Adapter panel with lateral sliding adapter arrays

Information

  • Patent Grant
  • 12111507
  • Patent Number
    12,111,507
  • Date Filed
    Wednesday, April 27, 2022
    2 years ago
  • Date Issued
    Tuesday, October 8, 2024
    2 months ago
Abstract
An adapter panel arrangement including a chassis and a panel of adapters. The adapters defining open rearward cable connections and open forward cable connections of the panel arrangement. The adapters being arranged in arrays that slide independently of other adapter arrays to provide access to the open rearward and open forward cable connections.
Description
FIELD

This disclosure relates to devices for use in the telecommunications industry, and associated methods. More specifically, this disclosure relates to a termination panel for use in the telecommunications industry, and methods associated with termination panels.


BACKGROUND

Many local area networks and telecommunication systems utilize termination panels to provide cross-connections between telecommunications equipment. Demand for greater telecommunication services has prompted the increase in circuit densities of termination panels. Notwithstanding the advances made in the art, there is a continuous need for further advances to improve upon high-density termination panels and associated methods. Improvements are needed, for example, to enhance termination access and cable management associated with installation, maintenance, repair, upgrade, and cross-connection procedures related to termination panels.


SUMMARY

The present disclosure relates to an adapter panel arrangement including a chassis and a panel of adapters. The adapters define open rearward cable connections and open forward cable connections of the panel arrangement. The adapters are arranged in arrays that slide independently of other arrays to provide access to the open rearward and open forward cable connections.


A variety of examples of desirable product features or methods are set forth in part in the description that follows, and in part will be apparent from the description, or may be learned by practicing various aspects of the disclosure. The aspects of the disclosure may relate to individual features as well as combinations of features. It is to be understood that both the foregoing general description and the following detailed description are explanatory only, and are not restrictive of the claimed invention.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a front perspective view of one embodiment of an adapter panel arrangement, in accordance with the principles disclosed, shown with a drawer of the adapter panel arrangement in an open position;



FIG. 2 is a front perspective view of the adapter panel arrangement of FIG. 1, shown with the drawer in a closed position;



FIG. 3 is a front perspective view of the adapter panel arrangement of FIG. 2, shown with a cover of the arrangement closed;



FIG. 4 is a rear perspective view of the adapter panel arrangement of FIG. 1;



FIG. 5 is a side elevation view of the adapter panel arrangement of FIG. 4;



FIG. 6 is a top plan view of the adapter panel arrangement of FIG. 5;



FIG. 7 is a top perspective view of one embodiment of a sliding frame piece and an adapter array of the adapter panel arrangement of FIG. 1, shown in isolation;



FIG. 8 is a side elevation view of the sliding frame piece and adapter array of FIG. 7;



FIG. 9 is a top plan view of the sliding frame piece and adapter array of FIG. 7;



FIG. 10 is a side elevation view of one embodiment of a guide of the adapter panel arrangement of FIG. 1, shown in isolation;



FIG. 11 is a bottom perspective view of the guide of FIG. 10;



FIG. 12 is a top plan view of the guide of FIG. 10, and a portion of the sliding frame piece of FIG. 9;



FIG. 13 is a front perspective view of the adapter panel arrangement of FIG. 2, shown with an adapter array positioned in a forward position;



FIG. 14 is a side elevation view of the adapter panel arrangement of FIG. 13; and



FIG. 15 is a top plan view of the adapter panel arrangement of FIG. 14.





DETAILED DESCRIPTION

Reference will now be made in detail to exemplary aspects of the present disclosure that are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.



FIG. 1 illustrates a distribution frame or adapter panel arrangement 10 in accordance with the principles disclosed. The adapter panel arrangement 10 is designed to provide a high density of cable terminations, yet facilitate access to the cable terminations from the rear during installation procedures, and from the front during post-installation procedures.


The adapter panel arrangement 10 of the present disclosure generally includes a chassis 12 having an interior 14. The interior 14 is defined by a top wall 16, a bottom wall 18, a rear wall 20, and side walls 22, 24. The adapter panel arrangement 10 also includes a sliding drawer 34 that slides between an open position (FIG. 1) and a closed position (FIG. 2). A front cover 26 is attached to the sliding drawer 34. When the drawer 34 is in the closed position, the front cover 26 encloses the interior 14 of the chassis 12 when closed (FIG. 3) and provides access to the interior 14 when open (FIG. 2).


