Adaptive alarm system

Information

  • Patent Grant
  • RE49007
  • Patent Number
    RE49,007
  • Date Filed
    Tuesday, February 25, 2020
    4 years ago
  • Date Issued
    Tuesday, April 5, 2022
    2 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Nasser; Robert L
    Agents
    • Knobbe Martens Olson & Bear, LLP
Abstract
Systems and electronic processes for reducing electronic alarms in a medical patient monitoring system. For example, a system for reducing electronic alarms can include an optical sensor and one or more hardware processors in electronic communication with the optical sensor. The one or more hardware processors can be programmed to measure oxygen saturation values of a patient over a first period of time, determine if at least one oxygen saturation value obtained over the first period of time exceeds a first alarm threshold, determine whether a first alarm should be triggered based on the determination that the at least one oxygen saturation value obtained over the first period of time exceeds the first alarm threshold, determine a second alarm threshold to be applied during a second period of time subsequent to the first period of time, the second alarm threshold replacing the first alarm threshold.
Description
PRIORITY CLAIM TO RELATED PROVISIONAL APPLICATIONS


The present applicantionThis is a reissue continuation application, meaning it is a reissue of U.S. Pat. No. 9,775,570, and is also a continuation of U.S. Reissue patent application Ser. No. 16/184,908, which is reissue of U.S. Pat. No. 9,775,570 and a continuing reissue of U.S. Reissue patent application Ser. No. 15/881,602, which is a reissue of U.S. Pat. No. 9,775,570, issued on Oct. 3, 2017 and titled “Adaptive Alarm System,” which is a continuation of U.S. patent application Ser. No. 13/037,184, filed Feb. 18, 2011 titled Adaptive Alarm System, which claims priority benefit under 35 U.S.C. § 119(e) to U.S. patent application Ser. No. 13/037,184 filed Feb. 18, 2011 titled Adaptive Alarm System;Provisional Patent Application Ser. No. 61/309,419, filed Mar. 1, 2010 titled Adaptive Threshold Alarm System; and U.S. Provisional Patent Application Ser. No. 61/328,630, filed Apr. 27, 2010 titled Adaptive Alarm Systems; more than one reissue application has been filed for the reissue of U.S. Pat. No. 9,775,570, including U.S. patent application Ser. No. 16/800,971 (the present application), U.S. patent application Ser. No. 16/184,908 and U.S. patent application Ser. No. 15/881,602; all of the above-cited provisional patent applications are hereby incorporated by reference herein.


BACKGROUND OF THE INVENTION

Pulse oximetry systems for measuring constituents of circulating blood have gained rapid acceptance in a wide variety of medical applications, including surgical wards, intensive care and neonatal units, general wards, home care, physical training, and virtually all types of monitoring scenarios. A pulse oximetry system generally includes an optical sensor applied to a patient, a monitor for processing sensor signals and displaying results and a patient cable electrically interconnecting the sensor and the monitor. A pulse oximetry sensor has light emitting diodes (LEDs), typically one emitting a red wavelength and one emitting an infrared (IR) wavelength, and a photodiode detector. The emitters and detector are typically attached to a finger, and the patient cable transmits drive signals to these emitters from the monitor. The emitters respond to the drive signals to transmit light into the fleshy fingertip tissue. The detector generates a signal responsive to the emitted light after attenuation by pulsatile blood flow within the fingertip. The patient cable transmits the detector signal to the monitor, which processes the signal to provide a numerical readout of physiological parameters such as oxygen saturation (SpO2) and pulse rate.


SUMMARY OF THE INVENTION

Conventional pulse oximetry assumes that arterial blood is the only pulsatile blood flow in the measurement site. During patient motion, venous blood also moves, which causes errors in conventional pulse oximetry. Advanced pulse oximetry processes the venous blood signal so as to report true arterial oxygen saturation and pulse rate under conditions of patient movement. Advanced pulse oximetry also functions under conditions of low perfusion (small signal amplitude), intense ambient light (artificial or sunlight) and electrosurgical instrument interference, which are scenarios where conventional pulse oximetry tends to fail.


Advanced pulse oximetry is described in at least U.S. Pat. Nos. 6,770,028; 6,658,276; 6,157,850; 6,002,952; 5,769,785 and 5,758,644, which are assigned to Masimo Corporation (“Masimo”) of Irvine, Calif and are incorporated by reference herein. Corresponding low noise optical sensors are disclosed in at least U.S. Pat. Nos. 6,985,764; 6,813,511; 6,792,300; 6,256,523; 6,088,607; 5,782,757 and 5,638,818, which are also assigned to Masimo and are also incorporated by reference herein. Advanced pulse oximetry systems including Masimo SET® low noise optical sensors and read through motion pulse oximetry monitors for measuring SpO2, pulse rate (PR) and perfusion index (PI) are available from Masimo. Optical sensors include any of Masimo LNOP®, LNCS®, Soffouch™ and Blue™ adhesive or reusable sensors. Pulse oximetry monitors include any of Masimo Rad-8®, Rad-5®, Rad®-5v or SatShare® monitors.


Advanced blood parameter measurement systems are described in at least U.S. Pat. No. 7,647,083, filed Mar. 1, 2006, titled Multiple Wavelength Sensor Equalization; U.S. Pat. No. 7,729,733, filed Mar. 1, 2006, titled Configurable Physiological Measurement System; U.S. Pat. Pub. No. 2006/0211925, filed Mar. 1, 2006, titled Physiological Parameter Confidence Measure and U.S. Pat. Pub. No. 2006/0238358, filed Mar. 1, 2006, titled Noninvasive Multi-Parameter Patient Monitor, all assigned to Masimo Laboratories, Irvine, Calif (Masimo Labs) and all incorporated by reference herein. An advanced parameter measurement system that includes acoustic monitoring is described in U.S. Pat. Pub. No. 2010/0274099, filed Dec. 21, 2009, titled Acoustic Sensor Assembly, assigned to Masimo and incorporated by reference herein.


Advanced blood parameter measurement systems include Masimo Rainbow® SET, which provides measurements in addition to SpO2, such as total hemoglobin (SpHb™), oxygen content (SpOC™), methemoglobin (SpMet®), carboxyhemoglobin (SpCO®) and PVI®. Advanced blood parameter sensors include Masimo Rainbow® adhesive, ReSposable™ and reusable sensors. Advanced blood parameter monitors include Masimo Radical-7™, Rad-87™ and Rad57™ monitors, all available from Masimo. Advanced parameter measurement systems may also include acoustic monitoring such as acoustic respiration rate (RRa™) using a Rainbow Acoustic Sensor™ and Rad-87™ monitor, available from Masimo. Such advanced pulse oximeters, low noise sensors and advanced physiological parameter measurement systems have also gained rapid acceptance in a wide variety of medical applications, including surgical wards, intensive care and neonatal units, general wards, home care, physical training, and virtually all types of monitoring scenarios.



FIGS. 1-3 illustrate problems and issues associated with physiological parameter measurement systems having fixed threshold alarm schemas. FIG. 1 illustrates a lower-limit, fixed-threshold alarm schema with respect to an oxygen saturation (SpO2) parameter. Two alarm thresholds, DL (delay) and NDL (no delay), are defined. If oxygen saturation falls below DL for a time delay greater than TD, an alarm is triggered. If oxygen saturation falls below NDL an alarm is immediately triggered. DL 120 is typically set around or somewhat above 90% oxygen saturation and NDL 130 is typically set at 5% to 10% below DL. For example, say a person's oxygen saturation 110 drops below DL 120 at t=t1 162 and stays below DL for at least a time delay TD 163. This triggers a delayed alarm 140 at t=t2 164, where t2=t1+TD. The alarm 140 remains active until oxygen saturation 110 rises above DL 120 at t=t3 166. As another example, say that oxygen saturation 110 then drops below NDL 130, which triggers an immediate alarm 150 at t=t4168. The alarm 150 remains active until oxygen saturation 110 rises above DL 120 at t=t5 169.



FIG. 2 illustrates an upper-limit, fixed-threshold alarm schema with respect to an oxygen saturation (SpO2) parameter. This alarm scenario is particularly applicable to the avoidance of ROP (retinopathy of prematurity). Again, two alarm thresholds, DU (delay) and NDU (no delay), are defined. DU 220 might be set at or around 85% oxygen saturation and NDU 230 might be set at or around 90% oxygen saturation. For example, a neonate's oxygen saturation 210 rises above DU 220 at t=t1 262 and stays above DU for at least a time delay TD 263. This triggers a delayed alarm 240 at t=t2 264, where t2=t1+TD. The alarm 240 remains active until oxygen saturation 210 falls below DU 220 at t=t3 166. Oxygen saturation 210 then rises above NDU 230, which triggers an immediate alarm 250 at t=t4 268. The alarm 250 remains active until oxygen saturation 210 falls below DU 220 at t=t5 269.



FIG. 3 illustrates a baseline drift problem with the fixed threshold alarm schema described above. A person's oxygen saturation is plotted on an oxygen saturation (SpO2) versus time graph 300. In particular, during a first time interval T1 362, a person has an oxygen saturation 310 with a relatively stable “baseline” 312 punctuated by a shallow, transient desaturation event 314. This scenario may occur after the person has been on oxygen so that baseline oxygen saturation is near 100%. Accordingly, with a fixed threshold alarm 330 set at, say, 90%, the transient event 314 does not trigger a nuisance alarm. However, the effects of oxygen treatments wear off over time and oxygen saturation levels drift downward 350. In particular, during a second time interval T2 364, a person has an oxygen saturation 320 with a relatively stable baseline 322. The later baseline 322 is established at a substantially lower oxygen saturation than the earlier baseline 312. In this scenario, a shallow, transient desaturation event 324 now exceeds the alarm threshold 330 and results in a nuisance alarm. After many such nuisance alarms, a caregiver may lower the alarm threshold 330 to unsafe levels or turn off alarms altogether, significantly hampering the effectiveness of monitoring oxygen saturation.


A fixed threshold alarm schema is described above with respect to an oxygen saturation parameter, such as derived from a pulse oximeter. However, problematic fixed threshold alarm behavior may be exhibited in a variety of parameter measurement systems that calculate physiological parameters related to circulatory, respiratory, neurological, gastrointestinal, urinary, immune, musculoskeletal, endocrine or reproductive systems, such as the circulatory and respiratory parameters cited above, as but a few examples.


An adaptive alarm system, as described in detail below, advantageously provides an adaptive threshold alarm to solve false alarm and missed true alarm problems associated with baseline drift among other issues. For example, for a lower limit embodiment, an adaptive alarm system adjusts an alarm threshold downwards when a parameter baseline is established at lower values. Likewise, for an upper limit embodiment, the adaptive alarm system adjusts an alarm threshold upwards in accordance with baseline drift so as to avoid nuisance alarms. In an embodiment, the rate of baseline movement is limited so as to avoid masking of transients. In an embodiment, the baseline is established along upper or lower portions of a parameter envelop so as to provide a margin of safety in lower limit or upper limit systems, respectively.


One aspect of an adaptive alarm system is responsive to a physiological parameter so as to generate an alarm threshold that adapts to baseline drift in the parameter and reduce false alarms without a corresponding increase in missed true alarms. The adaptive alarm system has a parameter derived from a physiological measurement system using a sensor in communication with a living being. A baseline processor calculates a parameter baseline from an average value of the parameter. Parameter limits specify an allowable range of the parameter. An adaptive threshold processor calculates an adaptive threshold from the parameter baseline and the parameter limits. An alarm generator is responsive to the parameter and the adaptive threshold so as to trigger an alarm indicative of the parameter crossing the adaptive threshold. The adaptive threshold is responsive to the parameter baseline so as to increase in value as the parameter baseline drifts to a higher parameter value and to decrease in value as the parameter baseline drifts to a lower parameter value.


In various embodiments, the baseline processor has a sliding window that identifies a time slice of parameter values. A trend calculator determines a trend from an average of the parameter values in the time slice. A response limiter tracks only the relatively long-term transitions of the trend. A bias calculator deletes the highest parameter values in the time slice or the lowest parameter values in the time slice so as to adjust the baseline to either a lower value or a higher value, respectively. The adaptive threshold becomes less response to baseline drift as the baseline approaches a predefined parameter limit. A first adaptive threshold is responsive to lower parameter limits and a second adaptive threshold is responsive to upper parameter limits. The alarm generator is responsive to both positive and negative transients from the baseline according to the first adaptive threshold and the second adaptive threshold. The first adaptive threshold is increasingly responsive to negative transients and the second adaptive threshold is decreasingly responsive to positive transients as the baseline trends toward lower parameter values.


Another aspect of an adaptive alarm system measures a physiological parameter, establishes a baseline for the parameter, adjusts an alarm threshold according to drift of the baseline and triggers an alarm in response to the parameter measurement crossing the alarm threshold. In various embodiments, the baseline is established by biasing a segment of the parameter, calculating a biased trend from the biased segment and restricting the transient response of the biased trend. The alarm threshold is adjusted by setting a parameter limit and calculating a delta difference between the alarm threshold and the baseline as a linear function of the baseline according to the parameter limit. The delta difference is calculated by decreasing delta as the baseline drifts toward the parameter limit and increasing delta as the baseline drifts away from the parameter limit. A parameter limit is set by selecting a first parameter limit in relation to a delayed alarm and selecting a second parameter limit in relation to an un-delayed alarm. A segment of the parameter is biased by windowing the parameter measurements, removing a lower value portion of the windowed parameter measurements and averaging a remaining portion of the windowed parameter measurements. An upper delta difference between an upper alarm threshold and the baseline is calculated and a lower delta difference between a lower alarm threshold and the baseline is calculated.


A further aspect of an adaptive alarm system has a baseline processor that inputs a parameter and outputs a baseline according to a trend of the parameter. An adaptive threshold processor establishes an alarm threshold at a delta difference from the baseline. An alarm generator triggers an alarm based upon a parameter transient from the baseline crossing the alarm threshold. In various embodiments, a trend calculator outputs a biased trend and the baseline is responsive to the biased trend so as to reduce the size of a transient that triggers the alarm. A response limiter reduces baseline movement due to parameter transients. The adaptive threshold processor establishes a lower alarm threshold below the baseline and an upper alarm threshold above the baseline so that the alarm generator is responsive to both positive and negative transients from the baseline. The baseline processor establishes a lower baseline biased above the parameter trend and an upper baseline biased below the parameter trend. The lower alarm threshold is increasingly responsive to negative transients and the upper alarm threshold is decreasingly responsive to positive transients as the baseline trends toward lower parameter values.





DESCRIPTION OF THE DRAWINGS


FIGS. 1-3 are exemplar graphs illustrating problems and issues associated with physiological parameter measurement systems having fixed threshold alarm schemas;



FIGS. 4A-B are general block diagrams of an adaptive alarm system having lower parameter limits;



FIGS. 5A-B are a graph of a physiological parameter versus delta space and a graph of delta versus baseline, respectively, illustrating the relationship between a baseline, a lower-limit adaptive threshold and a variable difference delta between the baseline and the adaptive threshold;



FIG. 6 is an exemplar graph of a physiological parameter versus time illustrating an adaptive alarm system having a lower-limit adaptive threshold;



FIG. 7 is a graph of oxygen saturation versus time illustrating a baseline for determining an adaptive threshold;



FIG. 8 is a graph of oxygen saturation versus time comparing adaptive-threshold alarm performance with fixed-threshold alarm performance;



FIGS. 9A-B are general block diagrams of an adaptive alarm system having upper parameter limits;



FIGS. 10A-B are a graph of a physiological parameter versus delta space and a graph of delta versus baseline, respectively, illustrating the relationship between a baseline, an upper-limit adaptive threshold and a variable delta difference between the baseline and the adaptive threshold;



FIG. 11 is an exemplar graph of a physiological parameter versus time illustrating an adaptive alarm system having an upper-limit adaptive threshold;



FIGS. 12A-B are general block diagrams of an adaptive alarm system having both lower alarm limits and upper alarm limits;



FIGS. 13A-E are physiological parameter versus delta space graphs illustrating a lower-limit adaptive threshold, an upper-limit adaptive threshold, and a combined lower- and upper-limit adaptive threshold in various delta spaces; and



FIG. 14 is an exemplar graph of a physiological parameter versus time illustrating an adaptive alarm system having both lower and upper alarm limits.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS


FIGS. 4A-B illustrate an adaptive alarm system 400 embodiment having lower parameter limits L1 and L2. As shown in FIG. 4A, the adaptive alarm system 400 has parameter 401, first limit (L1) 403, second limit (L2) 405 and maximum parameter value (Max) 406 inputs and generates a corresponding alarm 412 output. The parameter 401 input is generated by a physiological parameter processor, such as a pulse oximeter or an advanced blood parameter processor described above, as examples. The adaptive alarm system 400 has an alarm generator 410, a baseline processor 420, and an adaptive threshold processor 440. The alarm generator 410 has parameter 401 and adaptive threshold (AT) 442 inputs and generates the alarm 412 output accordingly. A baseline processor 420 has the parameter 401 input and generates a parameter baseline (B) 422 output. The baseline processor 420, is described in detail with respect to FIG. 4B, below. An adaptive threshold processor 440 has parameter baseline (B) 422, L1 403, L2 405 and Max 406 inputs and generates the adaptive threshold (AT) 442. The adaptive threshold processor 440 is described in detail with respect to FIGS. 5A-B, below.


As shown in FIG. 4A, in an embodiment L1 403 and L2 405 may correspond to conventional fixed alarm thresholds with and without an alarm time delay, respectively. For an adaptive threshold schema, however, L1 403 and L2 405 do not determine an alarm threshold per se, but are reference levels for determining an adaptive threshold (AT) 442. In an embodiment, L1 403 is an upper limit of the adaptive alarm threshold AT when the baseline is near the maximum parameter value (Max), and L2 405 is a lower limit of the adaptive alarm threshold, as described in detail with respect to FIGS. 5A-B, below. In an exemplar embodiment when the parameter is oxygen saturation, L1 403 is set at or around 90% and L2 405 is set at 5 to 10% below L1, i.e. at 85% to 80% oxygen saturation. Many other L1 and L2 values may be used for an adaptive threshold schema as described herein.


Also shown in FIG. 4A, in an embodiment the alarm 412 output is triggered when the parameter 401 input falls below AT 442 and ends when the parameter 401 input rises above AT 442 or is otherwise cancelled. In an embodiment, the alarm 412 output is triggered after a time delay (TD), which may be fixed or variable. In an embodiment, the time delay (TD) is a function of the adaptive threshold (AT) 442. In an embodiment, the time delay (TD) is zero when the adaptive threshold (AT) is at the second lower limit (L2) 405.


As shown in FIG. 4B, a baseline processor 420 embodiment has a sliding window 450, a bias calculator 460, a trend calculator 470 and a response limiter 480. The sliding window 450 inputs the parameter 401 and outputs a time segment 452 of the parameter 401. In an embodiment, each window incorporates a five minute span of parameter values. The bias calculator 460 advantageously provides an upward shift in the baseline (B) 422 for an additional margin of error over missed true alarms. That is, a baseline 422 is generated that tracks a higher-than-average range of parameter values, effectively raising the adaptive threshold AT slightly above a threshold calculated based upon a true parameter average, as shown and described in detail with respect to FIGS. 7-8, below. In an embodiment, the bias calculator 460 rejects a lower range of parameter values from each time segment 452 from the sliding window so as to generate a biased time segment 462.


