006/068395 mailed on Jun. 25, 2007. |
Remington Pharmacy, Editor Alfonso R. Gennaro. 19th ed., Spanish Secondary Edition: Panamericana, Spain, 1995, Sciarra, J.J., “Aerosols”, pp. 2560-2582. The English translation is from the 1995 English Primary Edition, Sciarra, J.J., Chapter 95, R97-1185. |
International Search Report PCT/EP2007/051095 mailed Sep. 21, 2007. |
China Suppliers, Shanghai Lite Chemical Technology Co., Ltd. Product details on polyvinylpyrrolidones. Obtained online by the USPTO examiner on Apr. 24, 2011. |
International Search Report and Written Opinion for PCT/EP2007/055381 mailed on Sep. 3, 2007. |
International Search Report and Written Opinion for PCT/EP2007/055383 mailed Sep. 27, 2007. |
Abstract in English of WO199839043, 1998. |
Abstract in English of WO199706813, 1997. |
Abstract in English of JPH09315953, 1997. |
Abstract in English of JPH08277226,1996. |
Abstract in English of JPH07118164, 1995. |
Abstract in English of JPH07118166, 1995. |
Lougheed et al., “Insulin Aggregation in Artificial Delivery Systems”. Diabetologia, vol. 19, 1980, pp. 1-9. |
Abstract in English for EP0354507, 1990. |
Wall et al., “High levels of exopeptidase activity are present in rat and canine bronchoalveolar lavage fluid”. International Journal of Pharmaceutics, vol. 97, Issue 1-3, pp. 171-181, 1993, Abstract pp. 1-2. |
Fuchs et al., “Neopterin, biochemistry and clinical use as a marker for cellular immune reactions”. International Archives of Allergy and Immunology, vol. 101, No. 1, 1993, pp. 1-6, Abstract 1p. |
Jendle et al., “Intrapulmonary administration of insulin to healthy volunteers”. Journal of Internal Medicine, vol. 240, 1996, pp. 93-98. |
Diamond et al., “Substance P Fails to Mimic Vagally Mediated Nonadrenergic Bronchodilation”. Peptides, vol. 3, 1982, pp. 27-29. |
Niven et al., “Some Factors Associated with the Ultrasonic Nebulization of Proteins”. Pharmaceutical Research, vol. 12, No. 1, 1995, pp. 53-59. |
Bocci et al., “Pulmonary catabolism of interferons: alveolar absorption of 125I-labeled human interferon alpha is accompanied by partial loss of biological activity”. Antiviral Research, vol. 4, 1984, pp. 211-220. |
Ip et al., “Stability of Recombinant Consensus Interferon to Air-Jet and Ultrasonic Nebulization”. Journal of Pharmaceutical Sciences, vol. 84, No. 10, Oct. 1995, pp. 1210-1214. |
Trasch et al., “Performance data of refloquant Glucose in the Evaluation of Reflotron”. Clinical Chemistry, vol. 30, 1984, p. 969 (abstract only). |
“Lung Cancer”. Merck Manual Home Edition, pp. 1-7. [Accessed at www.merck.com/mmhe/print/sec04/ch057/ch057a.html, on Jul. 28, 2010]. |
International Search Report and Written Opinion for PCT/EP2007/001558 mailed on Sep. 28, 2007. |
Abstract in English for FR2756502, 1998. |
Abstract in English of WO2002070141, 2002. |
International Search Report and Written Opinion for PCT/EP2007/054492 mailed on Aug. 16, 2007. |
International Search Report for PCT/EP2007/054489 mailed Feb. 10, 2007. |
International Search Report for PCT/EP2007/003322 mailed Aug. 17, 2007. |
English Language Abstract of EP1068906, 2001. |
International Search Report for PCT/EP2008/055863 mailed Dec. 19, 2008. |
International Search Report and Written Opinion for PCT/EP2009/001619 mailed Jun. 10, 2009. |
Abstract in English of DE202006017793, 2007. |
Abstract in English of JPH092442, 1997. |
Abstract in English for WO2009050978, 2009. |
Number | Date | Country | |
---|---|---|---|
20160095992 A1 | Apr 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13321281 | US | |
Child | 14969293 | US |