Referring now to FIGS. 1 and 2, the adapter panel arrangement 10 includes a framework structure 30 (FIG. 1) that is attached or mounted to the drawer 34. A panel of adapters 32 is mounted to the framework structure 30. As will be described in greater detail hereinafter, the drawer 34 is designed to slide outward from the chassis 12 primarily for installation purposes. That is, the drawer 34 can be slid to the open position during installation or assembly of the adapter panel arrangement, but is position in the closed position (FIG. 2) during operative use of the arrangement 10. During operative use, the framework structure 30 and the panel of adapters 32 are located within the interior 14 of the chassis 12 and the drawer 34 is in the closed position (FIG. 2). A user accesses the panel of adapters 32 from a front opening 28 of the chassis 12 without sliding the drawer 34 forward.


Referring again to FIG. 1, the panel of adapters 32 includes a face panel 42 that defines a number of openings 44 (only one shown). Adapters 46 are mounted within the openings 44. In the illustrated embodiment, the adapters are LC type adapters; however, other types of adapters, such as SC, ST, FC and MPO type adapters can also be used in accordance with the principles disclosed. Further, in the illustrated embodiment, the adapters 46 are blocked or grouped; each adapter block 58 including eight adapters 46 (four adapter pairs). Other number of adapters can be provided in an adapter block, such as four adapters (two adapter pairs), for example; the openings in the face panel 42 being correspondingly sized to receive the four-adapter blocks. Alternative, single adapters can be used and mounted with openings sized to receive the single adapters.


The openings 44 of the face panel 42 are arranged in rows; each row of mounted adapter blocks 58 defines an adapter array 48. What is meant by a row is that the openings 44 are arranged in a generally horizontal alignment, as opposed to being arranged in a column or in a vertical alignment; accordingly, the adapter arrays 48 are generally horizontal adapter arrays.


Referring now to FIGS. 1 and 4, the adapters 46 of the adapter blocks 58 each includes a front connection end 50 (FIG. 1) and a rear connection end 52 (FIG. 4). When mounted within the openings 44, the front connection ends 50 of the adapters 46 are located toward the front opening 28 of the chassis 12, and the rear connection ends 52 of the adapters 46 are located toward the rear wall 20 of the chassis 12. The front connection ends 50 of the adapters 46 define open frontward cable connection locations 54 (FIG. 2) of the face panel 42. The rear connection ends 52 of the adapters 46 define open rearward cable connection locations 56 (FIG. 4) of the face panel 42.


What is meant by “open cable connection locations” are locations that are provided in an open region in the chassis 12, as opposed to a connection location that is enclosed within a housing or module, the housing or modules in turn being mounted within the chassis. That is, the panel of adapters 32 is a panel of unenclosed adapters 46 that are not enclosed relative to the other adapters 46 on the face panel 42. While the panel of adapters itself is enclosed within the chassis 12, the plurality of adapters 46, and each of the adapter arrays 48 are not enclosed separately from the other adapters 46 or the other adapter arrays 48.


Referring now to FIGS. 1, 5 and 6, the adapter arrays 48 of the face panel 42 are designed to slide in a lateral direction independent of other adapter arrays. In particular, the face panel 42 is defined by a number of separate panel sections 60. In the illustrated embodiment, each separate panel section defines one row of openings in which the blocks 58 of unenclosed adapters 46 are mounted, i.e., each panel section 60 contains one adapter array 48. In other embodiments, the panel sections can include, for example, two rows of openings that receive four-adapter blocks, for example; this panel section embodiment containing two adapter arrays.


The face panel 42 of the adapter panel arrangement 10 illustrated includes six panel sections 60—two panel sections 60 positioned side-by-side, and stacked three panel sections high (see FIG. 1). Each panel section 60 contains six blocks 58 having eight adapters 46 for a total of 288 frontward connection locations and rearward connection locations. Each separate panel section 60 is designed to selectively slide in a forward, lateral direction (A) independent of the other panel sections. The forward, lateral direction (A) is a direction extending between the front opening 28 and the rear wall 20, as opposed to a direction which is transverse to the bottom wall 18 of the chassis 12, for example.


Referring to FIGS. 7-9, each separate panel section 60 of the panel of adapters 32 is attached to a sliding frame piece 62. The sliding frame piece 62 includes a pair of elongated rail members 64. In the illustrated embodiment, the elongated rail members 64 include a forward rail portion 84 that extends forwardly from the panel section 60, and a rearward rail portion 86 that extends rearwardly from the panel section 60. The sliding frame piece 62 can include a cross-support 88 to maintain the structural relationship of the rail members 64.