Also shown in FIG. 4B, the trend calculator 470 outputs a biased trend 472 of the remaining higher range of parameter values in each biased segment 462. In an embodiment, the biased trend 462 is an average of the values in the biased time segment 462. In other embodiments, the biased trend 462 is a median or mode of the values in the biased time segment 462. The response limiter 480 advantageously limits the extent to which the baseline 422 output tracks the biased trend 472. Accordingly, the baseline 422 tracks only relatively longer-lived transitions of the parameter, but does not track (and hence mask) physiologically significant parameter events, such as oxygen desaturations for a SpO2 parameter to name but one example. In an embodiment, the response limiter 480 has a low pass transfer function. In an embodiment, the response limiter 480 is a slew rate limiter.



FIGS. 5A-B further illustrate an adaptive threshold processor 440 (FIG. 4A) having a baseline (B) 422 input and generating an adaptive threshold (AT) 442 output and a delta (Δ) 444 ancillary output according to parameter limits L1 403, L2 405 and Max 406, as described above. As shown in FIG. 5A, as the baseline (B) 422 decreases (increases) the adaptive threshold (AT) 444 monotonically decreases (increases) between L1 403 and L2 405. Further, as the baseline (B) 422 decreases (increases) the delta (Δ) 444 difference between the baseline (B) 422 and the adaptive threshold (AT) 442 monotonically decreases (increases) between Max−L1 and zero.


As shown in FIG. 5B, the relationship between the delta (Δ) 444 and the baseline (B) 444 may be linear 550 (solid line), non-linear 560 (small-dash lines) or piecewise-linear (large-dash lines), to name a few. In an embodiment, the adaptive threshold processor 440 (FIG. 4A) calculates an adaptive threshold (AT) 442 output in response to the baseline (B) 422 input according to a linear relationship. In a linear embodiment, the adaptive threshold processor 440 (FIG. 4A) calculates the adaptive threshold (AT) 442 according to EQS. 1-2:









Δ
=



-

(


Max
-

L
1



Max
-

L
2



)




(

Max
-
B

)


+

(

Max
-

L
1


)






(
1
)






AT
=

B
-
Δ





(
2
)








where Δ=Max−L1 @ B=Max; Δ=0 @ B=L2

and where AT=L1 @ B=Max; AT=L2 @ B=L2, accordingly.



FIG. 6 illustrates the operational characteristics an adaptive alarm system 400 (FIG. 4A) having parameter limits Max 612, L1 614 and L2 616 and an alarm responsive to a baseline (B) 622, 632, 642; an adaptive threshold (AT) 628, 638, 648; and a corresponding Δ 626, 636, 646 according to EQS. 1-2, above. In particular, a physiological parameter 610 is graphed versus time 690 for various time segments t1, t2, t3 692-696. The parameter range (PR) 650 is:

PR=Max−L2   (3)

and the adaptive threshold range (ATR) 660 is:

ATR=L1−L2   (4)


As shown in FIG. 6, during a first time period t1 692, a parameter segment 620 has a baseline (B) 622 at about Max 612. As such, Δ 626=Max−L1 and the adaptive threshold (AT) 628 is at about L1 614. Accordingly, a transient 624 having a size less than Δ 626 does not trigger the alarm 412 (FIG. 4A).


Also shown in FIG. 6, during a second time period t2 694, a parameter segment 630 has a baseline (B) 632 at about L1 614. As such, Δ 636 is less than Max−L1 and the adaptive threshold (AT) 638 is between L1 and L2. Accordingly, a smaller transient 634 will trigger the alarm as compared to a transient 624 in the first time segment.


Further shown in FIG. 6, during a third time period t3 696, a parameter segment 640 has a baseline (B) 642 at about L2 616. As such, Δ 646 is about zero and the adaptive threshold (AT) 648 is at about L2. Accordingly, even a small negative transient will trigger the alarm. As such, the behavior of the alarm threshold AT 628, 638, 648 advantageously adapts to higher or lower baseline values so as to increase or decrease the size of negative transients that trigger or do not trigger the alarm 412 (FIG. 4A).



FIG. 7 is a parameter versus time graph 700 illustrating the characteristics of an adaptive alarm system 400 (FIGS. 4A-B), as described with respect to FIGS. 4-6, above, where the parameter is oxygen saturation (SpO2). The graph 700 has a SpO2 trace 710 and a superimposed baseline trace 720. The graph 700 also delineates tracking periods 730, where the baseline 720 follows the upper portions of SpO2 values, and lagging periods 740, where the baseline 720 does not follow transient SpO2 events. The tracking time periods 730 illustrate that the baseline 720 advantageously tracks at the higher range of SpO2 values 710 during relatively stable (flat) periods, as described above. Lagging time periods 740 illustrate that the baseline 720 is advantageously limited in response to transient desaturation events so that significant desaturations fall below an adaptive threshold (not shown) and trigger an alarm accordingly.



FIG. 8 is a parameter versus time graph 800 illustrating characteristics of an adaptive alarm system 400 (FIGS. 4A-B), as described with respect to FIGS. 4-6, above, where the parameter is oxygen saturation (SpO2). Vertical axis (SpO2) resolution is 1%. The time interval 801 between vertical hash marks is five minutes. The graph 800 has a SpO2 trace 810 and a baseline trace 820. The graph 800 also has a fixed threshold trace 830, a first adaptive threshold (AT) trace 840 and a second AT trace 850. The graph 800 further has a fixed threshold alarm trace 860, a first adaptive threshold alarm trace 870 and a second adaptive threshold alarm trace 880. In this example, L1 is 90% and L2 is 85% for the first AT trace 840 and first AT alarm trace 870. L2 is 80% for a second AT trace 850 and a second AT alarm trace 880. The fixed threshold 830 results in many nuisance alarms 860. By comparison, the adaptive threshold alarm with L2=85% has just one time interval of alarms 872 during a roughly 6% desaturation period (from 92% to 86%). The adaptive threshold alarm with L2=80%, has no alarms during the 1 hour 25 minute monitoring period.



FIGS. 9A-B illustrate an adaptive alarm system 900 embodiment having upper parameter limits U1 and U2. As shown in FIG. 9A, the adaptive alarm system 900 has parameter 901, first limit (U1) 903, second limit (U2) 905 and minimum parameter value (Min) 906 inputs and generates a corresponding alarm 912 output. The parameter 901 input is generated by a physiological parameter processor, such as a pulse oximeter or an advanced blood parameter processor described above, as examples. The adaptive alarm system 900 has an alarm generator 910, a baseline processor 920, and an adaptive threshold processor 940. The alarm generator 910 has parameter 901 and adaptive threshold (AT) 942 inputs and generates the alarm 912 output accordingly. A baseline processor 920 has the parameter 901 input and generates a parameter baseline (B) 922 output. The baseline processor 920, is described in detail with respect to FIG. 9B, below. An adaptive threshold processor 940 has parameter baseline (B) 922, U1 903, U2 905 and Min 906 inputs and generates the adaptive threshold (AT) 942. The adaptive threshold processor 940 is described in detail with respect to FIGS. 10A-B, below.


As shown in FIG. 9A, in an embodiment U1 903 and U2 905 may correspond to conventional fixed alarm thresholds with and without an alarm time delay, respectively. For an adaptive threshold schema, however, U1 903 and U2 905 do not determine an alarm threshold per se, but are reference levels for determining an adaptive threshold (AT) 942. In an embodiment, U1 903 is a lower limit of the adaptive alarm threshold AT when the baseline is near the minimum parameter value (Min), and U2 905 is an upper limit of the adaptive alarm threshold, as described in detail with respect to FIGS. 10A-B, below. In an exemplar embodiment when the parameter is oxygen saturation, U1 903 is set at or around 85% and U2 905 is set at or around 90% oxygen saturation. Many other U1 and U2 values may be used for an adaptive threshold schema as described herein.


Also shown in FIG. 9A, in an embodiment the alarm 912 output is triggered when the parameter 901 input rises above AT 942 and ends when the parameter 901 input falls below AT 942 or is otherwise cancelled. In an embodiment, the alarm 912 output is triggered after a time delay (TD), which may be fixed or variable. In an embodiment, the time delay (TD) is a function of the adaptive threshold (AT) 942. In an embodiment, the time delay (TD) is zero when the adaptive threshold (AT) is at the second upper limit (U2) 905.


As shown in FIG. 9B, a baseline processor 920 embodiment has a sliding window 950, a bias calculator 960, a trend calculator 970 and a response limiter 980. The sliding window 950 inputs the parameter 901 and outputs a time segment 952 of the parameter 901. In an embodiment, each window incorporates a five minute span of parameter values. The bias calculator 960 advantageously provides a downward shift in the baseline (B) 922 for an additional margin of error over missed true alarms. That is, a baseline 922 is generated that tracks a lower-than-average range of parameter values, effectively lowering the adaptive threshold AT slightly below a threshold calculated based upon a true parameter average. In an embodiment, the bias calculator 960 rejects an upper range of parameter values from each time segment 952 from the sliding window so as to generate a biased time segment 962.


Also shown in FIG. 9B, the trend calculator 970 outputs a biased trend 972 of the remaining lower range of parameter values in each biased segment 962. In an embodiment, the biased trend 962 is an average of the values in the biased time segment 962. In other embodiments, the biased trend 962 is a median or mode of the values in the biased time segment 962. The response limiter 980 advantageously limits the extent to which the baseline 922 output tracks the biased trend 972. Accordingly, the baseline 922 tracks only relatively longer-lived transitions of the parameter, but does not track (and hence mask) physiologically significant parameter events, such as oxygen desaturations for a SpO2 parameter to name but one example. In an embodiment, the response limiter 980 has a low pass transfer function. In an embodiment, the response limiter 980 is a slew rate limiter.



FIGS. 10A-B further illustrate an adaptive threshold processor 940 (FIG. 9A) having a baseline (B) 922 input and generating an adaptive threshold (AT) 942 output and a delta (Δ) 944 ancillary output according to parameter limits U1 903, U2 905 and Min 906, as described above. As shown in FIG. 10A, as the baseline (B) 922 decreases (increases) the adaptive threshold (AT) 944 monotonically decreases (increases) between U1 903 and U2 905. Further, as the baseline (B) 922 decreases (increases) the delta (Δ) 944 difference between the baseline (B) 922 and the adaptive threshold (AT) 942 monotonically decreases (increases) between Min−U1 and zero.


As shown in FIG. 10B, the relationship between the delta (Δ) 944 and the baseline (B) 944 may be linear 550 (solid line), non-linear 560 (small-dash lines) or piecewise-linear (large-dash lines), to name a few. In an embodiment, the adaptive threshold processor 940 (FIG. 9A) calculates an adaptive threshold (AT) 942 output in response to the baseline (B) 922 input according to a linear relationship. In a linear embodiment, the adaptive threshold processor 940 (FIG. 9A) calculates the adaptive threshold (AT) 942 according to EQS. 5-6:









Δ
=



-

(



U
1

-
Min



U
2

-
Min


)




(

B
-
Min

)


+

(


U
1

-
Min

)






(
5
)






AT
=

B
+
Δ





(
6
)








where Δ=U1−Min @ B=Min; Δ=0 @ B=U2

and where AT=U1 @ B=Min; AT=U2 @ B=U2, accordingly.



FIG. 11 illustrates the operational characteristics an adaptive alarm system 900 (FIG. 9A) having parameter limits Min 1112, U1 1114 and U2 1116 and an alarm responsive to a baseline (B) 1122, 1132, 1142; an adaptive threshold (AT) 1128, 1138, 1148; and a corresponding Δ 1126, 1136, 1146 according to EQS. 5-6, above. In particular, a physiological parameter 1110 is graphed versus time 1190 for various time segments t1, t2, t3 1192-1196. The parameter range (PR) 1150 is:

PR=U2−Min   (7)

and the adaptive threshold range (ATR) 1160 is:

ATR=U2−U1   (8)


As shown in FIG. 11, during a first time period t1 1192, a parameter segment 1120 has a baseline (B) 1122 at about Min 1112. As such, Δ 1126=U1−Min and the adaptive threshold (AT) 1128 is at about U1 1114. Accordingly, a transient 1124 having a size less than Δ 1126 does not trigger the alarm 912 (FIG. 9A).


Also shown in FIG. 11, during a second time period t2 1194, a parameter segment 1130 has a baseline (B) 1132 at about U1 1114. As such, Δ 1136 is less than U1−Min and the adaptive threshold (AT) 1138 is between U1 and U2. Accordingly, a smaller transient 1134 will trigger the alarm as compared to a transient 1124 in the first time segment.


Further shown in FIG. 11, during a third time period t3 1196, a parameter segment 1140 has a baseline (B) 1142 at about U2 1116. As such, Δ 1146 is about zero and the adaptive threshold (AT) 1148 is at about U2. Accordingly, even a small positive transient will trigger the alarm. As such, the behavior of the alarm threshold AT 1128, 1138, 1148 advantageously adapts to higher or lower baseline values so as to increase or decrease the size of positive transients that trigger or do not trigger the alarm 912 (FIG. 9A).



FIGS. 12A-B illustrate an adaptive alarm system 1200 embodiment having lower limits L1, L2 1203, such as described with respect to FIGS. 4A-B above, or upper limits U1, U2 1205 such as described with respect to FIGS. 9A-B above, or both. As shown in FIG. 12A, the adaptive alarm system 1200 has parameter 1201, lower limit 1203 and upper limit 1205 inputs and generates a corresponding alarm 1212 output. The parameter 1201 input is generated by a physiological parameter processor, such as a pulse oximeter or an advanced blood parameter processor described above, as examples. The adaptive alarm system 1200 has an alarm generator 1210, a baseline processor 1220 and an adaptive threshold processor 1240. The alarm generator 1210 has parameter 1201 and adaptive threshold (AT) 1242 inputs and generates the alarm 1212 output accordingly. A baseline processor 1220 has the parameter 1201 input and generates one or more parameter baseline 1222 outputs. The baseline processor 1220, is described in detail with respect to FIG. 12B, below. An adaptive threshold processor 1240 has parameter baseline 1222, lower limit L1, L2 1203 and upper limit U1, U2 1205 inputs and generates lower and upper adaptive threshold ATl, ATu 1242 outputs. The adaptive threshold processor 1240 also generates ancillary upper and lower delta 1244 outputs. The adaptive threshold processor 1240 is described in detail with respect to FIGS. 13A-E, below.


As shown in FIG. 12A, in an embodiment L1, L2 1203 and U1, U2 1205 may correspond to conventional fixed alarm thresholds with an alarm delay (L1, U1) and without an alarm delay (L2, U2). For an adaptive threshold schema, however, these limits 1203, 1205 do not determine an alarm threshold per se, but are reference levels for determining lower and upper adaptive thresholds ATl, ATu 1242.


Also shown in FIG. 12A, in an embodiment the alarm 1212 output is triggered when the parameter 1201 input falls below ATl 1242 and ends when the parameter 1201 input rises above ATl 1242 or the alarm is otherwise cancelled. Further, the alarm 1212 output is triggered when the parameter 1201 input rises above ATu 1242 and ends when the parameter 1201 input falls below ATu 1242 or the alarm is otherwise cancelled. In an embodiment, the alarm 1212 output is triggered after a time delay (TD), which may be fixed or variable. In an embodiment, the time delay (TD) is a function of the adaptive thresholds (ATl, ATu) 1242. In an embodiment, the time delay (TD) is zero when the lower adaptive threshold (ATl) 1242 is at the second lower limit (L2) 1203 or when the upper adaptive alarm threshold ATu 1242 is at the second upper limit (U2) 1205.


As shown in FIG. 12B, a baseline processor 1220 embodiment has a sliding window 1250, an over-bias calculator 1260, an under-bias calculator 1265, trend calculators 1270 and response limiters 1280. The sliding window 1250 inputs the parameter 1201 and outputs a time segment 1252 of the parameter 1201. In an embodiment, each window incorporates a five minute span of parameter 1201 values.


Also shown in FIG. 12B, the over-bias calculator 1260 advantageously provides an upward shift in the lower baseline (Bl) 1282 for an additional margin of error over missed lower true alarms. That is, a lower baseline (Bl) 1282 is generated that tracks a higher-than-average range of parameter values, effectively raising the lower adaptive threshold ATl slightly above a threshold calculated based upon a true parameter average. In an embodiment, the over-bias calculator 1260 rejects a lower range of parameter values from each time segment 1252 of the sliding window 1250 so as to generate an over-biased time segment 1262.


Further shown in FIG. 12B, the under-bias calculator 1265 advantageously provides a downward shift in the upper baseline (Bu) 1287 for an additional margin of error over missed upper true alarms. That is, an upper baseline (Bu) 1287 is generated that tracks a lower-than-average range of parameter values, effectively lowering the upper adaptive threshold ATu slightly below a threshold calculated based upon a true parameter average. In an embodiment, the under-bias calculator 1267 rejects an upper range of parameter values from each time segment 1252 of the sliding window 1250 so as to generate an under-biased time segment 1267.


Additionally shown in FIG. 12B, the trend calculator 1270 outputs an over-biased trend 1272 of the remaining higher range of parameter values in each over-biased segment 1262. Further, the trend calculator 1270 outputs an under-biased trend 1277 of the remaining lower range of parameter values in each under-biased segment 1267. In an embodiment, the biased trends 1272, 1277 are each an average of the values in the corresponding biased time segments 1262, 1267. In other embodiments, the biased trends 1272, 1277 are each a median or mode of the values in the corresponding biased time segments 1262, 1267. The response limiter 1280 advantageously limits the extent to which the baseline 1222 outputs track the biased trends 1272, 1277. Accordingly, the baseline 1222 outputs track only relatively longer-lived transitions of the parameter 1201, but do not track (and hence mask) physiologically significant parameter events. In an embodiment, the response limiter 1280 has a low pass transfer function. In an embodiment, the response limiter 1280 is a slew rate limiter.



FIGS. 13A-E illustrate parameter (P) operating ranges and ideal ranges in view of both lower and upper parameter limits. As shown in FIG. 13A, as the baseline (Bl) 1317 decreases (increases) the adaptive threshold (ATl) 1318 monotonically decreases (increases) between L1 and L2. Further, as the baseline (Bl) 1317 decreases (increases) the delta (Δl) 1319 difference between the baseline (Bl) 1317 and the adaptive threshold (ATl) 1318 monotonically decreases (increases) between Max−L1 and 0.


As shown in FIG. 13B, as the baseline (Bu) 1327 increases (decreases) the adaptive threshold (ATu) 1328 monotonically increases (decreases) between U1 and U2. Further, as the baseline (Bu) 1327 increases (decreases) the delta (Δu) 1329 difference between the adaptive threshold (ATu) 1328 and the baseline (Bu) 1327 monotonically decreases (increases) between Min−U1 and 0.


As shown in FIG. 13C, combining FIGS. 13A-B, the parameter (P) operating range is bounded by the overlapping regions of 13A and 13B 1330 having an upper bound of U2 and a lower bound of L2. In particular, L1, L2 are the upper and lower limits of the lower adaptive alarm threshold ATl; and U2, U1 are the upper and lower limits of the upper adaptive alarm threshold ATu.



FIG. 13D illustrates parameter (P) versus the overlapping independent delta domains Fu, Fl for upper and lower baselines Bu, Bl; adaptive thresholds ATu, ATl and deltas Δu, Δl, based upon FIGS. 13A-C. FIG. 13E illustrates parameter (P) versus the overlapping independent delta domains Fu, Fl (reversed); for upper and lower baselines Bu, Bl; adaptive thresholds ATu, ATl and deltas Δu, Δl,


As shown in FIG. 13E, the equations for bi-lateral adaptive thresholds are:










Δ
u

=



-

(



U
1

-

L
2




U
2

-

L
2



)




(

B
-

L
2


)


+

(


U
1

-

L
2


)






(
9
)







AT
u

=

B
+

Δ
u






(
10
)








where Δu=U12 @ B=L2; and Δu=0 @ B=U2; and


where ATu=U1 @ B=L2; and ATu=U2 @ B=U2.


Further:










Δ
l

=


(



U
2

-

L
1




U
2

-

L
2



)



(

B
-

L
2


)






(
11
)







AT
l

=

B
-

Δ
l






(
12
)








where Δl=U2−L1 @ B=U2; and Δl=0 @ B=L2; and


where ATl=L1 @ B=U2; ATl=L2 @ B=L2.


Although shown as a linear relationship, in general:

Δl=f1(B);Δu=f2(B)

That is, Δl and Δu can each be a linear function of B, a non-linear function of B or a piecewise linear function of B, to name a few, in a manner similar to that described with respect to FIGS. 5B and 10B, above.



FIGS. 14A-B illustrate the operational characteristics an adaptive alarm system 1200 (FIGS. 12A-B) having upper limits U1, U2 1412, 1414 and lower limits L1, L2 1422, 1424. An alarm 1212 (FIG. 12A) output is responsive to a baseline (B) 1432, 1442, 1452, 1462; an upper delta (Δu) 1437, 1447, 1457, 1467; and a corresponding upper adaptive threshold (ATu) 1439, 1449, 1459, 1469, according to EQS. 9-10, above. Further, the alarm 1212 (FIG. 12A) output is responsive to a lower delta (Δl) 1436, 1446, 1456, 1466 and a corresponding lower adaptive threshold (ATl) 1438, 1448, 1458, 1468, according to EQS. 11-12, above.


As shown in FIGS. 14A-B, a physiological parameter 1410 is graphed versus time 1490 for various time segments t1, t2, t3, t4 1492-1498. The parameter range (PR) 1480 is:

PR=U2−L2   (13)


the lower adaptive threshold ATl range is:

ATRl=L1−L2   (14)

the upper adaptive threshold ATU range is:

ATRl=U2−U1   (15)


As shown in FIG. 14A, during a first time period t1 1492, a parameter segment 1430 has a baseline (B) 1432 at about U2 1414. As such, Δl 1436=U2−L1; Δu 1437=0; ATl 1438=L1; ATu 1439=U2. Accordingly, a negative transient 1434 having a size less than U2−L1 does not trigger an alarm.


Also shown in FIG. 14A, during a second time period t2 1494, a parameter segment 1440 has a baseline (B) 1442 less than U2. As such, Δl 1446 is less than U1−L1 and the adaptive threshold (ATu) 1447 is between U1 and U2. Accordingly, a smaller negative transient 1444 will trigger the alarm as compared to the negative transient 1434 in the first time segment 1430.


Further shown in FIG. 14A, during a third time period t3 1496, a parameter segment 1450 has a baseline (B) 1452 less than U1 1412. As such, a smaller negative transient 1454 will trigger the alarm as compared to the negative transient 1444 in the second time segment 1440. However, a larger positive transient 1455 is needed to trigger the alarm as compared to the positive transient 1445 in the second time segment 1440.


Additionally shown in FIG. 14A, during a fourth time period t4 1460, a parameter segment 1460 has a baseline (B) 1462 at about L2 1424. As such, Δl 1466=0; Δu 1467=U1−L2; ATl 1468=L2; ATu 1469=U1. Accordingly, a positive transient 1465 having a size less than U1−L2 does not trigger an alarm.


An adaptive alarm system has been disclosed in detail in connection with various embodiments. These embodiments are disclosed by way of examples only and are not to limit the scope of the claims that follow. One of ordinary skill in the art will appreciate many variations and modifications.