The pairs of elongated rail members 64 are arranged to engage and slide within pairs of guides 66 (one shown in FIGS. 10-12) that are mounted to the framework structure 30 (FIG. 1) of the arrangement 10. The rail members 64 and the guides 66 include a stop arrangement 68 that limits the sliding motion of the panel sections 60 between a rearward position (see the top panel section 60 in FIG. 5) and a forward position (see the bottom panel section 60 in FIG. 5).


Referring to FIGS. 9-12, the stop arrangement 68 (FIG. 12) is defined by at least one projection 70 (FIGS. 10 and 11) located on each guide 66 of the pair of guides, and first and second pockets or detents 72, 74 (FIG. 9) formed in the rail members 64. In the illustrated embodiment, two projections 70 (upper and lower projections) are provided on each of the guides 66. Correspondingly, upper and lower detents 72, 74 (see FIG. 8) are formed in the rearward rail portions 86 of the rail members 64. While the illustrated embodiment depicts the detents 72, 74 formed in the rail members 64 and the projections 70 provided on the guides 66, it is contemplated that the detents can be formed in the guides 66 and the projection correspondingly provided on the rail members 64.


Referring still to FIGS. 9-12, when the panel section 60 is positioned in the rearward position, the projections 70 of the guides 66 seat within the first detents 72 of the rail members 64 to retain the panel section 60 in the rearward position. The guides 66 are flexibly constructed so that when the panel section 60 is pulled forward, the projections 70 un-seat and slide along top and bottom surfaces 76, 77 (FIG. 8) of the rail members 64. Referring to FIG. 12, when the panel section 60 reaches the forward position, the projections 70 seat within the second detents 74 of the rail members 64. This stop arrangement 68 indicates to a user when the panel section 60 has reached the predetermined forward position, and similarly, the rearward position.


Referring back to FIG. 5, in general, the stop arrangement 68 provides an indication of when the panel section 60 has moved a lateral distance D forward from the rearward position to the forward position. In one embodiment, the lateral distance D is no more than about 4.0 inches forward from the rearward position. In the illustrated embodiment, the lateral distance D is about 1.7 inches. Providing such an indication to the user prevents the user from moving the panel section 60 a distance beyond that which cables interconnected to the panel section 60 will allow.


In particular, as previously described, the present panel arrangement 10 is designed such that the drawer 34 is intended to slide only during installation procedures, as opposed to post-installation or during operative use. Referring to FIG. 4, during installation, cables 36, such as fiber optic cables, are routed into the chassis 12 through rear openings 38 and terminated to the open rearward connection locations 56 of the face panel 42 (i.e., the rear connector ends 52 of the adapters 46).


The fiber optic cables 36 have a predetermined length that can be routed about cable storage spools or structures (see e.g., 78, 80 in FIG. 1). The predetermined lengths of the cables, however, do not have enough slack to accommodate drawer 34 movement during operative use, and the arrangement 10 does not have devices such as sliding radius limiters that take up or manage excessive movement of such cable slack.


In present panel arrangement 10, the predetermined lengths of the cables generally accommodate only the limited sliding movement of the panel sections 60. That is, while the drawer 34 may be slid out for purposes of installation, or for repairs requiring access to the region behind the panel of adapters 32, the drawer 34 is not intended to slide for purposes of accessing the panel of adapters 32 during operative use of the adapter panel arrangement 10. Operative use and access to the panel of adapters 32 is instead provided by the sliding movement of the panel sections 60 relative to the sliding movement of the drawer 34.


In general, the lateral sliding movement of the panel sections 60 provides access to the open cable connections (e.g., 54, 56) defined by the adapter arrays 48. Access to the open connection locations (e.g., 54, 56) of the face panel 42 is important in two primary instances: the first instance being during installation (e.g., during initial install or assembly, or during repair, replacement, or upgrade of the cable terminations at the rearward connection locations 56 of the panel 32); the second instance being after installation during operative use of the arrangement 10.


Referring back to FIGS. 1 and 4, during installation, the drawer 34 is pulled out to the open position. As previously described, a technician routes the fiber optic cables 36 through the rear openings 38 of the chassis 12 and terminates the cables to the open rearward connection locations 56 of the panel of adapters 32. To provide better access to the rear connection ends 52 of the adapters 46 defining the rearward connection locations 56, one of the adapter arrays 48 is positioned in the rearward position (e.g., the top array), while the remaining adapter arrays (e.g., the arrays located beneath the top array (see also FIGS. 5 and 6)) are positioned in the forward position. In this configuration, the technician has better access to the open rearward connection locations 56 of the one panel section 60 positioned in the rearward position. Once cable terminations to that particular adapter array 48 are complete, that adapter array can be slid forward and the next array to which cables are to be terminated slid rearward.


Referring to FIG. 4, to provide even further access to the open rearward connection locations 56, the top wall 16 of the chassis 12 includes removable access panels 92. Referring to FIG. 2, each of the panels 92 slides outward in a direction B from the top wall 16 of the chassis 12. In FIG. 2, the panels 92 are shown engaged with the top wall 16. In particular, each panel 92 is locked in place by a flexible tab 94 that engages a hem or roll 98 formed in a top wall portion 100 of the top wall 16. The flexible tab 94 is defined by slots 96 formed in the panel 92. The hem or roll 98 is formed by bending or rolling a section of the top wall 16 over on itself; although structure can be attached to the top wall as an alternative to providing a hem.


To slide one of the panels 92 out, the flexible tab 94 is flexed downward beyond the hem or roll 98 formed in the top wall portion 100. The panel is then slid out in the direction shown in FIG. 2 and removed to define a top wall opening 104 (see e.g., FIG. 15) located adjacent to the front opening 28 of the chassis 12. The top wall opening 104 provides further access to the open rear connection locations 56. To re-attach the panel 92, the panel 92 is place in relation to the top wall opening 104, the flexible tab 94 is flexed downward, and the panel 92 is then slid back into place. As shown in FIG. 15, retaining flanges 102 are formed in the top wall 16 at the top wall openings 104. The retaining flanges 102 support the panels 92 when attached to the top wall 16 of the chassis 12.


The open rearward connection locations 56 are typically access only during installation procedures, with the exception of repairs or upgrades, for example. The open frontward connection locations 54, however, are accessed on a more regular basis to provide cross-connections between telecommunications equipment. Such use is referred to as operative use, or use that is post-installation and primarily involves maintaining or establishing cable terminations at the front connection ends 50 of the adapters 46.


Referring now to FIGS. 13-15, the adapter panel arrangement 10 is shown in operative use. During operative use, the panel of adapters 32 is accessed through the front opening 28 of the chassis 12, with the drawer 34 positioned in the closed position.


As previously described, the cables 36 that enter the interior 14 of the chassis 12 through rear openings 38 are terminated to the open rear connection locations 56 of the panel of adapters 32. Referring to FIG. 13, jumper cables or patching cables 40 are also terminated to the panel of adapters 32; and in particular, to the open frontward connection locations 54 of the panel 32. The patching cables 40 provide the cross-connections between the adapter panel arrangement 10 and other telecommunications equipment (not shown). The patching cables 40 are routed from the front opening 28 and through side openings 90 (FIG. 3) of the chassis 12 to cable routing structure (e.g., channels, not shown) of the telecommunications system.


Because of the high-density arrangement of the adapters 46, each panel section 60 of the panel of adapters 32 slides forward to separate the associated adapter array 48 from the other arrays. By separately positioning the panel section 60 and the associated adapter array 48 forward, a technician can more easily grasp a particular connector of a patching cable 40, and/or more easily terminate a patching cable to a particular adapter 46 of the forwardly-positioned array. In addition, and as previously described, the access panels 92 (FIG. 13) of the top wall 16 can be removed (as shown in FIG. 15) to provide even further access to the open frontward connection locations 54 of the panel sections.


Referring again to FIG. 13, the forward rail portion 84 of the rail member 64 can be used as a handle to pull the panel section 60 forward. Alternatively, the user can slide the panel section 60 forward by grasping a retaining ring 82 attached to the rail member 64 of the sliding frame piece 62. In the illustrated embodiment, the retaining rings 82 are attached to the ends of outer rail members 64 of the sliding frame piece 62 to protect the patching cables 40 from exceeding a minimum bend radius.


While the present disclosure is described with respect to use in a fiber optic application, the disclosed panel arrangement can be adapted for use in other applications. For example, in some applications, copper cables may be used exclusively from fiber optic cables; and accordingly various types of wire terminations or wire connectors can be provided on the face panel of the arrangement. Still, in other applications having hybrid cabling, or applications having both types of fiber optic and copper cabling, the face panel of the arrangement can be provided with a combination of fiber optic and copper connectors and/or adapters.


In general, the present adapter panel arrangement 10 provides a high-density adapter panel arrangement while facilitating access to otherwise crowded front and rear connection locations. Because of the access design of the present arrangement, the amount of space utilized on racks and cabinets is minimized; or, in the alternative, allows for expansion and upgrade of systems having spatial constraints, as more densely packed connection locations are provided without sacrificing effective access to the connection locations.