Claims
  • 1. A system for reducing electronic alarms in a medical patient monitoring system, the system comprising: an optical sensor configured to transmit optical radiation into a tissue site of a patient and detect attenuated optical radiation indicative of at least one physiological parameter of a patient; andone or more hardware processors in electronic communication with the optical sensor, the one or more hardware processors configured to: measure oxygen saturation values of a patient over a first period of time;determine if at least one oxygen saturation value obtained over the first period of time exceeds a first alarm threshold;determine whether a first alarm should be triggered based on the determination that the at least one oxygen saturation value obtained over the first period of time exceeds the first alarm threshold;determine a second alarm threshold to be applied during a second period of time subsequent to the first period of time, the second alarm threshold replacing the first alarm threshold, the second alarm threshold being determined by:comparing at least a first oxygen saturation value obtained during the first time period with a lower limit associated with oxygen saturation; andcomputing a second alarm threshold based on the comparison where the second alarm threshold is computed to be at a value less than the at least first oxygen saturation value and greater than the lower limit and at an offset from the first oxygen saturation value, wherein the offset is configured to diminish as a difference between the at least first oxygen saturation value and the lower limit diminishes;measure oxygen saturation values of a patient over the second period of time to determine at least a second oxygen saturation value; anddetermine whether a second alarm should be triggered by determining if at least one oxygen saturation value obtained during the second period of time exceeds the second alarm threshold and triggering an alarm if it is determined the second alarm should be triggered.
  • 2. The system of claim 1, wherein the one or more hardware processors are configured to calculate a first baseline measurement from the measured oxygen saturation values over the first period of time and wherein the at least one oxygen saturation value obtained during the first period of time corresponds to the first baseline measurement.
  • 3. The system of claim 2, wherein the one or more hardware processors are configured to calculate a second baseline measurement from the measured oxygen saturation values over the second period of time and wherein the at least one oxygen saturation value obtained during the second period of time corresponds to the second baseline measurement.
  • 4. The system of claim 1, wherein the lower limit is predefined and corresponds to a minimum parameter value for oxygen saturation.
  • 5. The system of claim 1, wherein the one or more hardware processors are further configured to wait for a time delay prior to the triggering of the second alarm, and wherein the time delay is a function of the second alarm threshold.
  • 6. The system of claim 5, wherein the time delay decreases as the difference between the at least first oxygen saturation value and the lower limit diminishes.
  • 7. The system of claim 1, wherein the first alarm threshold is predetermined.
  • 8. A system for reducing electronic alarms in a medical patient monitoring system including a pulse oximeter in communication with an optical sensor, the system comprising one or more hardware processors configured to: measure oxygen saturation values of a patient over a first period of time;determine if at least one oxygen saturation value obtained over the first period of time exceeds a first alarm threshold;determine whether a first alarm should be triggered based on the determination that the at least one oxygen saturation value obtained over the first period of time exceeds the first alarm threshold;compare at least a first oxygen saturation value obtained during the first time period with a lower limit associated with oxygen saturation;compute a second alarm threshold based on the comparison;determine a time delay based on the computed second alarm threshold, wherein the time delay approaches zero as the first oxygen saturation value approaches the lower limit;measure oxygen saturation values of a patient over the second period of time to determine at least a second oxygen saturation value; anddetermine whether a second alarm should be triggered by determining if at least one oxygen saturation value obtained during the second period of time exceeds the second alarm threshold for the time delay and triggering an alarm if it is determined the second alarm should be triggered.
  • 9. The system of claim 8, wherein the first alarm threshold is predetermined.
  • 10. The system of claim 8, wherein the lower limit is predefined and corresponds to a minimum parameter value for oxygen saturation.
  • 11. The system of claim 8, where the second alarm threshold is computed to be at a value less than the at least first oxygen saturation value and greater than the lower limit and at an offset from the first oxygen saturation value, wherein the offset is configured to diminish as a difference between the at least first oxygen saturation value and the lower limit diminishes.
  • 12. An electronic method for reducing electronic alarms in a medical patient monitoring system, the electronic method comprising: measuring oxygen saturation values of a patient over a first period of time;determining if at least one oxygen saturation value determined over the first period of time exceeds a first alarm threshold;determining whether a first alarm should be triggered based on the determination that at least one oxygen saturation value obtained during the first period of time exceeds the first alarm threshold;comparing at least a first oxygen saturation value obtained during the first time period with a lower limit associated with oxygen saturation;computing the second alarm threshold based on the comparison where the second alarm threshold is computed to be at a value less than the at least first oxygen saturation value and greater than the lower limit and at an offset from the first oxygen saturation value, wherein the offset is configured to diminish as a difference between the at least first oxygen saturation value and the lower limit diminishes and wherein the second alarm threshold is configured to be applied during a second period of time subsequent to the first period of time, the second alarm threshold replacing the first alarm threshold; measuring oxygen saturation values of a patient over the second period of time to determine at least a second oxygen saturation value; anddetermining whether a second alarm should be triggered by determining if at least one oxygen saturation value obtained during the second period of time exceeds the second alarm threshold and triggering an alarm if it is determined the second alarm should be triggered.
  • 13. The electronic method of claim 12, wherein the one or more hardware processors are configured to calculate a first baseline measurement from the measured oxygen saturation values over the first period of time and wherein the at least one oxygen saturation value obtained during the first period of time corresponds to the first baseline measurement.
  • 14. The electronic method of claim 13, wherein the one or more hardware processors are configured to calculate a second baseline measurement from the measured oxygen saturation values over the second period of time and wherein the at least one oxygen saturation value obtained during the second period of time corresponds to the second baseline measurement.
  • 15. The electronic method of claim 12, wherein the lower limit is predefined and corresponds to a minimum parameter value for oxygen saturation.
  • 16. The electronic method of claim 12, wherein the one or more hardware processors are further configured to wait for a time delay prior to the triggering of the second alarm, and wherein the time delay is a function of the second alarm threshold.
  • 17. The electronic method of claim 16, wherein the time delay decreases as the difference between the at least first oxygen saturation value and the lower limit diminishes.
  • 18. The electronic method of claim 12, wherein the first alarm threshold is predetermined.
  • 19. A non-transitory physical computer storage comprising computer-executable instructions stored thereon that, when executed by one or more processors, are configured to implement a process comprising: transmitting optical radiation into a tissue site of a patient and detecting attenuated optical radiation indicative of an oxygen saturation of a patient;defining a limit that corresponds to a reference level for a determination of an alarm threshold; andusing an alarm threshold in determining whether to activate an alarm, the alarm threshold being at a value less than a prior oxygen saturation of the patient by a difference, wherein the difference diminishes based on the prior oxygen saturation of the patient approaching the limit.
  • 20. The non-transitory physical computer storage of claim 19, wherein the difference diminishes in response to a decrease in the patient's oxygen saturation until it reaches zero.
  • 21. The non-transitory physical computer storage of claim 19, wherein the diminishment is proportional to the difference.
  • 22. The non-transitory physical computer storage of claim 19, wherein the diminishment is a piecewise function of discrete diminishment steps.
  • 23. The non-transitory physical computer storage of claim 19, wherein the process further comprises automatically determining the alarm threshold.
  • 24. The non-transitory physical computer storage of claim 19, wherein the limit is set at 85% oxygen saturation.
  • 25. The non-transitory physical computer storage of claim 19, wherein the limit is set at 80% oxygen saturation.
  • 26. The non-transitory physical computer storage of claim 19, wherein the limit is set between 80% to 85% oxygen saturation.
  • 27. The non-transitory physical computer storage of claim 19, wherein the limit is predefined.
  • 28. The non-transitory physical computer storage of claim 19, wherein the process further comprises waiting for a time delay prior to activating the alarm, wherein the time delay is based on the alarm threshold.
  • 29. The non-transitory physical computer storage of claim 28, wherein the time delay decreases based on the prior oxygen saturation of the patient approaching the limit.
US Referenced Citations (1362)
Number Name Date Kind
3608545 Novak et al. Sep 1971 A
4338950 Barlow, Jr. et al. Jul 1982 A
4425921 Fujisaki et al. Jan 1984 A
4450843 Barney et al. May 1984 A
4557545 Ohtsuki et al. Dec 1985 A
4639718 Gasper Jan 1987 A
4653498 New et al. Mar 1987 A
4807639 Shimizu et al. Feb 1989 A
4883055 Merrick Nov 1989 A
4889132 Hutcheson et al. Dec 1989 A
4896676 Sasaki Jan 1990 A
4960128 Gordon et al. Oct 1990 A
4964408 Hink et al. Oct 1990 A
4975684 Guttinger et al. Dec 1990 A
5041187 Hink et al. Aug 1991 A
5069213 Polczynski Dec 1991 A
5111817 Clark et al. May 1992 A
5163438 Gordon et al. Nov 1992 A
5226417 Swedlow et al. Jul 1993 A
5253645 Friedman et al. Oct 1993 A
5253646 Delpy et al. Oct 1993 A
5285782 Prosser Feb 1994 A
5319355 Russek Jun 1994 A
5319363 Welch Jun 1994 A
5337744 Branigan Aug 1994 A
5341805 Stavridi et al. Aug 1994 A
D353195 Savage et al. Dec 1994 S
D353196 Savage et al. Dec 1994 S
5377676 Vari et al. Jan 1995 A
D359546 Savage et al. Jun 1995 S
5431170 Mathews Jul 1995 A
5436499 Namavar et al. Jul 1995 A
D361840 Savage et al. Aug 1995 S
D362063 Savage et al. Sep 1995 S
5452717 Branigan et al. Sep 1995 A
D363120 Savage et al. Oct 1995 S
5456252 Vari et al. Oct 1995 A
5464012 Falcone Nov 1995 A
5479934 Imran Jan 1996 A
5482036 Diab et al. Jan 1996 A
5490505 Diab et al. Feb 1996 A
5494043 O'Sullivan et al. Feb 1996 A
5533511 Kaspari et al. Jul 1996 A
5534851 Russek Jul 1996 A
5539706 Takenaka et al. Jul 1996 A
5561275 Savage et al. Oct 1996 A
5562002 Lalin Oct 1996 A
5590649 Caro et al. Jan 1997 A
5602924 Durand et al. Feb 1997 A
5615684 Hagel et al. Apr 1997 A
5632272 Diab et al. May 1997 A
5637002 Buck et al. Jun 1997 A
5638816 Kiani-Azarbayjany et al. Jun 1997 A
5638818 Diab et al. Jun 1997 A
5645440 Tobler et al. Jul 1997 A
5671914 Kalkhoran et al. Sep 1997 A
5685299 Diab et al. Nov 1997 A
D390192 Ono Feb 1998 S
D391551 Ono Mar 1998 S
5726440 Kalkhoran et al. Mar 1998 A
D393830 Tobler et al. Apr 1998 S
5743262 Lepper, Jr. et al. Apr 1998 A
5747806 Khalil et al. May 1998 A
5750994 Schlager May 1998 A
5758644 Diab et al. Jun 1998 A
5760910 Lepper, Jr. et al. Jun 1998 A
5769785 Diab et al. Jun 1998 A
5782757 Diab et al. Jul 1998 A
5785659 Caro et al. Jul 1998 A
5791347 Flaherty et al. Aug 1998 A
5793413 Hylton et al. Aug 1998 A
5810734 Caro et al. Sep 1998 A
5823950 Diab et al. Oct 1998 A
5830131 Caro et al. Nov 1998 A
5833618 Caro et al. Nov 1998 A
5860919 Kiani-Azarbayjany et al. Jan 1999 A
5865736 Baker, Jr. et al. Feb 1999 A
5876348 Sugo et al. Mar 1999 A
5890929 Mills et al. Apr 1999 A
5904654 Wohltmann et al. May 1999 A
5919134 Diab Jul 1999 A
5919141 Money et al. Jul 1999 A
5920263 Huttenhoff et al. Jul 1999 A
5934925 Tobler et al. Aug 1999 A
5940182 Lepper, Jr. et al. Aug 1999 A
5987343 Kinast Nov 1999 A
5995855 Kiani et al. Nov 1999 A
5997343 Mills et al. Dec 1999 A
6002952 Diab et al. Dec 1999 A
6005658 Kaluza et al. Dec 1999 A
6010937 Karam et al. Jan 2000 A
6011986 Diab et al. Jan 2000 A
6027452 Flaherty et al. Feb 2000 A
6036642 Diab et al. Mar 2000 A
6040578 Malin et al. Mar 2000 A
6045509 Caro et al. Apr 2000 A
6050951 Friedman et al. Apr 2000 A
6066204 Haven May 2000 A
6067462 Diab et al. May 2000 A
6081735 Diab et al. Jun 2000 A
6088607 Diab et al. Jul 2000 A
6110522 Lepper, Jr. et al. Aug 2000 A
6115673 Malin et al. Sep 2000 A
6124597 Shehada Sep 2000 A
6128521 Marro et al. Oct 2000 A
6129675 Jay Oct 2000 A
6144868 Parker Nov 2000 A
6151516 Kiani-Azarbayjany et al. Nov 2000 A
6152754 Gerhardt et al. Nov 2000 A
6157850 Diab et al. Dec 2000 A
6165005 Mills et al. Dec 2000 A
6166633 Wang et al. Dec 2000 A
6184521 Coffin, IV et al. Feb 2001 B1
6190325 Narimatsu Feb 2001 B1
6206830 Diab et al. Mar 2001 B1
6229856 Diab et al. May 2001 B1
6232609 Snyder et al. May 2001 B1
6236872 Diab et al. May 2001 B1
6241661 Schluess et al. Jun 2001 B1
6241683 Macklem et al. Jun 2001 B1
6241684 Amano et al. Jun 2001 B1
6253097 Aronow et al. Jun 2001 B1
6255708 Sudharsanan et al. Jul 2001 B1
6256523 Diab et al. Jul 2001 B1
6263222 Diab et al. Jul 2001 B1
6278522 Lepper, Jr. et al. Aug 2001 B1
6280213 Tobler et al. Aug 2001 B1
6280381 Malin et al. Aug 2001 B1
6285896 Tobler et al. Sep 2001 B1
6301493 Marro et al. Oct 2001 B1
6308089 von der Ruhr et al. Oct 2001 B1
6317627 Ennen et al. Nov 2001 B1
6321100 Parker Nov 2001 B1
6325761 Jay Dec 2001 B1
6334065 Al-Ali et al. Dec 2001 B1
6343224 Parker Jan 2002 B1
6349228 Kiani et al. Feb 2002 B1
6360114 Diab et al. Mar 2002 B1
6368283 Xu et al. Apr 2002 B1
6371921 Caro et al. Apr 2002 B1
6377829 Al-Ali Apr 2002 B1
6388240 Schulz et al. May 2002 B2
6397091 Diab et al. May 2002 B2
6411373 Garside et al. Jun 2002 B1
6415167 Blank et al. Jul 2002 B1
6430437 Marro Aug 2002 B1
6430525 Weber et al. Aug 2002 B1
6463311 Diab Oct 2002 B1
6470199 Kopotic et al. Oct 2002 B1
6487429 Hockersmith et al. Nov 2002 B2
6501975 Diab et al. Dec 2002 B2
6505059 Kollias et al. Jan 2003 B1
6510344 Halpern Jan 2003 B1
6515273 Al-Ali Feb 2003 B2
6519487 Parker Feb 2003 B1
6525386 Mills et al. Feb 2003 B1
6526300 Kiani et al. Feb 2003 B1
6534012 Hazen et al. Mar 2003 B1
6541756 Schulz et al. Apr 2003 B2
6542764 Al-Ali et al. Apr 2003 B1
6553242 Sarussi Apr 2003 B1
6580086 Schulz et al. Jun 2003 B1
6584336 Ali et al. Jun 2003 B1
6587196 Stippick et al. Jul 2003 B1
6587199 Luu Jul 2003 B1
6595316 Cybulski et al. Jul 2003 B2
6597932 Tian et al. Jul 2003 B2
6597933 Kiani et al. Jul 2003 B2
6606511 Ali et al. Aug 2003 B1
6632181 Flaherty et al. Oct 2003 B2
6635559 Greenwald et al. Oct 2003 B2
6639668 Trepagnier Oct 2003 B1
6640116 Diab Oct 2003 B2
6640117 Makarewicz et al. Oct 2003 B2
6643530 Diab et al. Nov 2003 B2
6645155 Inukai et al. Nov 2003 B2
6650917 Diab et al. Nov 2003 B2
6654624 Diab et al. Nov 2003 B2
6658276 Kiani et al. Dec 2003 B2
6661161 Lanzo et al. Dec 2003 B1
6671531 Al-Ali et al. Dec 2003 B2
6678543 Diab et al. Jan 2004 B2
6684090 Ali et al. Jan 2004 B2
6684091 Parker Jan 2004 B2
6697656 Al-Ali Feb 2004 B1
6697657 Shehada et al. Feb 2004 B1
6697658 Al-Ali Feb 2004 B2
RE38476 Diab et al. Mar 2004 E
6699194 Diab et al. Mar 2004 B1
6714804 Al-Ali et al. Mar 2004 B2
RE38492 Diab et al. Apr 2004 E
6721582 Trepagnier et al. Apr 2004 B2
6721585 Parker Apr 2004 B1
6725075 Al-Ali Apr 2004 B2
6728560 Kollias et al. Apr 2004 B2
6735459 Parker May 2004 B2
6738652 Mattu et al. May 2004 B2
6745060 Diab et al. Jun 2004 B2
6754516 Mannheimer Jun 2004 B2
6755689 Zhang et al. Jun 2004 B2
6760607 Al-Ali Jul 2004 B2
6770028 Ali et al. Aug 2004 B1
6771994 Kiani et al. Aug 2004 B2
6788965 Ruchti et al. Sep 2004 B2
6792300 Diab et al. Sep 2004 B1
6813511 Diab et al. Nov 2004 B2
6816241 Grubisic Nov 2004 B2
6816266 Varshneya et al. Nov 2004 B2
6816741 Diab Nov 2004 B2
6822564 Al-Ali Nov 2004 B2
6826419 Diab et al. Nov 2004 B2
6830711 Mills et al. Dec 2004 B2
6840904 Goldberg Jan 2005 B2
6850787 Weber et al. Feb 2005 B2
6850788 Al-Ali Feb 2005 B2
6852083 Caro et al. Feb 2005 B2
6861639 Al-Ali Mar 2005 B2
6876931 Lorenz et al. Apr 2005 B2