The above specification provides a complete description of the present invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, certain aspects of the invention reside in the claims hereinafter appended.

Claims
  • 1. A fiber optic apparatus, comprising: a chassis having a first side and a second side; andfiber optic connection equipment mounted within the chassis, the fiber optic connection equipment configured to support at least eighty-eight (88) fiber optic connection locations in a one rack unit height, each fiber optic connection location defining an LC connector port, wherein the LC connector ports are arranged in at least one horizontal row extending between the first and second sides of the chassis, and wherein the connector ports are not uniformly spaced along the at least one horizontal row, and wherein the chassis comprises first and second flanges at opposite sides of the chassis for mounting the chassis to a rack.
  • 2. The fiber optic apparatus of claim 1, wherein the at least eighty-eight (88) fiber optic connection locations comprise a first row of at least forty-four (44) front ports all aligned along a first horizontal plane, the first row positioned between the first and second sides of the chassis.
  • 3. The fiber optic apparatus of claim 2, wherein the at least eight-eight (88) fiber optic connection locations further comprise a second row of at least forty-four (44) front ports all aligned along a second horizontal plane, the second row positioned between the first and second sides of the chassis.
  • 4. The fiber optic apparatus of claim 1, wherein the at least eighty-eight (88) fiber optic connection locations comprise a first row of forty-eight (48) front ports all aligned along a first horizontal plane, the first row positioned between the first and second sides of the chassis.
  • 5. The fiber optic apparatus of claim 4, wherein the at least eighty-eight (88) fiber optic connection locations further comprise a second row of forty-eight (48) front ports all aligned along a second horizontal plane, the second row positioned between the first and second sides of the chassis.
  • 6. A fiber optic apparatus, comprising: a chassis having a first side and a second side; andfiber optic connection equipment mounted within the chassis, the fiber optic connection equipment configured to support at least eighty-eight (88) fiber optic connection locations in a one rack unit height, each fiber optic connection location defining an LC connector port, wherein a plurality of LC adapters define the fiber optic connection locations, the plurality of LC adapters arranged in arrays, each array including a plurality of horizontally aligned LC adapters, wherein a gap separates at least two of the arrays, wherein a forwardly extending cable routing member is horizontally aligned with the gap, the forwardly extending cable routing member terminating in a vertical portion positioned in a vertical plane that is forward of a plane occupied by the plurality of LC adapters.
  • 7. The fiber optic apparatus of claim 6, wherein the at least eighty-eight (88) fiber optic connection locations comprise a first row of at least forty-four (44) front LC connector ports all aligned along a first horizontal plane, the first row positioned between the first and second sides of the chassis.
  • 8. The fiber optic apparatus of claim 7, wherein the at least eight-eight (88) fiber optic connection locations further comprise a second row of at least forty-four (44) front LC connector ports all aligned along a second horizontal plane, the second row positioned between the first and second sides of the chassis.
  • 9. The fiber optic apparatus of claim 6, wherein the at least eighty-eight (88) fiber optic connection locations comprise a first row of forty-eight (48) front LC connector ports all aligned along a first horizontal plane, the first row positioned between the first and second sides of the chassis.
  • 10. The fiber optic apparatus of claim 9, wherein the at least eighty-eight (88) fiber optic connection locations further comprise a second row of forty-eight (48) front LC connector ports all aligned along a second horizontal plane, the second row positioned between the first and second sides of the chassis.
  • 11. The fiber optic apparatus of claim 8, wherein each array includes a plurality of front LC connector ports from the first row and a plurality of front LC connector ports from the second row.
  • 12. The fiber optic apparatus of claim 6, wherein the fiber optic connection equipment further comprises a plurality of support members, wherein each of the plurality of LC adapters is mounted to one of the plurality of support members.
  • 13. The fiber optic apparatus of claim 12, wherein each of the plurality of support members is slidably mounted to the chassis, and wherein each of the support members slides relative to the other support members in the plurality of support members.
  • 14. The fiber optic apparatus of claim 6, further including a sliding member that carries at least two of the arrays, wherein the sliding member slides in forward and rearward directions relative to the chassis.
  • 15. The fiber optic apparatus of claim 14, wherein the sliding member includes the forwardly extending cable routing member, and wherein the vertical portion is a grip for pulling the sliding member in a forward direction.
  • 16. The fiber optic apparatus of claim 1, wherein the fiber optic connection equipment comprises a plurality of adapters that define the LC connector ports.
  • 17. The fiber optic apparatus of claim 16, further comprising a plurality of frame members, wherein each of the plurality of adapters is mounted to one of the plurality of frame members.
  • 18. The fiber optic apparatus of claim 17, wherein each of the plurality of frame members is slidably mounted to the chassis.
  • 19. The fiber optic apparatus of claim 18, wherein each of the frame members slides relative to the other frame members in the plurality of frame members.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of application Ser. No. 16/849,054, filed Apr. 15, 2020; which is a continuation of application Ser. No. 16/427,963, filed May 31, 2019, now U.S. Pat. No. 10,739,544; which is a continuation of application Ser. No. 15/499,608, filed Apr. 27, 2017, now U.S. Pat. No. 10,310,204; which is a continuation of application Ser. No. 14/813,806, filed Jul. 30, 2015, now U.S. Pat. No. 9,638,879; which is a continuation of application Ser. No. 14/617,249, filed Feb. 9, 2015, now U.S. Pat. No. 9,448,378; which is a continuation of application Ser. No. 13/722,438, filed Dec. 20, 2012, now U.S. Pat. No. 8,953,921; which is a continuation of application Ser. No. 12/930,783, filed Jan. 14, 2011, now U.S. Pat. No. 8,340,490; which is a continuation of application Ser. No. 12/460,161, filed Jul. 13, 2009, now U.S. Pat. No. 7,873,252; which is a continuation of application Ser. No. 11/655,760, filed Jan. 19, 2007, now U.S. Pat. No. 7,570,860; which applications are incorporated herein by reference in their entirety.

US Referenced Citations (115)
Number Name Date Kind
4765710 Burmeister et al. Aug 1988 A
5129030 Petrunia Jul 1992 A
5167001 Debortoli et al. Nov 1992 A
5420958 Henson et al. May 1995 A
5497444 Wheeler Mar 1996 A
5613030 Hoffer et al. Mar 1997 A
5717810 Wheeler Feb 1998 A
5758003 Wheeler et al. May 1998 A
5778131 Liewellyn et al. Jul 1998 A
6195493 Bridges Feb 2001 B1
6385381 Janus et al. May 2002 B1
6504988 Trebesch et al. Jan 2003 B1
6560114 Berry et al. May 2003 B2
6591051 Solheid et al. Jul 2003 B2
6627812 Kim et al. Sep 2003 B2
6715619 Kim et al. Apr 2004 B2
6752665 Kha et al. Jun 2004 B2
6760531 Solheid et al. Jul 2004 B1
6804447 Smith et al. Oct 2004 B2
6854894 Yunker et al. Feb 2005 B1
6920274 Rapp et al. Jul 2005 B2
6937807 Franklin et al. Aug 2005 B2
6944383 Herzog et al. Sep 2005 B1
7094095 Caveney Aug 2006 B1
7171099 Barnes et al. Jan 2007 B2
7194181 Holmberg et al. Mar 2007 B2
7200316 Giraud et al. Apr 2007 B2
7257223 Sajadi et al. Aug 2007 B2
7273320 Ellis et al. Sep 2007 B2
7318751 Erdman et al. Jan 2008 B2
7376322 Zimmel et al. May 2008 B2
7409137 Barnes Aug 2008 B1
7470068 Kahle et al. Dec 2008 B2
7474828 Leon et al. Jan 2009 B2
7542649 Andersen Jun 2009 B1
7570860 Smrha et al. Aug 2009 B2
7570861 Smrha et al. Aug 2009 B2
7590328 Reinhardt et al. Sep 2009 B2
7636507 Lu et al. Dec 2009 B2
7689089 Wagner et al. Mar 2010 B2
7756380 Ruiz et al. Jul 2010 B2
7873252 Smrha et al. Jan 2011 B2
7873253 Smrha et al. Jan 2011 B2
8009954 Bran de Leon et al. Aug 2011 B2
8179684 Smrha et al. May 2012 B2
8340490 Smrha et al. Dec 2012 B2
8346044 Smrha et al. Jan 2013 B2
8452148 Cooke et al. May 2013 B2
8538226 Makrides-Saravanos et al. Sep 2013 B2
8625950 Beamon et al. Jan 2014 B2
8690593 Anderson et al. Apr 2014 B2
8867884 Smrha et al. Oct 2014 B2
8879881 Cote et al. Nov 2014 B2
8953921 Smrha et al. Feb 2015 B2
8991950 Privitera et al. Mar 2015 B2
9097871 Smrha et al. Aug 2015 B2
9223094 Schneider et al. Dec 2015 B2
9329353 Solheid et al. May 2016 B2
9429714 Holmberg Aug 2016 B2
9435974 Smrha et al. Sep 2016 B2
9435976 Smrha et al. Sep 2016 B2
9448378 Smrha et al. Sep 2016 B2
9448379 Smrha et al. Sep 2016 B2
9488796 Smrha et al. Nov 2016 B2
9638879 Smrha et al. May 2017 B2
9638880 Smrha et al. May 2017 B2
9645342 Smrha et al. May 2017 B2
9661787 Hall et al. May 2017 B2
9690066 Smrha et al. Jun 2017 B2
9703059 Smrha et al. Jul 2017 B2
9709764 Smrha et al. Jul 2017 B2
9823432 Alexi et al. Nov 2017 B2
9995897 Smrha et al. Jun 2018 B2
10203464 Smrha et al. Feb 2019 B1
10310204 Smrha et al. Jun 2019 B2
10473874 Smrha et al. Nov 2019 B2
10739544 Smrha et al. Aug 2020 B2
10969553 Smrha et al. Apr 2021 B2
11262517 Smrha et al. Mar 2022 B2
11269150 Smrha et al. Mar 2022 B2
11300747 Smrha et al. Apr 2022 B2