6897788 Khair et al. May 2005 B2
6898452 Al-Ali et al. May 2005 B2
6920345 Al-Ali et al. Jul 2005 B2
6931268 Kiani-Azarbayjany et al. Aug 2005 B1
6934570 Kiani et al. Aug 2005 B2
6939305 Flaherty et al. Sep 2005 B2
6943348 Coffin, IV Sep 2005 B1
6950687 Al-Ali Sep 2005 B2
6956649 Acosta et al. Oct 2005 B2
6961598 Diab Nov 2005 B2
6970792 Diab Nov 2005 B1
6979812 Al-Ali Dec 2005 B2
6985764 Mason et al. Jan 2006 B2
6990364 Ruchti et al. Jan 2006 B2
6993371 Kiani et al. Jan 2006 B2
6996427 Ali et al. Feb 2006 B2
6998247 Monfre et al. Feb 2006 B2
6999904 Weber et al. Feb 2006 B2
7003338 Weber et al. Feb 2006 B2
7003339 Diab et al. Feb 2006 B2
7015451 Dalke et al. Mar 2006 B2
7024233 Ali et al. Apr 2006 B2
7027849 Al-Ali Apr 2006 B2
7030749 Al-Ali Apr 2006 B2
7039449 Al-Ali May 2006 B2
7041060 Flaherty et al. May 2006 B2
7044918 Diab May 2006 B2
7067893 Mills et al. Jun 2006 B2
7079035 Bock et al. Jul 2006 B2
D526719 Richie, Jr. et al. Aug 2006 S
7096052 Mason et al. Aug 2006 B2
7096054 Abdul-Hafiz et al. Aug 2006 B2
D529616 Deros et al. Oct 2006 S
7123950 Mannheimer Oct 2006 B2
7132641 Schulz et al. Nov 2006 B2
7133710 Acosta et al. Nov 2006 B2
7142901 Kiani et al. Nov 2006 B2
7149561 Diab Dec 2006 B2
7186966 Al-Ali Mar 2007 B2
7190261 Al-Ali Mar 2007 B2
7215984 Diab May 2007 B2
7215986 Diab May 2007 B2
7221971 Diab May 2007 B2
7225006 Al-Ali et al. May 2007 B2
7225007 Al-Ali May 2007 B2
RE39672 Shehada et al. Jun 2007 E
7239905 Kiani-Azarbayjany et al. Jul 2007 B2
7245953 Parker Jul 2007 B1
7254429 Schurman et al. Aug 2007 B2
7254431 Al-Ali et al. Aug 2007 B2
7254433 Diab et al. Aug 2007 B2
7254434 Schulz et al. Aug 2007 B2
7272425 Al-Ali Sep 2007 B2
7274955 Kiani et al. Sep 2007 B2
D554263 Al-Ali Oct 2007 S
7280858 Al-Ali et al. Oct 2007 B2
7289835 Mansfield et al. Oct 2007 B2
7292883 De Felice et al. Nov 2007 B2
7295866 Al-Ali Nov 2007 B2
7328053 Diab et al. Feb 2008 B1
7332784 Mills et al. Feb 2008 B2
7340287 Mason et al. Mar 2008 B2
7341559 Schulz et al. Mar 2008 B2
7343186 Lamego et al. Mar 2008 B2
D566282 Al-Ali et al. Apr 2008 S
7355512 Al-Ali Apr 2008 B1
7356365 Schurman Apr 2008 B2
7371981 Abdul-Hafiz May 2008 B2
7373193 Al-Ali et al. May 2008 B2
7373194 Weber et al. May 2008 B2
7376453 Diab et al. May 2008 B1
7377794 Al-Ali et al. May 2008 B2
7377899 Weber et al. May 2008 B2
7383070 Diab et al. Jun 2008 B2
7395158 Monfre et al. Jul 2008 B2
7399277 Saidara et al. Jul 2008 B2
7415297 Al-Ali et al. Aug 2008 B2
7428432 Ali et al. Sep 2008 B2
7438683 Al-Ali et al. Oct 2008 B2
7440787 Diab Oct 2008 B2
7454240 Diab et al. Nov 2008 B2
7467002 Weber et al. Dec 2008 B2
7469157 Diab et al. Dec 2008 B2
7471969 Diab et al. Dec 2008 B2
7471971 Diab et al. Dec 2008 B2
7483729 Al-Ali et al. Jan 2009 B2
7483730 Diab et al. Jan 2009 B2
7489958 Diab et al. Feb 2009 B2
7496391 Diab et al. Feb 2009 B2
7496393 Diab et al. Feb 2009 B2
D587657 Al-Ali et al. Mar 2009 S
7499741 Diab et al. Mar 2009 B2
7499835 Weber et al. Mar 2009 B2
7500950 Al-Ali et al. Mar 2009 B2
7509154 Diab et al. Mar 2009 B2
7509494 Al-Ali Mar 2009 B2
7510849 Schurman et al. Mar 2009 B2
7514725 Wojtczuk et al. Apr 2009 B2
7519406 Blank et al. Apr 2009 B2
7526328 Diab et al. Apr 2009 B2
D592507 Wachman et al. May 2009 S
7530942 Diab May 2009 B1
7530949 Al Ali et al. May 2009 B2
7530955 Diab et al. May 2009 B2
7563110 Al-Ali et al. Jul 2009 B2
7593230 Abul-Haj et al. Sep 2009 B2
7596398 Al-Ali et al. Sep 2009 B2
7606608 Blank et al. Oct 2009 B2
7618375 Flaherty Nov 2009 B2
7620674 Ruchti et al. Nov 2009 B2
D606659 Kiani et al. Dec 2009 S
7629039 Eckerbom et al. Dec 2009 B2
7640140 Ruchti et al. Dec 2009 B2
7647083 Al-Ali et al. Jan 2010 B2
D609193 Al-Ali et al. Feb 2010 S
D614305 Al-Ali et al. Apr 2010 S
7697966 Monfre et al. Apr 2010 B2
7698105 Ruchti et al. Apr 2010 B2
RE41317 Parker May 2010 E
RE41333 Blank et al. May 2010 E
7729733 Al-Ali et al. Jun 2010 B2
7734320 Al-Ali Jun 2010 B2
7761127 Al-Ali et al. Jul 2010 B2
7761128 Al-Ali et al. Jul 2010 B2
7764982 Dalke et al. Jul 2010 B2
D621516 Kiani et al. Aug 2010 S
7769436 Boileau et al. Aug 2010 B1
7791155 Diab Sep 2010 B2
7801581 Diab Sep 2010 B2
7822452 Schurman et al. Oct 2010 B2
RE41912 Parker Nov 2010 E
7844313 Kiani et al. Nov 2010 B2
7844314 Al-Ali Nov 2010 B2
7844315 Al-Ali Nov 2010 B2
7865222 Weber et al. Jan 2011 B2
7873497 Weber et al. Jan 2011 B2
7880606 Al-Ali Feb 2011 B2
7880626 Al-Ali et al. Feb 2011 B2
7891355 Al-Ali et al. Feb 2011 B2
7894868 Al-Ali et al. Feb 2011 B2
7899507 Al-Ali et al. Mar 2011 B2
7899518 Trepagnier et al. Mar 2011 B2
7904132 Weber et al. Mar 2011 B2
7909772 Popov et al. Mar 2011 B2
7910875 Al-Ali Mar 2011 B2
7919713 Al-Ali et al. Apr 2011 B2
7937128 Al-Ali May 2011 B2
7937129 Mason et al. May 2011 B2
7937130 Diab et al. May 2011 B2
7941199 Kiani May 2011 B2
7951086 Flaherty et al. May 2011 B2
7957780 Lamego et al. Jun 2011 B2
7962188 Kiani et al. Jun 2011 B2
7962190 Diab et al. Jun 2011 B1
7976472 Kiani Jul 2011 B2
7988637 Diab Aug 2011 B2
7990382 Kiani Aug 2011 B2
7991446 Ali et al. Aug 2011 B2
8000761 Al-Ali Aug 2011 B2
8008088 Bellott et al. Aug 2011 B2
RE42753 Kiani-Azarbayjany et al. Sep 2011 E
8019400 Diab et al. Sep 2011 B2
8028701 Al-Ali et al. Oct 2011 B2
8029765 Bellott et al. Oct 2011 B2
8036727 Schurman et al. Oct 2011 B2
8036728 Diab et al. Oct 2011 B2
8046040 Ali et al. Oct 2011 B2
8046041 Diab et al. Oct 2011 B2
8046042 Diab et al. Oct 2011 B2
8048040 Kiani Nov 2011 B2
8050728 Al-Ali et al. Nov 2011 B2
RE43169 Parker Feb 2012 E
8118620 Al-Ali et al. Feb 2012 B2
8126528 Diab et al. Feb 2012 B2
8128572 Diab et al. Mar 2012 B2
8130105 Al-Ali et al. Mar 2012 B2
8145287 Diab et al. Mar 2012 B2
8150487 Diab et al. Apr 2012 B2
8175672 Parker May 2012 B2
8180420 Diab et al. May 2012 B2
8182443 Kiani May 2012 B1
8185180 Diab et al. May 2012 B2
8190223 Al-Ali et al. May 2012 B2
8190227 Diab et al. May 2012 B2
8203438 Kiani et al. Jun 2012 B2
8203704 Merritt et al. Jun 2012 B2
8204566 Schurman et al. Jun 2012 B2
8214043 Matos Jul 2012 B2
8219172 Schurman et al. Jul 2012 B2
8224411 Al-Ali et al. Jul 2012 B2
8228181 Al-Ali Jul 2012 B2
8229532 Davis Jul 2012 B2
8229533 Diab et al. Jul 2012 B2
8233955 Al-Ali et al. Jul 2012 B2
8244325 Al-Ali et al. Aug 2012 B2
8255026 Al-Ali Aug 2012 B1
8255027 Al-Ali et al. Aug 2012 B2
8255028 Al-Ali et al. Aug 2012 B2
8260577 Weber et al. Sep 2012 B2
8265723 McHale et al. Sep 2012 B1
8274360 Sampath et al. Sep 2012 B2
8280473 Al-Ali Oct 2012 B2
8301217 Al-Ali et al. Oct 2012 B2
8306596 Schurman et al. Nov 2012 B2
8310336 Muhsin et al. Nov 2012 B2
8315683 Al-Ali et al. Nov 2012 B2
RE43860 Parker Dec 2012 E
8337403 Al-Ali et al. Dec 2012 B2
8346330 Lamego Jan 2013 B2
8353842 Al-Ali et al. Jan 2013 B2
8355766 MacNeish, III et al. Jan 2013 B2
8359080 Diab et al. Jan 2013 B2
8364223 Al-Ali et al. Jan 2013 B2
8364226 Diab et al. Jan 2013 B2
8374665 Lamego Feb 2013 B2
8385995 Al-Ali et al. Feb 2013 B2
8385996 Smith et al. Feb 2013 B2
8388353 Kiani et al. Mar 2013 B2
8399822 Al-Ali Mar 2013 B2
8401602 Kiani Mar 2013 B2
8401607 Mannheimer Mar 2013 B2
8405608 Al-Ali et al. Mar 2013 B2
8414499 Al-Ali et al. Apr 2013 B2
8418524 Al-Ali Apr 2013 B2
8423106 Lamego et al. Apr 2013 B2
8428967 Olsen et al. Apr 2013 B2
8430817 Al-Ali et al. Apr 2013 B1
8437825 Dalvi et al. May 2013 B2
8455290 Siskavich Jun 2013 B2
8457703 Al-Ali Jun 2013 B2
8457707 Kiani Jun 2013 B2
8463349 Diab et al. Jun 2013 B2
8466286 Bellott et al. Jun 2013 B2
8471713 Poeze et al. Jun 2013 B2
8473020 Kiani et al. Jun 2013 B2
8483787 Al-Ali et al. Jul 2013 B2
8489364 Weber et al. Jul 2013 B2
8498684 Weber et al. Jul 2013 B2
8504128 Blank et al. Aug 2013 B2
8509867 Workman et al. Aug 2013 B2
8515509 Bruinsma et al. Aug 2013 B2
8523781 Al-Ali Sep 2013 B2
8529301 Al-Ali et al. Sep 2013 B2
8532727 Ali et al. Sep 2013 B2
8532728 Diab et al. Sep 2013 B2
D692145 Al-Ali et al. Oct 2013 S
8547209 Kiani et al. Oct 2013 B2
8548548 Al-Ali Oct 2013 B2
8548549 Schurman et al. Oct 2013 B2
8548550 Al-Ali et al. Oct 2013 B2
8554297 Moon et al. Oct 2013 B2
8560032 Al-Ali et al. Oct 2013 B2
8560034 Diab et al. Oct 2013 B1
8570167 Al-Ali Oct 2013 B2
8570503 Vo et al. Oct 2013 B2
8571617 Reichgott et al. Oct 2013 B2
8571618 Lamego et al. Oct 2013 B1
8571619 Al-Ali et al. Oct 2013 B2
8577431 Lamego et al. Nov 2013 B2
8581732 Al-Ali et al. Nov 2013 B2
8584345 Al-Ali et al. Nov 2013 B2
8588880 Abdul-Hafiz et al. Nov 2013 B2
8597274 Sloan et al. Dec 2013 B2
8600467 Al-Ali et al. Dec 2013 B2
8606342 Diab Dec 2013 B2
8622902 Woehrle Jan 2014 B2
8626255 Al-Ali et al. Jan 2014 B2
8630691 Lamego et al. Jan 2014 B2
8634889 Al-Ali et al. Jan 2014 B2
8641631 Sierra et al. Feb 2014 B2
8652060 Al-Ali Feb 2014 B2
8663107 Kiani Mar 2014 B2
8666468 Al-Ali Mar 2014 B1
8667967 Al-Ali et al. Mar 2014 B2
8670811 O'Reilly Mar 2014 B2
8670814 Diab et al. Mar 2014 B2
8676286 Weber et al. Mar 2014 B2
8682407 Al-Ali Mar 2014 B2
RE44823 Parker Apr 2014 E
RE44875 Kiani et al. Apr 2014 E
8688183 Bruinsma et al. Apr 2014 B2
8690799 Telfort et al. Apr 2014 B2
8700112 Kiani Apr 2014 B2
8702627 Telfort et al. Apr 2014 B2
8706179 Parker Apr 2014 B2
8712494 Macneish, III et al. Apr 2014 B1
8715206 Telfort et al. May 2014 B2
8718735 Lamego et al. May 2014 B2
8718737 Diab et al. May 2014 B2
8718738 Blank et al. May 2014 B2
8720249 Al-Ali May 2014 B2
8721541 Al-Ali et al. May 2014 B2
8721542 Al-Ali et al. May 2014 B2
8723677 Kiani May 2014 B1
8740792 Kiani et al. Jun 2014 B1
8754776 Poeze et al. Jun 2014 B2
8755535 Telfort et al. Jun 2014 B2
8755856 Diab et al. Jun 2014 B2
8755872 Marinow Jun 2014 B1
8761850 Lamego Jun 2014 B2
8764671 Kiani Jul 2014 B2
8768423 Shakespeare et al. Jul 2014 B2
8771204 Telfort et al. Jul 2014 B2
8777634 Kiani et al. Jul 2014 B2
8781543 Diab et al. Jul 2014 B2
8781544 Al-Ali et al. Jul 2014 B2
8781549 Al-Ali et al. Jul 2014 B2
8788003 Schurman et al. Jul 2014 B2
8790268 Al-Ali Jul 2014 B2
8792949 Baker, Jr. Jul 2014 B2
8801613 Al-Ali et al. Aug 2014 B2
8821397 Al-Ali et al. Sep 2014 B2
8821415 Al-Ali et al. Sep 2014 B2
8830449 Lamego et al. Sep 2014 B1
8831700 Schurman et al. Sep 2014 B2
8838196 Mannheimer Sep 2014 B2
8840549 Al-Ali et al. Sep 2014 B2
8847740 Kiani et al. Sep 2014 B2
8849365 Smith et al. Sep 2014 B2
8852094 Al-Ali et al. Oct 2014 B2
8852115 Muir Oct 2014 B2
8852994 Wojtczuk et al. Oct 2014 B2
8868147 Stippick et al. Oct 2014 B2
8868150 Al-Ali et al. Oct 2014 B2
8870792 Al-Ali et al. Oct 2014 B2
8886271 Kiani et al. Nov 2014 B2
8888539 Al-Ali et al. Nov 2014 B2
8888708 Diab et al. Nov 2014 B2
8892180 Weber et al. Nov 2014 B2
8897847 Al-Ali Nov 2014 B2
8909310 Lamego et al. Dec 2014 B2
8911377 Al-Ali Dec 2014 B2
8912909 Al-Ali et al. Dec 2014 B2
8920317 Al-Ali et al. Dec 2014 B2
8921699 Al-Ali et al. Dec 2014 B2
8922382 Al-Ali et al. Dec 2014 B2
8929964 Al-Ali et al. Jan 2015 B2
8942777 Diab et al. Jan 2015 B2
8948834 Diab et al. Feb 2015 B2
8948835 Diab Feb 2015 B2
8956294 McCombie et al. Feb 2015 B2
8961416 Siddiqui et al. Feb 2015 B2
8965471 Lamego Feb 2015 B2
8983564 Al-Ali Mar 2015 B2
8989831 Al-Ali et al. Mar 2015 B2
8996085 Kiani et al. Mar 2015 B2
8998809 Kiani Apr 2015 B2
9028407 Bennett-Guerrero May 2015 B1
9028429 Telfort et al. May 2015 B2
9037207 Al-Ali et al. May 2015 B2
9060721 Reichgott et al. Jun 2015 B2
9066666 Kiani Jun 2015 B2
9066680 Al-Ali et al. Jun 2015 B1
9072474 Al-Ali et al. Jul 2015 B2
9078560 Schurman et al. Jul 2015 B2
9084569 Weber et al. Jul 2015 B2
9095316 Welch et al. Aug 2015 B2
9106038 Telfort et al. Aug 2015 B2
9107625 Telfort et al. Aug 2015 B2
9107626 Al-Ali et al. Aug 2015 B2
9113831 Al-Ali Aug 2015 B2
9113832 Al-Ali Aug 2015 B2
9119595 Lamego Sep 2015 B2
9131881 Diab et al. Sep 2015 B2
9131882 Al-Ali et al. Sep 2015 B2
9131883 Al-Ali Sep 2015 B2
9131917 Telfort et al. Sep 2015 B2
9138180 Coverston et al. Sep 2015 B1
9138182 Al-Ali et al. Sep 2015 B2
9138192 Weber et al. Sep 2015 B2
9142117 Muhsin et al. Sep 2015 B2
9153112 Kiani et al. Oct 2015 B1
9153121 Kiani et al. Oct 2015 B2
9161696 Al-Ali et al. Oct 2015 B2
9161713 Al-Ali et al. Oct 2015 B2
9167995 Lamego et al. Oct 2015 B2
9176141 Al-Ali et al. Nov 2015 B2
9186102 Bruinsma et al. Nov 2015 B2
9192312 Al-Ali Nov 2015 B2
9192329 Al-Ali Nov 2015 B2
9192351 Telfort et al. Nov 2015 B1
9195385 Al-Ali et al. Nov 2015 B2
9211072 Kiani Dec 2015 B2
9211095 Al-Ali Dec 2015 B1
9218454 Kiani et al. Dec 2015 B2
9226696 Kiani Jan 2016 B2
9241662 Al-Ali et al. Jan 2016 B2
9245668 Vo et al. Jan 2016 B1
9259185 Abdul-Hafiz et al. Feb 2016 B2
9267572 Barker et al. Feb 2016 B2
9277880 Poeze et al. Mar 2016 B2
9289167 Diab et al. Mar 2016 B2
9295421 Kiani et al. Mar 2016 B2
9307928 Al-Ali et al. Apr 2016 B1
9323894 Kiani Apr 2016 B2
D755392 Hwang et al. May 2016 S
9326712 Kiani May 2016 B1
9333316 Kiani May 2016 B2
9339220 Lamego et al. May 2016 B2
9341565 Lamego et al. May 2016 B2
9351673 Diab et al. May 2016 B2
9351675 Al-Ali et al. May 2016 B2
9364181 Kiani et al. Jun 2016 B2
9368671 Wojtczuk et al. Jun 2016 B2
9370325 Al-Ali et al. Jun 2016 B2
9370326 McHale et al. Jun 2016 B2
9370335 Al-Ali et al. Jun 2016 B2
9375185 Ali et al. Jun 2016 B2
9386953 Al-Ali Jul 2016 B2
9386961 Al-Ali et al. Jul 2016 B2
9392945 Al-Ali et al. Jul 2016 B2
9397448 Al-Ali et al. Jul 2016 B2
9408542 Kinast et al. Aug 2016 B1
9436645 Al-Ali et al. Sep 2016 B2
9445759 Lamego et al. Sep 2016 B1
9466919 Kiani et al. Oct 2016 B2
9474474 Lamego et al. Oct 2016 B2
9480422 Al-Ali Nov 2016 B2
9480435 Olsen Nov 2016 B2
9492110 Al-Ali et al. Nov 2016 B2
9510779 Poeze et al. Dec 2016 B2
9517024 Kiani et al. Dec 2016 B2
9532722 Lamego et al. Jan 2017 B2
9538949 Al-Ali et al. Jan 2017 B2
9538980 Telfort et al. Jan 2017 B2
9549696 Lamego et al. Jan 2017 B2
9554737 Schurman et al. Jan 2017 B2
9560996 Kiani Feb 2017 B2
9560998 Al-Ali et al. Feb 2017 B2
9566019 Al-Ali et al. Feb 2017 B2
9579039 Jansen et al. Feb 2017 B2
9591975 Dalvi et al. Mar 2017 B2
9622692 Lamego et al. Apr 2017 B2
9622693 Diab Apr 2017 B2
D788312 Al-Ali et al. May 2017 S
9636055 Al-Ali et al. May 2017 B2
9636056 Al-Ali May 2017 B2
9649054 Lamego et al. May 2017 B2
9662052 Al-Ali et al. May 2017 B2
9668679 Schurman et al. Jun 2017 B2
9668680 Bruinsma et al. Jun 2017 B2
9668703 Al-Ali Jun 2017 B2
9675286 Diab Jun 2017 B2
9687160 Kiani Jun 2017 B2
9693719 Al-Ali et al. Jul 2017 B2
9693737 Al-Ali Jul 2017 B2
9697928 Al-Ali et al. Jul 2017 B2
9717425 Kiani et al. Aug 2017 B2
9717458 Lamego et al. Aug 2017 B2
9724016 Al-Ali et al. Aug 2017 B1
9724024 Al-Ali Aug 2017 B2
9724025 Kiani et al. Aug 2017 B1
9730640 Diab et al. Aug 2017 B2
9743887 Al-Ali et al. Aug 2017 B2
9749232 Sampath et al. Aug 2017 B2
9750442 Olsen Sep 2017 B2
9750443 Smith et al. Sep 2017 B2
9750461 Telfort Sep 2017 B1
9775545 Al-Ali et al. Oct 2017 B2
9775546 Diab et al. Oct 2017 B2
9775570 Al-Ali Oct 2017 B2
9778079 Al-Ali et al. Oct 2017 B1
9782077 Lamego et al. Oct 2017 B2
9782110 Kiani Oct 2017 B2
9787568 Lamego et al. Oct 2017 B2
9788735 Al-Ali Oct 2017 B2
9788768 Al-Ali et al. Oct 2017 B2
9795300 Al-Ali Oct 2017 B2
9795310 Al-Ali Oct 2017 B2
9795358 Telfort et al. Oct 2017 B2
9795739 Al-Ali et al. Oct 2017 B2
9801556 Kiani Oct 2017 B2
9801588 Weber et al. Oct 2017 B2
9808188 Perea et al. Nov 2017 B1
9814418 Weber et al. Nov 2017 B2
9820691 Kiani Nov 2017 B2
9833152 Kiani et al. Dec 2017 B2
9833180 Shakespeare et al. Dec 2017 B2
9839379 Al-Ali et al. Dec 2017 B2
9839381 Weber et al. Dec 2017 B1
9847002 Kiani et al. Dec 2017 B2
9847749 Kiani et al. Dec 2017 B2
9848800 Lee et al. Dec 2017 B1
9848806 Al-Ali et al. Dec 2017 B2
9848807 Lamego Dec 2017 B2
9861298 Eckerbom et al. Jan 2018 B2
9861304 Al-Ali et al. Jan 2018 B2
9861305 Weber et al. Jan 2018 B1
9867578 Al-Ali et al. Jan 2018 B2
9872623 Al-Ali Jan 2018 B2
9876320 Coverston et al. Jan 2018 B2
9877650 Muhsin et al. Jan 2018 B2
9877686 Al-Ali et al. Jan 2018 B2
9891079 Dalvi Feb 2018 B2
9895107 Al-Ali et al. Feb 2018 B2
9913617 Al-Ali et al. Mar 2018 B2
9924893 Schurman et al. Mar 2018 B2
9924897 Abdul-Hafiz Mar 2018 B1
9936917 Poeze et al. Apr 2018 B2
9943269 Muhsin et al. Apr 2018 B2
9949676 Al-Ali Apr 2018 B2
9955937 Telfort May 2018 B2
9965946 Al-Ali May 2018 B2
9980667 Kiani et al. May 2018 B2
D820865 Muhsin et al. Jun 2018 S
9986919 Lamego et al. Jun 2018 B2
9986952 Dalvi et al. Jun 2018 B2
9989560 Poeze et al. Jun 2018 B2
9993207 Al-Ali et al. Jun 2018 B2
10007758 Al-Ali et al. Jun 2018 B2
D822215 Al-Ali et al. Jul 2018 S
D822216 Barker et al. Jul 2018 S
10010276 Al-Ali et al. Jul 2018 B2
10032002 Kiani et al. Jul 2018 B2
10039482 Al-Ali et al. Aug 2018 B2
10052037 Kinast et al. Aug 2018 B2
10058275 Al-Ali et al. Aug 2018 B2
10064562 Al-Ali Sep 2018 B2
10086138 Novak, Jr. Oct 2018 B1
10092200 Al-Ali et al. Oct 2018 B2
10092249 Kiani et al. Oct 2018 B2
10098550 Al-Ali et al. Oct 2018 B2
10098591 Al-Ali et al. Oct 2018 B2
10098610 Al-Ali et al. Oct 2018 B2
10111591 Dyell et al. Oct 2018 B2
D833624 DeJong et al. Nov 2018 S
10123726 Al-Ali et al. Nov 2018 B2
10123729 Dyell et al. Nov 2018 B2
10130289 Al-Ali et al. Nov 2018 B2
10130291 Schurman et al. Nov 2018 B2
D835282 Barker et al. Dec 2018 S
D835283 Barker et al. Dec 2018 S
D835284 Barker et al. Dec 2018 S
D835285 Barker et al. Dec 2018 S
10149616 Al-Ali et al. Dec 2018 B2
10154815 Al-Ali et al. Dec 2018 B2
10159412 Lamego et al. Dec 2018 B2
10188296 Al-Ali et al. Jan 2019 B2
10188331 Al-Ali et al. Jan 2019 B1
10188348 Kiani et al. Jan 2019 B2
RE47218 Al-Ali Feb 2019 E
RE47244 Kiani et al. Feb 2019 E
RE47249 Kiani et al. Feb 2019 E
10194847 Al-Ali Feb 2019 B2
10194848 Kiani et al. Feb 2019 B1
10201298 Al-Ali et al. Feb 2019 B2
10205272 Kiani et al. Feb 2019 B2
10205291 Scruggs et al. Feb 2019 B2