11314028 Smrha et al. Apr 2022 B2
11333840 Smrha et al. May 2022 B2
20030174996 Henschel et al. Sep 2003 A1
20030223723 Massey et al. Dec 2003 A1
20040086252 Smith et al. May 2004 A1
20050135768 Rapp et al. Jun 2005 A1
20060165366 Fuestel et al. Jul 2006 A1
20060261015 Blackwell Nov 2006 A1
20060274515 Arthur et al. Dec 2006 A1
20060275008 Xin Dec 2006 A1
20080025683 Murano Jan 2008 A1
20080037209 Niazi et al. Feb 2008 A1
20090129033 Smrha et al. May 2009 A1
20090214171 Coburn et al. Aug 2009 A1
20110267794 Anderson et al. Nov 2011 A1
20110317971 Zhang et al. Dec 2011 A1
20110317974 Krampotich et al. Dec 2011 A1
20150131958 Smrha et al. May 2015 A1
20150286021 Smrha et al. Oct 2015 A1
20150309277 Krampotich et al. Oct 2015 A1
20150331214 Smrha et al. Nov 2015 A1
20150331215 Smrha et al. Nov 2015 A1
20150331216 Smrha et al. Nov 2015 A1
20150338593 Smrha et al. Nov 2015 A1
20150338594 Smrha et al. Nov 2015 A1
20150338595 Smrha et al. Nov 2015 A1
20150338597 Smrha et al. Nov 2015 A1
20150338598 Smrha et al. Nov 2015 A1
20150338599 Smrha et al. Nov 2015 A1
20170131508 Cooke et al. May 2017 A1
20180039039 Smrha et al. Feb 2018 A1
20180156999 Buff Jun 2018 A1
20180224621 Campbell et al. Aug 2018 A1
20190250354 Morris Aug 2019 A1
Foreign Referenced Citations (4)
Number Date Country
0 341 027 Nov 1989 EP
1 603 345 Dec 2005 EP
2002-82230 Mar 2002 JP
20060111757 Oct 2006 KR
Non-Patent Literature Citations (35)
Entry
ADC Telecommunications Fiber Outside Plant Systems, 4 pgs.; Aug. 1998.
ADC Telecommunications Fiber Panel Products, Second Edition, 6 pgs.; Jul. 1996.
APA Cable & Networks Unveils 288-Port Fiber Distribution Panel for Central Office Use; Customizable Fiber Cable Panel is One of Densest in the Industry; Modular Design Allows Telcos, CLECs, MSOs to Expand Capacity as Needed, PR Newswire (New York), Jun. 20, 2006, 3 Pages.
Cabinets, Racks, Panels, and Associated Equipment, EIA/ECA Standard, EIA/ECA-310-E, 26 pages (Dec. 2005).
Corning Cable Systems; “Jumper Routing Procedure for Enhanced Management Frame”; Issue 2; dated Apr. 2002; 4 pgs.
Drawing of ADC Telecommunications Drawer, 1 page; Aug. 2006.
Drawing of ADC Telecommunications Drawer, 2 pages, Nov. 2006.
FOCIS 10, Fiber Optic Connector Intermateability Standard—Type LC, TIA/EIA Standard, TIA/EIA-604-10A, 36 pages (Mar. 2002).
FONS Introduces Family of Rack Mount Splice Shelves; A Natural Extension to FONS' Suite of High-Density Products for Complete Fiber-to-the-‘X’ Solutions, Business/Technology Editors Optical Fiber Communications 2002, Business Wire (New York), Apr. 3, 2002, 3 Pages.
LC Connector Products (Fiber), The Siemon Company, Feb. 2000, 4 Pages.
Lightwave—Fiber remains medium of choice for data center applications, www.lightwaveonline.com; Apr. 1, 2007, 5 Pages.
McCreary, Scott A. et al., Increasing rack capacity: An ongoing challenge, Fiberoptic Product News 16.5, May 2001, 7 Pages.
SYSTIMAX Solutions, “SYSTIMAX G2 Fiber-Optic Connectivity Solution,” Jun. 2005 (10 pgs).
SYSTIMAX Solutions, “SYSTIMAX InstaPATCH Plus Modular Shelf and DM2 Modules,” Jun. 2005 (3 pgs).
SYSTIMAX Solutions, “SYSTIMAX InstaPATCH System,” Aug. 2004 (7 pgs).
SYSTIMAX Solutions, “The SYSTIMAX 110 VisiPatch System—Clearly the Way Ahead,” May 2004 (3 pgs).
SYSTIMAX Solutions, “The SYSTIMAX iPatch System,” Jun. 2004 (8 pgs).
2005 Product Catalog, CommScope Europe, S.PR.L., 13 pages (Nov. 2004).
2006 European Product Catalog, Fiber Optic Cabling, Tyco Electronics AMP GmbH, 11 pages (Copyright 2005).
2007 Solutions Catalog, CommScope, Inc., 27 pages (Feb. 2007).
2008 Product Catalog, CommScope, Inc., 29 pages (Copyright 2008).
Cable Management Tray Panels, ADC, 8 pages (Mar. 2004).
Fiber Optic Panels, 1st Edition, ADC Telecommunications, Inc., 93 pages (Oct. 2007).
Fiber Optic Products, Lucent Technologies, 46 pages (Jun. 1997).
Fiber Optic Products, Lucent Technologies, 62 pages, Issue 8 (Sep. 1999).
OmniReach™ FTTP Solutions, ADC Telecommunications, Inc., 12 pages, (Apr. 2004).
OMX™ VAM (Value-Added Module) User Manual, ACDP-90-281, Issue 1, pp. 1-8 (Nov. 2000).
SYSTIMAX® InstaPATCH™ MP-1U Termination Panel Installation Using InstaPATCH Plus Modules (for Indoor Use Only), Issue 1, pp. 1-6 (May 2005).
SYSTIMAX® InstaPATCH® Plus Modular Shelf and DM2 Modules, CommScope, Inc., pp. 1-4 (Oct. 2007).
SYSTIMAX Solutions Catalog, CommScope, Inc., 32 pages (Sep. 2005).
SYSTIMAX Solutions Catalog, CommScope, Inc. 19 pages (Copyright 2008).
2007 Uniprise Catalog, CommScope, 31 pages (2007).
Value-Added Module (VAM) System: Monitor, Splitter, WDM and CWDM Modules and Chassis for Switching Office, Central Exchange and Headend Applications, 1st Edition, ADC Telecommuncations, Inc., 36 pages (Feb. 2008).
Value-Added Module (VAM) System: Monitor, Splitter, WDM and CWDM Modules and Chassis, 4th Edition, ADC Telecommunications, Inc., 32 pages (Mar. 2007).
Value-Added-Module (VAM) System: Unmatched Functionality and Flexibility, 4th Edition, ADC Telecommunications, Inc., 35 pages, (Mar. 2006).
Related Publications (1)
Number Date Country
20220283394 A1 Sep 2022 US
Continuations (9)
Number Date Country
Parent 16849054 Apr 2020 US
Child 17730680 US
Parent 16427963 May 2019 US
Child 16849054 US
Parent 15499608 Apr 2017 US
Child 16427963 US
Parent 14813806 Jul 2015 US
Child 15499608 US
Parent 14617249 Feb 2015 US
Child 14813806 US
Parent 13722438 Dec 2012 US
Child 14617249 US
Parent 12930783 Jan 2011 US
Child 13722438 US
Parent 12460161 Jul 2009 US
Child 12930783 US
Parent 11655760 Jan 2007 US
Child 12460161 US