10213108 Al-Ali Feb 2019 B2
10219706 Al-Ali Mar 2019 B2
10219746 McHale et al. Mar 2019 B2
10226187 Al-Ali et al. Mar 2019 B2
10226576 Kiani Mar 2019 B2
10231657 Al-Ali et al. Mar 2019 B2
10231670 Blank et al. Mar 2019 B2
10231676 Al-Ali et al. Mar 2019 B2
RE47353 Kiani et al. Apr 2019 E
10251585 Al-Ali et al. Apr 2019 B2
10251586 Lamego Apr 2019 B2
10255994 Sampath et al. Apr 2019 B2
10258265 Poeze et al. Apr 2019 B1
10258266 Poeze et al. Apr 2019 B1
10271748 Al-Ali Apr 2019 B2
10278626 Schurman et al. May 2019 B2
10278648 Al-Ali et al. May 2019 B2
10279247 Kiani May 2019 B2
10292628 Poeze et al. May 2019 B1
10292657 Abdul-Hafiz et al. May 2019 B2
10292664 Al-Ali May 2019 B2
10299708 Poeze et al. May 2019 B1
10299709 Perea et al. May 2019 B2
10299720 Brown et al. May 2019 B2
10305775 Lamego et al. May 2019 B2
10307111 Muhsin et al. Jun 2019 B2
10325681 Sampath et al. Jun 2019 B2
10327337 Triman et al. Jun 2019 B2
10327713 Barker et al. Jun 2019 B2
10332630 Al-Ali Jun 2019 B2
10335033 Al-Ali Jul 2019 B2
10335068 Poeze et al. Jul 2019 B2
10335072 Al-Ali et al. Jul 2019 B2
10342470 Al-Ali et al. Jul 2019 B2
10342487 Al-Ali et al. Jul 2019 B2
10342497 Al-Ali et al. Jul 2019 B2
10349895 Telfort et al. Jul 2019 B2
10349898 Al-Ali et al. Jul 2019 B2
10354504 Kiani et al. Jul 2019 B2
10357206 Weber et al. Jul 2019 B2
10357209 Al-Ali Jul 2019 B2
10366787 Sampath et al. Jul 2019 B2
10368787 Reichgott et al. Aug 2019 B2
10376190 Poeze et al. Aug 2019 B1
10376191 Poeze et al. Aug 2019 B1
10383520 Wojtczuk et al. Aug 2019 B2
10383527 Al-Ali Aug 2019 B2
10388120 Muhsin et al. Aug 2019 B2
10398320 Kiani et al. Sep 2019 B2
10405804 Al-Ali Sep 2019 B2
10413666 Al-Ali et al. Sep 2019 B2
10420493 Al-Ali et al. Sep 2019 B2
D864120 Forrest et al. Oct 2019 S
10433776 Al-Ali Oct 2019 B2
10441181 Telfort et al. Oct 2019 B1
10441196 Eckerbom et al. Oct 2019 B2
10448844 Al-Ali et al. Oct 2019 B2
10448871 Al-Ali Oct 2019 B2
10456038 Lamego et al. Oct 2019 B2
10463284 Al-Ali et al. Nov 2019 B2
10463340 Telfort et al. Nov 2019 B2
10470695 Al-Ali Nov 2019 B2
10471159 Lapotko et al. Nov 2019 B1
10478107 Kiani et al. Nov 2019 B2
10503379 Al-Ali et al. Dec 2019 B2
10505311 Al-Ali et al. Dec 2019 B2
10512436 Muhsin et al. Dec 2019 B2
10524706 Telfort et al. Jan 2020 B2
10524738 Olsen Jan 2020 B2
10531811 Al-Ali et al. Jan 2020 B2
10531819 Diab et al. Jan 2020 B2
10531835 Al-Ali et al. Jan 2020 B2
10532174 Al-Ali Jan 2020 B2
10537285 Sherim et al. Jan 2020 B2
10542903 Al-Ali et al. Jan 2020 B2
10548561 Telfort et al. Feb 2020 B2
10555678 Dalvi et al. Feb 2020 B2
10568514 Wojtczuk et al. Feb 2020 B2
10568553 O'Neil et al. Feb 2020 B2
RE47882 Al-Ali Mar 2020 E
10575779 Poeze et al. Mar 2020 B2
10608817 Haider et al. Mar 2020 B2
D880477 Forrest et al. Apr 2020 S
10617302 Al-Ali et al. Apr 2020 B2
10617335 Al-Ali et al. Apr 2020 B2
10637181 Al-Ali et al. Apr 2020 B2
D887548 Abdul-Hafiz et al. Jun 2020 S
D887549 Abdul-Hafiz et al. Jun 2020 S
10667764 Ahmed et al. Jun 2020 B2
D890708 Forrest et al. Jul 2020 S
10721785 Al-Ali Jul 2020 B2
10736518 Al-Ali et al. Aug 2020 B2
10750984 Pauley et al. Aug 2020 B2
D897098 Al-Ali Sep 2020 S
10779098 Iswanto et al. Sep 2020 B2
10827961 Iyengar et al. Nov 2020 B1
10828007 Telfort et al. Nov 2020 B1
10832818 Muhsin et al. Nov 2020 B2
10849554 Shreim et al. Dec 2020 B2
10856750 Indorf et al. Dec 2020 B2
D906970 Forrest et al. Jan 2021 S
10918281 Al-Ali et al. Feb 2021 B2
10932705 Muhsin et al. Mar 2021 B2
10932729 Kiani et al. Mar 2021 B2
10939878 Kiani et al. Mar 2021 B2
D916135 Indorf et al. Apr 2021 S
D917550 Indorf et al. Apr 2021 S
D917564 Indorf et al. Apr 2021 S
D917704 Al-Ali et al. Apr 2021 S
10987066 Chandran et al. Apr 2021 B2
10991135 Al-Ali et al. Apr 2021 B2
D919094 Al-Ali et al. May 2021 S
D919100 Al-Ali et al. May 2021 S
11006867 Al-Ali May 2021 B2
D921202 Al-Ali et al. Jun 2021 S
11024064 Muhsin et al. Jun 2021 B2
11026604 Chen et al. Jun 2021 B2
D925597 Chandran et al. Jul 2021 S
D927699 Al-Ali et al. Aug 2021 S
11076777 Lee et al. Aug 2021 B2
11114188 Poeze et al. Sep 2021 B2
20010034477 Mansfield et al. Oct 2001 A1
20010039483 Brand et al. Nov 2001 A1
20020010401 Bushmakin et al. Jan 2002 A1
20020058864 Mansfield et al. May 2002 A1
20020098807 Saarnimo Jul 2002 A1
20020133080 Apruzzese et al. Sep 2002 A1
20030013975 Kiani Jan 2003 A1
20030018241 Mannheimer Jan 2003 A1
20030018243 Gerhardt et al. Jan 2003 A1
20030135087 Hickle et al. Jul 2003 A1
20030144582 Cohen et al. Jul 2003 A1
20030156288 Barnum et al. Aug 2003 A1
20030212312 Coffin, IV et al. Nov 2003 A1
20040106163 Workman, Jr. et al. Jun 2004 A1
20040162499 Nagai et al. Aug 2004 A1
20050027182 Siddiqui Feb 2005 A1
20050038332 Saidara et al. Feb 2005 A1
20050055276 Kiani et al. Mar 2005 A1
20050177096 Bollish Aug 2005 A1
20050234317 Kiani Oct 2005 A1
20050240091 Lynn Oct 2005 A1
20060073719 Kiani Apr 2006 A1
20060189871 Al-Ali et al. Aug 2006 A1
20060220881 Al-Ali Oct 2006 A1
20070040692 Smith et al. Feb 2007 A1
20070073116 Kiani et al. Mar 2007 A1
20070156031 Sullivan Jul 2007 A1
20070180140 Welch et al. Aug 2007 A1
20070244377 Cozad et al. Oct 2007 A1
20070282478 Al-Ali et al. Dec 2007 A1
20080064965 Jay et al. Mar 2008 A1
20080094228 Welch et al. Apr 2008 A1
20080103375 Kiani May 2008 A1
20080157980 Sachanandani et al. Jul 2008 A1
20080162182 Cazares Jul 2008 A1
20080183054 Kroeger et al. Jul 2008 A1
20080221418 Al-Ali et al. Sep 2008 A1
20080255438 Saidara Oct 2008 A1
20080281168 Gibson Nov 2008 A1
20080287756 Lynn Nov 2008 A1
20090036759 Ault et al. Feb 2009 A1
20090040874 Rooney Feb 2009 A1
20090093687 Telfort et al. Apr 2009 A1
20090095926 MacNeish, III Apr 2009 A1
20090210163 Ochs et al. Aug 2009 A1
20090247848 Baker, Jr. Oct 2009 A1
20090247849 McCutcheon et al. Oct 2009 A1
20090247851 Batchelder et al. Oct 2009 A1
20090247924 Lamego et al. Oct 2009 A1
20090247984 Lamego et al. Oct 2009 A1
20090275807 Sitzman et al. Nov 2009 A1
20090275813 Davis Nov 2009 A1
20090275844 Al-Ali Nov 2009 A1
20090299157 Telfort et al. Dec 2009 A1
20090326340 Wang et al. Dec 2009 A1
20100004518 Vo et al. Jan 2010 A1
20100030040 Poeze et al. Feb 2010 A1
20100099964 O'Reilly et al. Apr 2010 A1
20100113904 Batchelder et al. May 2010 A1
20100234718 Sampath et al. Sep 2010 A1
20100261979 Kiani Oct 2010 A1
20100270257 Wachman et al. Oct 2010 A1
20110001605 Kiani et al. Jan 2011 A1
20110028806 Merritt et al. Feb 2011 A1
20110028809 Goodman Feb 2011 A1
20110040197 Welch et al. Feb 2011 A1
20110082711 Poeze et al. Apr 2011 A1
20110087081 Kiani et al. Apr 2011 A1
20110105854 Kiani et al. May 2011 A1
20110118561 Tari et al. May 2011 A1
20110125060 Telfort et al. May 2011 A1
20110137297 Kiani et al. Jun 2011 A1
20110172498 Olsen et al. Jul 2011 A1
20110208015 Welch et al. Aug 2011 A1
20110209915 Telfort et al. Sep 2011 A1
20110213212 Al-Ali Sep 2011 A1
20110230733 Al-Ali Sep 2011 A1
20110237911 Lamego et al. Sep 2011 A1
20110237969 Eckerbom et al. Sep 2011 A1
20110288383 Diab Nov 2011 A1
20120041316 Al Ali et al. Feb 2012 A1
20120046557 Kiani Feb 2012 A1
20120059267 Lamego et al. Mar 2012 A1
20120088984 Al-Ali et al. Apr 2012 A1
20120116175 Al-Ali et al. May 2012 A1
20120123231 O'Reilly May 2012 A1
20120165629 Merritt et al. Jun 2012 A1
20120179006 Jansen et al. Jul 2012 A1
20120209082 Al-Ali Aug 2012 A1
20120209084 Olsen et al. Aug 2012 A1
20120226117 Lamego et al. Sep 2012 A1
20120227739 Kiani Sep 2012 A1
20120232366 Kiani Sep 2012 A1
20120265039 Kiani Oct 2012 A1
20120283524 Kiani et al. Nov 2012 A1
20120286955 Welch et al. Nov 2012 A1
20120296178 Lamego et al. Nov 2012 A1
20120319816 Al-Ali Dec 2012 A1
20120330112 Lamego et al. Dec 2012 A1
20130023775 Lamego et al. Jan 2013 A1
20130041591 Lamego Feb 2013 A1
20130045685 Kiani Feb 2013 A1
20130046204 Lamego et al. Feb 2013 A1
20130060108 Schurman et al. Mar 2013 A1
20130060147 Welch et al. Mar 2013 A1
20130096405 Garfio Apr 2013 A1
20130096936 Sampath et al. Apr 2013 A1
20130109935 Al-Ali et al. May 2013 A1
20130162433 Muhsin et al. Jun 2013 A1
20130190581 Al-Ali et al. Jul 2013 A1
20130197328 Diab et al. Aug 2013 A1
20130211214 Olsen Aug 2013 A1
20130243021 Siskavich Sep 2013 A1
20130253334 Al-Ali et al. Sep 2013 A1
20130267804 Al-Ali Oct 2013 A1
20130274571 Diab et al. Oct 2013 A1
20130274572 Al-Ali et al. Oct 2013 A1
20130296672 O'Neil et al. Nov 2013 A1
20130296713 Al-Ali et al. Nov 2013 A1
20130317370 Dalvi et al. Nov 2013 A1
20130324808 Al-Ali et al. Dec 2013 A1
20130331660 Al-Ali et al. Dec 2013 A1
20130331670 Kiani Dec 2013 A1
20130338461 Lamego et al. Dec 2013 A1
20130345921 Al-Ali et al. Dec 2013 A1
20140012100 Al-Ali et al. Jan 2014 A1
20140025306 Weber et al. Jan 2014 A1
20140034353 Al-Ali et al. Feb 2014 A1
20140051952 Reichgott et al. Feb 2014 A1
20140051953 Lamego et al. Feb 2014 A1
20140051954 Al-Ali et al. Feb 2014 A1
20140058230 Abdul-Hafiz et al. Feb 2014 A1
20140066783 Kiani et al. Mar 2014 A1
20140077956 Sampath et al. Mar 2014 A1
20140081100 Muhsin et al. Mar 2014 A1
20140081175 Telfort Mar 2014 A1
20140094667 Schurman et al. Apr 2014 A1
20140100434 Diab et al. Apr 2014 A1
20140114199 Lamego et al. Apr 2014 A1
20140120564 Workman et al. May 2014 A1
20140121482 Merritt et al. May 2014 A1
20140121483 Kiani May 2014 A1
20140125495 Al-Ali May 2014 A1
20140127137 Bellott et al. May 2014 A1
20140128696 Al-Ali May 2014 A1
20140128699 Al-Ali et al. May 2014 A1
20140129702 Lamego et al. May 2014 A1
20140135588 Al-Ali et al. May 2014 A1
20140142401 Al-Ali et al. May 2014 A1
20140142402 Al-Ali et al. May 2014 A1
20140163344 Al-Ali Jun 2014 A1
20140163402 Lamego et al. Jun 2014 A1
20140166076 Kiani et al. Jun 2014 A1
20140171763 Diab Jun 2014 A1
20140180038 Kiani Jun 2014 A1
20140180154 Sierra et al. Jun 2014 A1
20140180160 Brown et al. Jun 2014 A1
20140187973 Brown et al. Jul 2014 A1
20140194709 Al-Ali et al. Jul 2014 A1
20140194711 Al-Ali Jul 2014 A1
20140194766 Al-Ali et al. Jul 2014 A1
20140200420 Al-Ali Jul 2014 A1
20140200422 Weber et al. Jul 2014 A1
20140206963 Al-Ali Jul 2014 A1
20140213864 Abdul-Hafiz et al. Jul 2014 A1
20140243627 Diab et al. Aug 2014 A1
20140266790 Al-Ali et al. Sep 2014 A1
20140275808 Poeze et al. Sep 2014 A1
20140275835 Lamego et al. Sep 2014 A1
20140275871 Lamego et al. Sep 2014 A1
20140275872 Merritt et al. Sep 2014 A1
20140275881 Lamego et al. Sep 2014 A1
20140276115 Dalvi et al. Sep 2014 A1
20140288400 Diab et al. Sep 2014 A1
20140296664 Bruinsma et al. Oct 2014 A1
20140303520 Telfort et al. Oct 2014 A1
20140309506 Lamego et al. Oct 2014 A1
20140309507 Baker, Jr. Oct 2014 A1
20140309559 Telfort et al. Oct 2014 A1
20140316217 Purdon et al. Oct 2014 A1
20140316218 Purdon et al. Oct 2014 A1
20140316228 Blank et al. Oct 2014 A1
20140323825 Al-Ali et al. Oct 2014 A1
20140323897 Brown et al. Oct 2014 A1
20140323898 Purdon et al. Oct 2014 A1
20140330092 Al-Ali et al. Nov 2014 A1
20140330098 Merritt et al. Nov 2014 A1
20140330099 Al-Ali et al. Nov 2014 A1
20140333440 Kiani Nov 2014 A1
20140336481 Shakespeare et al. Nov 2014 A1
20140343436 Kiani Nov 2014 A1
20150005600 Blank et al. Jan 2015 A1
20150011907 Purdon et al. Jan 2015 A1
20150012231 Poeze et al. Jan 2015 A1
20150018650 Al-Ali et al. Jan 2015 A1
20150025406 Al-Ali Jan 2015 A1
20150032029 Al-Ali et al. Jan 2015 A1
20150038859 Dalvi et al. Feb 2015 A1
20150045637 Dalvi Feb 2015 A1
20150051462 Olsen Feb 2015 A1
20150073241 Lamego Mar 2015 A1
20150080754 Purdon et al. Mar 2015 A1
20150087936 Al-Ali et al. Mar 2015 A1
20150094546 Al-Ali Apr 2015 A1
20150097701 Al-Ali et al. Apr 2015 A1
20150099950 Al-Ali et al. Apr 2015 A1
20150099951 Al-Ali et al. Apr 2015 A1
20150099955 Al-Ali et al. Apr 2015 A1
20150101844 Al-Ali et al. Apr 2015 A1
20150106121 Muhsin et al. Apr 2015 A1
20150112151 Muhsin et al. Apr 2015 A1
20150116076 Al-Ali et al. Apr 2015 A1
20150126830 Schurman et al. May 2015 A1
20150133755 Smith et al. May 2015 A1
20150141781 Weber et al. May 2015 A1
20150165312 Kiani Jun 2015 A1
20150196237 Lamego Jul 2015 A1
20150216459 Al-Ali et al. Aug 2015 A1
20150230755 Al-Ali et al. Aug 2015 A1
20150238722 Al-Ali Aug 2015 A1
20150245773 Lamego et al. Sep 2015 A1
20150245794 Al-Ali Sep 2015 A1
20150257689 Al-Ali et al. Sep 2015 A1
20150272514 Kiani et al. Oct 2015 A1
20150351697 Weber et al. Dec 2015 A1
20150351704 Kiani et al. Dec 2015 A1
20150359429 Al-Ali et al. Dec 2015 A1
20150366472 Kiani Dec 2015 A1
20150366507 Blank Dec 2015 A1
20150374298 Al-Ali et al. Dec 2015 A1
20150380875 Coverston et al. Dec 2015 A1
20160000362 Diab et al. Jan 2016 A1
20160007930 Weber et al. Jan 2016 A1
20160029932 Al-Ali Feb 2016 A1
20160045118 Kiani Feb 2016 A1
20160051205 Al-Ali et al. Feb 2016 A1
20160058338 Schurman et al. Mar 2016 A1
20160058347 Reichgott et al. Mar 2016 A1
20160066823 Al-Ali et al. Mar 2016 A1
20160066824 Al-Ali et al. Mar 2016 A1
20160066879 Telfort et al. Mar 2016 A1
20160072429 Kiani et al. Mar 2016 A1
20160081552 Wojtczuk et al. Mar 2016 A1
20160095543 Telfort et al. Apr 2016 A1
20160095548 Al-Ali et al. Apr 2016 A1
20160103598 Al-Ali et al. Apr 2016 A1
20160113527 Al-Ali et al. Apr 2016 A1
20160143548 Al-Ali May 2016 A1
20160166182 Al-Ali et al. Jun 2016 A1
20160166183 Poeze et al. Jun 2016 A1
20160166188 Bruinsma et al. Jun 2016 A1
20160166210 Al-Ali Jun 2016 A1
20160192869 Kiani et al. Jul 2016 A1
20160196388 Lamego Jul 2016 A1
20160197436 Barker et al. Jul 2016 A1
20160213281 Eckerbom et al. Jul 2016 A1
20160228043 O'Neil et al. Aug 2016 A1
20160233632 Scruggs et al. Aug 2016 A1
20160234944 Schmidt et al. Aug 2016 A1
20160270735 Diab et al. Sep 2016 A1
20160283665 Sampath et al. Sep 2016 A1
20160287090 Al-Ali et al. Oct 2016 A1
20160287786 Kiani Oct 2016 A1
20160296169 McHale et al. Oct 2016 A1
20160310052 Al-Ali et al. Oct 2016 A1
20160314260 Kiani Oct 2016 A1
20160324486 Al-Ali et al. Nov 2016 A1
20160324488 Olsen Nov 2016 A1
20160327984 Al-Ali et al. Nov 2016 A1
20160328528 Al-Ali et al. Nov 2016 A1
20160331332 Al-Ali Nov 2016 A1
20160367173 Dalvi et al. Dec 2016 A1
20170007134 Al-Ali et al. Jan 2017 A1
20170007190 Al-Ali et al. Jan 2017 A1
20170007198 Al-Ali et al. Jan 2017 A1
20170014083 Diab et al. Jan 2017 A1
20170014084 Al-Ali et al. Jan 2017 A1
20170021099 Al-Ali et al. Jan 2017 A1
20170024748 Haider Jan 2017 A1
20170027456 Kinast et al. Feb 2017 A1
20170042488 Muhsin Feb 2017 A1
20170055847 Kiani et al. Mar 2017 A1
20170055851 Al-Ali Mar 2017 A1
20170055882 Al-Ali et al. Mar 2017 A1
20170055887 Al-Ali Mar 2017 A1
20170055896 Al-Ali et al. Mar 2017 A1
20170079594 Telfort et al. Mar 2017 A1
20170086723 Al-Ali et al. Mar 2017 A1
20170143281 Olsen May 2017 A1
20170147774 Kiani May 2017 A1
20170156620 Al-Ali et al. Jun 2017 A1
20170173632 Al-Ali Jun 2017 A1
20170187146 Kiani et al. Jun 2017 A1
20170188919 Al-Ali et al. Jul 2017 A1
20170196464 Jansen et al. Jul 2017 A1
20170196470 Lamego et al. Jul 2017 A1
20170202490 Al-Ali et al. Jul 2017 A1
20170224231 Al-Ali Aug 2017 A1
20170224262 Al-Ali Aug 2017 A1
20170228516 Sampath et al. Aug 2017 A1
20170245790 Al-Ali et al. Aug 2017 A1
20170251974 Shreim et al. Sep 2017 A1
20170251975 Shreim et al. Sep 2017 A1
20170258403 Abdul-Hafiz et al. Sep 2017 A1
20170311891 Kiani et al. Nov 2017 A1
20170325728 Al-Ali et al. Nov 2017 A1
20170332976 Al-Ali et al. Nov 2017 A1
20170340293 Al-Ali et al. Nov 2017 A1
20170360310 Kiani et al. Dec 2017 A1
20170367632 Al-Ali et al. Dec 2017 A1
20180008146 Al-Ali et al. Jan 2018 A1
20180013562 Haider et al. Jan 2018 A1
20180014752 Al-Ali et al. Jan 2018 A1
20180028124 Al-Ali et al. Feb 2018 A1
20180055390 Kiani et al. Mar 2018 A1
20180055430 Diab et al. Mar 2018 A1
20180064381 Shakespeare et al. Mar 2018 A1
20180070867 Smith et al. Mar 2018 A1
20180082767 Al-Ali et al. Mar 2018 A1
20180085068 Telfort Mar 2018 A1
20180087937 Al-Ali et al. Mar 2018 A1
20180103874 Lee et al. Apr 2018 A1
20180103905 Kiani Apr 2018 A1
20180125368 Lamego et al. May 2018 A1
20180125430 Al-Ali et al. May 2018 A1
20180125445 Telfort et al. May 2018 A1
20180132769 Weber et al. May 2018 A1
20180146901 Al-Ali et al. May 2018 A1
20180146902 Kiani et al. May 2018 A1
20180153442 Eckerbom et al. Jun 2018 A1
20180153446 Kiani Jun 2018 A1
20180153447 Al-Ali et al. Jun 2018 A1
20180153448 Weber et al. Jun 2018 A1
20180168491 Al-Ali et al. Jun 2018 A1
20180184917 Kiani Jul 2018 A1
20180192924 Al-Ali Jul 2018 A1
20180192953 Shreim et al. Jul 2018 A1
20180199871 Pauley et al. Jul 2018 A1
20180206795 Al-Ali Jul 2018 A1
20180206815 Telfort Jul 2018 A1
20180213583 Al-Ali Jul 2018 A1
20180214090 Al-Ali et al. Aug 2018 A1
20180216370 Ishiguro et al. Aug 2018 A1
20180218792 Muhsin et al. Aug 2018 A1
20180225960 Al-Ali et al. Aug 2018 A1
20180238718 Dalvi Aug 2018 A1
20180242853 Al-Ali Aug 2018 A1
20180242921 Muhsin et al. Aug 2018 A1
20180242923 Al-Ali et al. Aug 2018 A1
20180242926 Muhsin et al. Aug 2018 A1
20180247353 Al-Ali et al. Aug 2018 A1
20180247712 Muhsin et al. Aug 2018 A1
20180256087 Al-Ali et al. Sep 2018 A1
20180285094 Housel et al. Oct 2018 A1
20180289325 Poeze et al. Oct 2018 A1
20180296161 Shreim et al. Oct 2018 A1
20180300919 Muhsin et al. Oct 2018 A1
20180310822 Indorf et al. Nov 2018 A1
20180310823 Al-Ali et al. Nov 2018 A1
20180317826 Muhsin Nov 2018 A1
20180317841 Novak, Jr. Nov 2018 A1
20180333055 Lamego et al. Nov 2018 A1
20180333087 Al-Ali Nov 2018 A1
20190000317 Muhsin et al. Jan 2019 A1
20190000362 Kiani et al. Jan 2019 A1
20190015023 Monfre Jan 2019 A1
20190029574 Schurman et al. Jan 2019 A1
20190029578 Al-Ali et al. Jan 2019 A1
20190058280 Al-Ali et al. Feb 2019 A1
20190058281 Al-Ali et al. Feb 2019 A1
20190069813 Al-Ali Mar 2019 A1
20190069814 Al-Ali Mar 2019 A1
20190076028 Al-Ali et al. Mar 2019 A1
20190082979 Al-Ali et al. Mar 2019 A1
20190090760 Kinast et al. Mar 2019 A1
20190090764 Al-Ali Mar 2019 A1
20190117070 Muhsin et al. Apr 2019 A1
20190117139 Al-Ali et al. Apr 2019 A1
20190117140 Al-Ali et al. Apr 2019 A1
20190117141 Al-Ali Apr 2019 A1
20190117930 Al-Ali Apr 2019 A1
20190122763 Sampath et al. Apr 2019 A1
20190133525 Al-Ali et al. May 2019 A1
20190142283 Lamego et al. May 2019 A1
20190142344 Telfort et al. May 2019 A1
20190150856 Kiani et al. May 2019 A1
20190167161 Al-Ali et al. Jun 2019 A1
20190175019 Al-Ali et al. Jun 2019 A1
20190192076 McHale et al. Jun 2019 A1
20190200941 Chandran et al. Jul 2019 A1
20190201623 Kiani Jul 2019 A1
20190209025 Al-Ali Jul 2019 A1
20190214778 Scruggs et al. Jul 2019 A1
20190216319 Poeze et al. Jul 2019 A1
20190216379 Al-Ali et al. Jul 2019 A1
20190221966 Kiani et al. Jul 2019 A1
20190223804 Blank et al. Jul 2019 A1
20190231199 Al-Ali et al. Aug 2019 A1
20190231241 Al-Ali et al. Aug 2019 A1
20190231270 Abdul-Hafiz et al. Aug 2019 A1
20190239787 Pauley et al. Aug 2019 A1
20190239824 Muhsin et al. Aug 2019 A1
20190254578 Lamego Aug 2019 A1
20190261857 Al-Ali Aug 2019 A1
20190269370 Al-Ali et al. Sep 2019 A1
20190274606 Kiani et al. Sep 2019 A1
20190274627 Al-Ali et al. Sep 2019 A1
20190274635 Al-Ali et al. Sep 2019 A1
20190290136 Dalvi et al. Sep 2019 A1
20190298270 Al-Ali et al. Oct 2019 A1
20190304601 Sampath et al. Oct 2019 A1
20190304605 Al-Ali Oct 2019 A1
20190307377 Perea et al. Oct 2019 A1
20190320906 Olsen Oct 2019 A1
20190320959 Al-Ali Oct 2019 A1
20190320988 Ahmed et al. Oct 2019 A1
20190325722 Kiani et al. Oct 2019 A1
20190350506 Al-Ali Nov 2019 A1
20190357812 Poeze et al. Nov 2019 A1
20190357813 Poeze et al. Nov 2019 A1
20190357823 Reichgott et al. Nov 2019 A1
20190357824 Al-Ali Nov 2019 A1
20190358524 Kiani Nov 2019 A1
20190365294 Poeze et al. Dec 2019 A1
20190365295 Poeze et al. Dec 2019 A1
20190374135 Poeze et al. Dec 2019 A1
20190374139 Kiani et al. Dec 2019 A1
20190374173 Kiani et al. Dec 2019 A1
20190374713 Kiani et al. Dec 2019 A1
20190386908 Lamego et al. Dec 2019 A1
20190388039 Al-Ali Dec 2019 A1
20200000338 Lamego et al. Jan 2020 A1
20200000415 Barker et al. Jan 2020 A1
20200015716 Poeze et al. Jan 2020 A1
20200021930 Iswanto et al. Jan 2020 A1
20200029867 Poeze et al. Jan 2020 A1
20200037453 Triman et al. Jan 2020 A1
20200037891 Kiani et al. Feb 2020 A1
20200037966 Al-Ali Feb 2020 A1
20200046257 Eckerbom et al. Feb 2020 A1
20200054253 Al-Ali et al. Feb 2020 A1
20200060591 Diab et al. Feb 2020 A1
20200060628 Al-Ali et al. Feb 2020 A1
20200060629 Muhsin et al. Feb 2020 A1
20200060869 Telfort et al. Feb 2020 A1
20200074819 Muhsin et al. Mar 2020 A1
20200111552 Ahmed Apr 2020 A1
20200113435 Muhsin Apr 2020 A1
20200113488 Al-Ali et al. Apr 2020 A1
20200113496 Scruggs et al. Apr 2020 A1
20200113497 Triman et al. Apr 2020 A1
20200113520 Abdul-Hafiz et al. Apr 2020 A1
20200138288 Al-Ali et al. May 2020 A1
20200138368 Kiani et al. May 2020 A1
20200163597 Dalvi et al. May 2020 A1
20200196877 Vo et al. Jun 2020 A1
20200253474 Muhsin et al. Aug 2020 A1
20200253544 Belur Nagaraj et al. Aug 2020 A1
20200275841 Telfort et al. Sep 2020 A1
20200288983 Telfort et al. Sep 2020 A1
20200321793 Al-Ali et al. Oct 2020 A1
20200329983 Al-Ali et al. Oct 2020 A1
20200329984 Al-Ali et al. Oct 2020 A1
20200329993 Al-Ali et al. Oct 2020 A1
20200330037 Al-Ali et al. Oct 2020 A1
20210022628 Telfort et al. Jan 2021 A1
20210104173 Pauley et al. Apr 2021 A1
20210113121 Diab et al. Apr 2021 A1
20210117525 Kiani et al. Apr 2021 A1
20210118581 Kiani et al. Apr 2021 A1
20210121582 Krishnamani et al. Apr 2021 A1
20210161465 Barker et al. Jun 2021 A1
20210236729 Kiani et al. Aug 2021 A1
20210256267 Ranasinghe et al. Aug 2021 A1
20210256835 Ranasinghe et al. Aug 2021 A1
Foreign Referenced Citations (14)
Number Date Country
0880936 Dec 1998 EP
0920729 Apr 2000 EP
H05228122 Sep 1993 JP
4777640 Sep 2011 JP
WO 9615594 May 1996 WO
WO 9913698 Mar 1999 WO
WO 0042911 Jul 2000 WO
WO 0044274 Aug 2000 WO
WO 03007815 Jan 2003 WO
WO 03028549 Apr 2003 WO
WO 2005087097 Sep 2005 WO
WO 09093159 Jul 2009 WO
WO 2009093159 Jul 2009 WO
WO 2010014743 Feb 2010 WO
Non-Patent Literature Citations (201)
Entry
US 9,579,050 B2, 02/2017, Al-Ali (withdrawn)
Jul. 10, 2020 Defendants Sotera Wireless, Inc. and Hon Hai Precision Industry Co. Ltd.'s Amended Local Patent Rule 4.1 Preliminary Claim Constructions with Extrinsic Evidence, and including Exhibits A-I, Masimo Corporation v. Sotera Wireless, Inc. and Hon Hai Precision Industry Co., Ltd., Case No. 3:19-cv-01100-BAS-NLS, 63 pages.
Jul. 24, 2020 Masimo Corporation's Responsive Claim Constructions and Extrinsic Evidence, and including Exhibit A, Masimo Corporation v. Sotera Wireless, Inc. and Hon Hai Precision Industry Co., Ltd., Case No. 3:19-cv-01100-BAS-NLS, 98 pages.
Jul. 24, 2020 Defendants Sotera Wireless, Inc. and Hon Hai Precision Industry Co. Ltd.'s Local Patent Rule 4.1 Preliminary Responsive Claim Constructions with Extrinsic Evidence, Masimo Corporation v. Sotera Wireless, Inc. and Hon Hai Precision Industry Co., Ltd., Case No. 3:19-cv-01100-BAS-NLS, 11 pages.
Aug. 10, 2020 Joint Hearing Statement, and including Exhibits 1-2 and Appendices A-I, Masimo Corporation v. Sotera Wireless, Inc. and Hon Hai Precision Industry Co., Ltd., Case No. 3:19-cv-01100-BAS-NLS, 480 pages.
Sep. 22, 2020 Plaintiff Masimo Corporation's Opening Claim Construction Brief, Masimo Corporation v. Sotera Wireless, Inc. and Hon Hai Precision Industry Co., Ltd., Case No. 3:19-cv-01100-BAS-NLS, 33 pages.
Sep. 22, 2020 Declaration of Jack Goldberg in Support of Plaintiff Masimo Corporation's Opening Claim Construction Brief, Masimo Corporation v. Sotera Wireless, Inc. and Hon Hai Precision Industry Co., Ltd., Case No. 3:19-cv-01100-BAS-NLS, 30 pages.
Sep. 22, 2020 Defendants Sotera Wireless, Inc. and Hon Hai Precision Industry Co., Ltd.'s Opening Markman Brief, Masimo Corporation v. Sotera Wireless, Inc. and Hon Hai Precision Industry Co., Ltd., Case No. 3:19-cv-01100-BAS-NLS, 33 pages.
Sep. 22, 2020 Declaration of Dr. George Yanulis in Support of Defendants' Opening Claim Construction Brief, Masimo Corporation v. Sotera Wireless, Inc. and Hon Hai Precision Industry Co., Ltd., Case No. 3:19-cv-01100-BAS-NLS, 64 pages.
Definition of “initiate”, excerpt from New Oxford American Dictionary, Third Edition, 2010, 4 pages.
Definition of “initiate”, excerpt from The New Oxford American Dictionary, 2001, 6 pages.
Dec. 7, 2020 Decision Granting Institution of Inter Partes Review, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, 51 pages.
International Search Report for PCT/US2009/052146, dated Dec. 15, 2009.
International Preliminary Report on Patentability and Written Opinion for PCT/US2009/052146 dated Feb. 10, 2011.
Rheineck-Leyssius, MD, et al., “Advanced Pulse Oximeter Signal Processing Technology Compared to Simple Averaging. I. Effect on Frequency of Alarms in the Operating Room”, Journal of Clinical Anesthesia, The Netherlands, May 1999, vol. 11, pp. 192-195.
Cust, AE, et al., “Alarm settings for the Marquette 8000 pulse oximeter to prevent hyperoxic and hypoxic episodes”, Journal Paediatric Child Health, 1999, vol. 35, pp. 159-162.
Lawless, Stephen T., “Crying wolf: False alarms in a pediatric intensive care unit”, Critical Care Medicine, 1994, vol. 22, No. 6, pp. 981-985.
Informal Expert Report of Dr. Stephen Barker, Lead Case No. 16-05968-LT11, executed Feb. 10, 2017.
Impact of Clinical Alarms On Patient Safety, ACCE Healthcare Technology Foundation, 2006, 20 pages.
Taenzer, M.D., Andreas, “Impact of Pulse Oximetry Surveillance on Rescue Events and Intensive Care Unit Transfers”, The American Society of Anesthesiologists, Inc., Feb. 2010, vol. 112, No. 2, pp. 282-287.
Stefanescu, MD MSc, Beatrice, “Improved Filtering of Pulse Oximeter Monitoring Alarms in the Neonatal ICU: Bedside Significance”, Respiratory Care, Jan. 2016, vol. 61, No. 1, pp. 85-89.
Rheineck-Leyssius, A.T., et al., “Influence of pulse oximeter lower alarm limit on the incidence of hypoxaemia in the recovery room”, British Journal of Anaesthesia, 1997, vol. 79, pp. 460-464.
Rheineck-Leyssius, MD, Aart, et al., “Influence of Pulse Oximeter Settings on the Frequency of Alarms, and Detection of Hypoxemia”, Journal of Clinical Monitoring and Computing, 1998, vol. 14, pp. 151-156.
Pan, MD., Peter, “Intraoperative Pulse Oximetry: Frequency and Distribution of Discrepant Data”, Journal of Clinical Monitoring and Computing, Nov./Dec. 1994, vol. 6, pp. 491-495.
Graham, Kelly, et al., Monitor Alarm Fatigue: Standardizing Use of Physiological Monitors and Decreasing Nuisance Alarms, American Journal of Critical Care, Jan. 2010, vol. 19, No. 1, pp. 27-37.
Barker, PhD, MD, Steven, “‘Motion-Resistant’ Pulse Oximetry: A Comparison of New and Old Models” Department of Anesthesiology, 2002, vol. 95, pp. 967-972.
National Patient Safety Goals Effective Jan. 1, 2015, Hospital Accreditation Program, The Joint Commission, Jan. 2015, pp. 1-17.
Brostowicz, Heather, et al. Oxygen saturation monitoring in the Neonatal Intensive Care Unit (NICU): Evaluation of a new alarm management, Journal of Neonatal-Perinatal Medicine 3, 2010, pp. 135-139.
Kowalczyk, Liz, “Patient alarms often unheard, unheeded” The Boston Globe, Feb. 13, 2011, in 5 pages.
Taenzer, Andreas, et al., “Postoperative Monitoring—The Dartmouth Experience”, The Official Journal of the Anesthesia Patient Safety Foundation, Spring-Summer 2012, vol. 27, No. 1, pp. 1-28.
Tobin, Martin, “Principles and Practice of Intensive Care Monitoring”, 1998, in 30 pages.
Severinghaus, M.D., John, et al., Pulse Oximeter Failure Thresholds in Hypotension and Vasoconstriction, Anesthesiology, Sep. 1990, vol. 73, No. 3, pp. 532-537.
Pologe, Jonas A., “Pulse Oximetry: Technical Aspects of Machine Design”, International Anesthesiology Clinics, Advances in Oxygen Monitoring, Fall, 1987, vol. 25, No. 3, pp. 137-153.
Tremper, Ph.D., Kevin et al., “Pulse Oximetry”, Medical Intelligence Article, Anesthesiology, Jan. 1989, vol. 70, No. 1, pp. 98-108.
Bosque, PhD, Elena, “Symbiosis of nurse and machine through fuzzy logic: Improved specificity of a neonatal pulse oximeter alarm”, Dec. 1995, vol. 18, Issue 2, pp. 67-75.
Paine, MPH, Christine, et al., “Systematic review of physiologic monitor alarm characteristics and pragmatic interventions to reduce alarm frequency” J Hosp Med., Feb. 2017, vol. 11, No. 2, pp. 136-144.
Top 10 Technology Hazards for 2012, Guidance Article, Nov. 2011, www.ecri.org, pp. 358-373.
Top 10 Technology Hazards for 2013, Health Devices, ECRI Institute, Nov. 2012, reprinted from vol. 41, Issue 11, in 25 pages.
Top 10 Health Technology Hazards for 2014, Health Devices, ECRI Institute, Nov. 2013, www.ecri.org/2014hazards, 1 page.
Masimo Advanced Alarm Performance: An Evidence-Based Approach to Reduce False Alarms and Nuisance Alarms, 2010, in 8 pages.
Complaint for Patent Infringement, Masimo Corporation v. Sotera Wireless and Hon Hai Precision Industry Co., Ltd., Case No. 3:19-cv-01100-BAS-NLS, filed Jun. 12, 2019, in 385 pages.
Jun. 12, 2019 Complaint for Patent Infringement and Demand for Jury Trial, Masimo Corporation v. Sotera Wireless and Hon Hai Precision Industry Co., Ltd., Case No. 3:19-cv-01100-BAS-NLS, 385 pages. [Uploaded in 2 parts].
Oct. 3, 2019 Defendant Sotera Wireless, Inc.'s Answer to Plaintiff's Complaint for Patent Infringement, Masimo Corporation v. Sotera Wireless and Hon Hai Precision Industry Co., Ltd., Case No. 3:19-cv-01100-BAS-NLS, 26 pages.
Oct. 3, 2019 Defendant Hon Hai Precision Industry Co., Ltd.'s Notice of Motion and Motion Pursuant to Rule 12(b)(6) to Dismiss Plaintiff's Complaint, Masimo Corporation v. Sotera Wireless and Hon Hai Precision Industry Co., Ltd., Case No. 3:19-cv-01100-BAS-NLS, 3 pages.
Oct. 3, 2019 Defendant Hon Hai Precision Industry Co., Ltd.'s Memorandum of Points and Authorities in Support of Motion Pursuant to Rule 12(b)(6) to Dismiss Plaintiff's Complaint, Masimo Corporation v. Sotera Wireless and Hon Hai Precision Industry Co., Ltd., Case No. 3:19-cv-01100-BAS-NLS, 16 pages.
Oct. 24, 2019 Defendant Sotera Wireless, Inc.'s First Amended Answer to Plaintiff's Complaint for Patent Infringement and Demand for Jury Trial, Masimo Corporation v. Sotera Wireless and Hon Hai Precision Industry Co., Ltd., Case No. 3:19-cv-01100-BAS-NLS, 32 pages.
Ferrell, “Design and Construct Miniaturized Biosensor/Transmitter System,” Dept. of Physics, University of Tennessee, Jun. 1999, 77 pages.
Perng et al., “Acceleration Sensing Glove (ASG),” Berkeley Sensor & Actuator Center, University of California, Berkeley, Feb. 1999, 3 pages.
Raghunath et al., “User Interfaces for Applications on a Wrist Watch, Wearable Computing Platforms,” IBM TJ Watson Research Center, New York, US, Personal Ubiquitous Computing, vol. 6, issue 1, Feb. 2002, pp. 17-30.
Stein et al., “Development of a Commercially Successful Wearable Data Collection System,” Digest of Papers. Second International Symposium on Wearable Computers, Pittsburgh, PA, USA, Oct. 19-20, 1998, pp. 18-24.
Billinghurst et al., “Wearable Devices: New Ways to Manage Information,” Computer, vol. 32, No. 1, Jan. 1999, pp. 57-64.
Berggren, “Wireless communication in telemedicine using Bluetooth and IEEE 802.11b,” Department of Information Technology, Uppsala University, Sweden, Nov. 2001, 32 pages.
Adler, “A Cost-Effective Portable Telemedicine Kit for Use in Developing Countries,” Massachusetts Institute of Technology, May 2000, 96 pages.
Satava, et al., “The Physiologic Cipher at Altitude: Telemedicine and Real-Time Monitoring of Climbers on Mount Everest,” Telemedicine Journal and e-Health, vol. 6, No. 3, Feb. 2000, pp. 303-313.
Fricke et al., “Wireless Sensor Review,” Arthur D. Little, Inc., Cambridge, MA, Mar. 2001, 59 pages.
Haglund, “Bluetooth Software and Hardware Development,” Imperial College of Science, Technology and Medicine, University of London, Sep. 2001, 66 pages.
Bilstrup et al., “Bluetooth in Industrial Environment,” IEEE International Workshop on Factory Communication Systems, Feb. 2000, 9 pages.
Shoemake, “Wi-Fi (IEEE 802.11b) and Bluetooth: Coexistence Issues and Solutions for the 2.4 GHz ISM Band,” Texas Instruments, Feb. 2001, 18 pages.
Aljuaied, “Bluetooth Technology and Its Implementation in Sensing Devices,” Research Office Naval Postgraduate School, Monterey, CA, Sep. 2001, 75 pages.
Seruca et al., “Enterprise Information Systems VI,” Springer, Kluwer Academic Publishers, Mar. 2006, 334 pages.
Tsien, “TrendFinder: Automated Detection of Alarmable Trends,” Massachusetts Institute of Technology, Apr. 2000, 240 pages.
Tsien, “Reducing False Alarms in the Intensive Care Unit: A Systematic Comparison of Four Algorithms,” Proceedings of the AMIA Annual Fall Symposium, 1997, p. 894.
Myerson et al., “An Evaluation of Ventilator Monitoring Alarms,” Anaesthesia and Intensive Care, vol. 14, No. 2, May 1986, pp. 174-185.
Huang, “Intelligent Alarms: Allocating Attention Among Concurrent Processes,” Stanford University, Mar. 1999, 198 pages.
Mora et al., “Intelligent Patient Monitoring and Management Systems: A Review,” IEEE Engineering in Medicine and Biology Magazine, vol. 12, issue 4, Dec. 1993, pp. 23-33.
Zhang et al., “Prospective Trials of Intelligent Alarm Algorithms for Patient Monitoring,” Proceedings of the AMIA Symposium, 2001, p. 1068.
Malangi, “Simulation and mathematical notation of alarms unit for computer assisted resuscitation algorithm,” New Jersey Institute or Technology, Digital Commons @ NJIT, These 526, Fall 2003.
Schoenberg MD et al., “Making ICU Alarms Meaningful: A Comparison of Traditional vs. Trend-Based Algorithms,” Proceedings. AMIA Symposium, 1999, pp. 379-383.
Jones, “Autonomous Patient Monitoring with a Pressure Sensor Array,” Carleton University, Ontario, Canada, Sep. 2006, 185 pages.
Taenzer et al., “Impact of Pulse Oximetry Surveillance on Rescue Events and Intensive Care Unit Transfers: A Before-and-After Concurrence Study,” Anesthesiology—The Journal of the American Society of Anesthesiologists, Inc., vol. 112, No. 2, Feb. 2010, pp. 282-287.
Mar. 20, 2020 Defendants Sotera Wireless Inc. and Hon Hai Precision Industry Co. Ltd.'s Invalidity Contentions, Masimo Corporation v. Sotera Wireless, Inc. and Hon Hai Precision Industry Co., Ltd., Case No. 3:19-cv-01100-BAS-NLS, 5182 pages.
Apr. 3, 2020 Masimo Corporation's Preliminary Claim Constructions and Extrinsic Evidence, Masimo Corporation v. Sotera Wireless and Hon Hai Precision Industry Co., Ltd., Case No. 3:19-cv-01100-BAS-NLS, 13 pages.
Apr. 3, 2020 Defendants Sotera Wireless, Inc. and Hon Hai Precision Industry Co. Ltd.'s Local Patent Rule 4.1 Preliminary Claim Constructions with Extrinsic Evidence, and including Exhibits A-I, Masimo Corporation v. Sotera Wireless and Hon Hai Precision Industry Co., Ltd., Case No. 3:19-cv-01100-BAS-NLS, 63 pages.
Jun. 8, 2020 First Amended Complaint for Patent Infringement and Demand for Jury Trial (Exhibits 1-10 comprise publicly available or previously submitted documents and are not included herein for ease of transmission), Masimo Corporation v. Sotera Wireless and Hon Hai Precision Industry Co., Ltd., Case No. 3:19-cv-01100-BAS-NLS, 58 pages.
Jun. 22, 2020 Defendant Sotera Wireless, Inc.'s Answer to Plaintiff's First Amended Complaint for Patent Infringement and Demand for Jury Trial (Exhibits A-X comprise publicly available or previously submitted documents and are not included herein for ease of transmission), Masimo Corporation v. Sotera Wireless and Hon Hai Precision Industry Co., Ltd., Case No. 3:19-cv-01100-BAS-NLS, 39 pages.
Rheineck-Leyssius et al., “Influence of Pulse Oximeter Lower Alarm Limit on the Incidence of Hypoxaemia in the Recovery Room,” 79 British Journal of Anesthesia, 1997, pp. 460-464.
The Institute of Electrical and Electronics Engineers, Inc., “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5 GHZ Band,” IEEE Std 802.11a-1999, Supplement to IEEE Std 802.11-1999, Sep. 1999, 90 pages.
Mäkivirta et al., “Alarm-Inducing Variability in Cardiac Postoperative Data and the Effects of Prealarm Delay”, Journal of Clinical Monitoring, May 1994, vol. 10, No. 3, pp. 153-162.
Rheineck-Leyssius et al., “Influence of Pulse Oximeter Settings on the Frequency of Alarms and Detection of Hypoxemia”, Journal of Clinical Monitoring and Computing, Apr. 1998, vol. 14, No. 3, pp. 151-156.
Petition for Inter Partes Review of U.S. Pat. No. 10,213,108, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-00912, dated May 7, 2020, in 113 pages.
Declaration of George E. Yanulis, in support of Petition for Inter Partes Review of U.S. Pat. No. 10,213,108, Ex. 1003, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-00912, dated May 6, 2020, in 127 pages.
Petition for Inter Partes Review of U.S. Pat. No. 9,788,735, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-00954, dated May 18, 2020, in 126 pages.
Declaration of George E. Yanulis, in support of Petition for Inter Partes Review of U.S. Pat. No. 9,788,735, Ex. 1003, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-00954, dated May 18, 2020, in 163 pages.
Petition for Inter Partes Review of U.S. Pat. No. 9,795,300, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01015, dated May 29, 2020, in 109 pages.
Declaration of George E. Yanulis, in support of Petition for Inter Partes Review of U.S. Pat. No. 9,795,300, Ex. 1003, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01015, dated May 28, 2020, in 156 pages.
Petition for Inter Partes Review of U.S. Pat. No. 9,872,623, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01054, dated Jun. 5, 2020, in 123 pages.
Declaration of George E. Yanulis, in support of Petition for Inter Partes Review of U.S. Pat. No. 9,872,623, Ex. 1003, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01054, dated Jun. 5, 2020, in 182 pages.
Petition for Inter Partes Review of U.S. Pat. No. RE47,244, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-00967, dated May 21, 2020, in 112 pages.
Declaration of George E. Yanulis, in support of Petition for Inter Partes Review of U.S. Pat. No. RE47,244, Ex. 1003, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-00967, dated May 21, 2020, in 181 pages.
Petition for Inter Partes Review of U.S. Pat. No. RE47,353, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01019, dated May 29, 2020, in 111 pages.
Declaration of George E. Yanulis, in support of Petition for Inter Partes Review of U.S. Pat. No. RE47,353, Ex. 1003, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01019, dated May 28, 2020, in 190 pages.
Petition for Inter Partes Review of U.S. Pat. No. RE47,249, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01033, dated Jun. 3, 2020, in 111 pages.
Declaration of George E. Yanulis, in support of Petition for Inter Partes Review of U.S. Pat. No. RE47,249, Ex. 1003, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01033, dated Jun. 2, 2020, in 196 pages.
Petition for Inter Partes Review of U.S. Pat. No. RE47,218, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, dated Jun. 11, 2020, in 66 pages.
Declaration of George E. Yanulis, in support of Petition for Inter Partes Review of U.S. Pat. No. RE47,218, Ex. 1003, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, dated Jun. 10, 2020, in 69 pages.
Petition for Inter Partes Review of U.S. Pat. No. 10,255,994, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01082, dated Jun. 11, 2020, in 88 pages.
Declaration of George E. Yanulis, in support of Petition for Inter Partes Review of U.S. Pat. No. 10,255,994, Ex. 1003, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01082, dated Jun. 11, 2020, in 113 pages.
Jan. 24, 2020 Masimo Corporation's Infringement Contensions, Masimo Corporation v. Sotera Wireless and Hon Hai Precision Industry Co., Ltd., Case No. 3:19-cv-01100-BAS-NLS, 537 pages.
Sep. 8, 2020 Defendants Sotera Wireless Inc. and Hon Hai Precision Industry Co. Ltd.'s Amended LPR 3.3 Invalidity Contentions, and including Exhibits A-I, Masimo Corporation v. Sotera Wireless, Inc. and Hon Hai Precision Industry Co., Ltd., Case No. 3:19-cv-01100-BAS-NLS, 3151 pages.
Dec. 31, 2020 Second Amended Complaint for Patent Infringement and Demand for Jury Trial (redacted public version including publicly available exhibits), Masimo Corporation v. Sotera Wireless and Hon Hai Precision Industry Co., Ltd., Case No. 3:19-cv-01100-BAS-NLS, 725 pages. [uploaded in 5 parts].
Jan. 14, 2021 Defendant Sotera Wireless Inc.'s Answer to Plaintiff's Second Amended Complaint for Patent Infringement and Demand for Jury Trial, Masimo Corporation v. Sotera Wireless and Hon Hai Precision Industry Co., Ltd., Case No. 3:19-cv-01100-BAS-NLS, 53 pages.
Definitions of “oximetry,” “pulse oximetry,” and “invasive,” excerpt from Stedman's Medical Dictionary (27th ed.), 2000, 5 pages.
Definitions of “oximeter,” “pulse oximeter,” and “invasive,” excerpt from Dorland's Illustrated Medical Dictionary (30th ed.), 2003, 5 pages.
Definition of “port,” excerpt from Webster's New World College Dictionary (4th ed.), 2001, 4 pages.
Definition of “port,” excerpt from Webster's II New College Dictionary, 2001, 4 pages.
Definition of “port,” excerpt from Microsoft Computer Dictionary (5th ed.), 2002, 4 pages.
Jubran, “Pulse oximetry,” Critical Care 1999, vol. 3, No. 2, pp. R11-R17.
Kelleher, “Pulse Oximetry,” Journal of Clinical Monitoring, vol. 5, No. 1, Jan. 1989, pp. 37-62.
Westover et al., “Human Factors Analysis of an ICU,” Journal of Clinical Engineering, vol. 23, No. 2, Mar./Apr. 1998, pp. 110-116.
Parati et al., “Self blood pressure monitoring at home by wrist devices: a reliable approach?” Journal of Hypertension, vol. 20, No. 4, 2002, pp. 573-578.
Hardesty, “Clothed in Health,” MIT Technology Review, Jul. 1, 2001, last accessed Feb. 17, 2021, and retrieved from https://www.technologyreview.com/2001/07/01/235697/clothed-in-health, 9 pages.
Datex AS/3TM Anesthesia Monitor Operator's Manual, Jan. 1995, 399 pages. [Uploaded in 2 parts].
Gordon et al., “2012 Anthropometric Survey of U.S. Army Personnel: Methods and Summary Statistics,” U.S. Army Natick Soldier Research, Dec. 2014, 454 pages.
Printouts from apple.com and Samsung.com websites showing common smartphone specifications, last accessed Feb. 18, 2021, and retrieved from https://www.apple.com/iphone/compare/?device1=iphoneX&device2=iphone11&device3=iphone12, and https://www.samsung.com/global/galaxy/compare-smartphones/, 16 pages.
Datasheet for EPROM/ROM-Based 8-bit CMOS Microcontroller Series, PIC16C5X, Microchip Technology Inc., 2013, 192 pages.
Running Armband & Wristband Phone Holder, Forearm Armband Phone Holder, 360° Rotatable Armband for iPhone Samsung Galaxy Google Pixel, Cellphone Wristband Great for Hiking Biking Running, Amazon.com, printed May 12, 2021, and retrieved from https://www.amazon.com/Running-Armband-Wristband-Rotatable-Cellphone/dp/B08DJ2B6X5/, 2 pages.
Registration Interface—Selection and General Information, AT&T Co. Standard, Bell System Practices, Section 463-400-100, Issue 1, May 1978, 5 pages.
Registration Interface—Adapter Arrangements RJA1X, RJA2X, and RJA3X, AT&T Co. Standard, Bell System Practices, Section 463-400-100, Issue 2, May 1979, 6 pages.
Modular Connector Guide, C2G, printed May 12, 2021, and retrieved from https://www.cablestogo.com/learning/connector-guides/modular, 3 pages.
IEEE Standard for a High Performance Serial Bus—Amendment 1, IEEE Std 1394a-2000 (Amendment to IEEE Std 1394-1995), The Institute of Electrical and Electronics Engineers, Inc., Mar. 30, 2000, 204 pages.
Kästle et al., “A New Family of Sensors for Pulse Oximetry,” Hewlett-Packard Journal, Article 7, Feb. 1997, pp. 1-17.
Portzon Set of 2 Neoprene Dumbbell Hand Weights, Anti-Slip, Anti-roll, Amazon.com, printed Feb. 22, 2021, and retrieved from https://www.amazon.com/Neoprene-Dumbbell-Weights-Anti-slip-Anti-roll/dp/B088M26WRH/, 9 pages.
JG Webster, ed., Design of Pulse Oximeter, Medical Science Series, IOP Publishing Ltd, 1997, 256 pages. [Uploaded in 4 parts].
Invicta Men's Pro Diver Scuba Quartz Chronograph Carbon Fiber Bezel Abalone Dial Bracelet Watch, 50mm, Amazon.com, printed May 17, 2021, and retrieved from https://www.amazon.com/Invicta-Quartz-Chronograph-Abalone-Bracelet/dp/B0772D8BWK/, 6 pages.
Data sheet for iKey Rugged Wearable Keyboard, Product Code AK-39, last accessed Jun. 17, 2021, and retrieved from https://www.ikey.com/document//?route=product/pdf&product_id=46, 2 pages.
Anderson, The Importance of Thomas Edison, Lucent Books, Inc., 1994, pp. 30-33.
Jun. 11, 2020 Sotera Wireless, Inc.'s Power of Attorney, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, in 3 pages.
Jun. 16, 2020 Notice of Filing Date Accorded to Petition, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, in 6 pages.
Jul. 2, 2020 Patent Owner Submission of Mandatory Notice Information, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, in 6 pages.
Sep. 16, 2020 Patent Owner Preliminary Response, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, in 49 pages.
Oct. 7, 2020 Order—Conduct of the Proceeding, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, 3 pages.
Oct. 7, 2020 Notice of Decision in Related Judicial Matter, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, in 3 pages.
Oct. 7, 2020 Patent Owner Updated Exhibit List, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, in 4 pages.
Oct. 16, 2020 Petitioner's Reply to Preliminary Response, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, in 12 pages.
Oct. 23, 2020 Patent Owner Sur-Reply re Fintiv Factors, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, in 11 pages.
Dec. 7, 2020 Decision Granting Institution of Inter Partes Review, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, in 51 pages.
Dec. 7, 2020 Scheduling Order, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, in 11 pages.
Dec. 21, 2020 Patent Owner Objections to Evidence, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, 7 pages.
Jan. 26, 2021 Sotera's Updated Mandatory Notices, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, in 4 pages.
Jan. 28, 2021 Masimo's Notice of Deposition of George Yanulis, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, in 3 pages.
Feb. 1, 2021 Sotera_s Updated Power of Attorney, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, in 3 pages.
Feb. 2, 2021 Masimo's Unopposed Motion for DCK to Appear Pro Hac Vice, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, in 7 pages.
Feb. 4, 2021 Order Granting Masimo's Unopposed Motion for DCK to Appear Pro Hac Vice, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, in 4 pages.
Feb. 9, 2021 Masimo's Updated Mandatory Notice Information Adding Back-Up Counsel, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, in 6 pages.
Feb. 9, 2021 Masimo's Supplemental Power of Attorney Adding DCK, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, in 3 pages.
Mar. 5, 2021 Masimo's Updated Mandatory Notice Information Adding Back-Up Counsel, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, in 6 pages.
Mar. 5, 2021 Patent Owner Response, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, in 69 pages.
Mar. 29, 2021 Sotera's Notice of Deposition of Jack Goldberg, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, in 4 pages.
May 28, 2021 Sotera's Reply, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, in 28 pages.
Jun. 8, 2021 Masimo's Objections to Evidence, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, in 5 pages.
Jul. 9, 2021 Patent Owner Sur-Reply, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, in 30 pages.
Jul. 30, 2021 Sotera's Request for Oral Argument, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, in 4 pages.
Jul. 30, 2021 Masimo's Request for Oral Argument, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, in 4 pages.
Aug. 3, 2021 Order Setting Oral Argument for Sep. 24, 2021, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, in 9 pages.
Aug. 20, 2021 Order Re-Setting Oral Argument for Sep. 24, 2021 at 2pm, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, in 5 pages.
Sep. 16, 2021 Masimo's Demonstratives for Oral Argument, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, in 59 pages.
Sep. 16, 2021 Sotera;s Oral Hearing Demonstratives, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, in 40 pages.
Sep. 20, 2021 Petitioner's Notice re Demonstratives for Oral Argument, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, in 43 pages.
Sep. 20, 2021 Patent Owner Updated Exhibit List, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, in 4 pages.
Masimo Opposition to Sotera Motion to Stay Proceedings, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, Exhibit 2001, in 22 pages.
Case Management Order, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, Exhibit 2002, in 8 pages.
Order Granting Joint Motion to Modify Case Management Order, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, Exhibit 2003, in 3 pages.
Mar. 20, 2020 Defendants' Invalidity Contentions, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, Exhibit 2004, in 38 pages.
Sep. 8, 2020 Defendants' Amended Invalidity Contentions, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, Exhibit 2007, in 43 pages.
Joint Hearing Statement, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, Exhibit 2008, in 23 pages.
Oct. 6, 2020 Order Granting in Part Joint Motion to Modify Case Management Order, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, Exhibit 2009, in 4 pages.
DCK Declaration ISO PHV Motion, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, Exhibit 2010, in 4 pages.
Declaration of Jack Goldberg, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, Exhibit 2011, in 52 pages.
Oxford Dictionary of English (2010)—Threshold, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, Exhibit 2012, in 3 pages.
American Heritage Dictionary (2011)—Threshold, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, Exhibit 2013, in 3 pages.
Yanulis Transcript, Feb. 10, 2021 vol. 6, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, Exhibit 2014, in 223 pages.
Jack Goldberg CV Feb. 22, 2021, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, Exhibit 2015, in 21 pages.
Patent Owner Demonstratives, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, Exhibit 2016, in 59 pages.
Prosecution History of RE47,218, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, Exhibit 1002, in 310 pages, uploaded in 2 parts.
Declaration of George E. Yanulis, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, Exhibit 1003, in 69 pages.
CV of George E. Yanulis, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, Exhibit 1004, in 8 pages.
Masimo's Complaint for Patent Infringement (Masimo v. Sotera, 19cv01100), Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, Exhibit 1008, in 44 pages.
Service of Summons and Complaint upon Sotera (Masimo v. Sotera, 19cv01100), Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, Exhibit 1009, in 4 pages.
RE218 Prosecution History Excerpt, Application with Preliminary Amendment, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, Exhibit 1010, in 55 pages.
RE218 Prosecution History Excerpt, Non-Final Office Action, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, Exhibit 1011, in 45 pages.
RE218 Prosecution History Excerpt, Amendment and Response to Office Action, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, Exhibit 1012, in 10 pages.
RE218 Prosecution History Excerpt, Notice of Allowance, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, Exhibit 1013, in 14 pages.
'570 Prosecution History Excerpt, Notice of Allowance, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, Exhibit 1015, in 49 pages.
Masimo Corporation's Infringement Contentions with Exhibit D (Masimo v. Sotera, 19cv0), Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, Exhibit 1016, in 36 pages.
Masimo's Trade Secret Complaint against Sotera in Orange County, CA, Superior Court, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, Exhibit 1017, in 20 pages.
Oral Ruling in Prior Trade Secret Litigation, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, Exhibit 1018, in 1 page.
Final Order in Prior Trade Secret Litigation, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, Exhibit 1019, in 117 pages.
Sotera Motion to Stay, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, Exhibit 1036, in 29 pages.
Order Vacating Claim Construction Hearing, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, Exhibit 1037, in 1 page.
Defendants' Stipulation of Invalidity Contentions, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, Exhibit 1038, in 10 pages.
Declaration of Bryan Bergeron ISO Sotera's Reply to Petition, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, Exhibit 1040, in 35 pages.
Bryan Bergeron CV, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, Exhibit 1041, in 40 pages.
Apr. 22, 2021 Deposition Transcript of Jack Goldberg, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, Exhibit 1042, in 106 pages.
Macmillan English Dictionary, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, Exhibit 1043, in 3 pages.
Nov. 29, 2021, Judgment Final Written Decision Determining All Challenged Claims Unpatentable, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, 77 pages.
Jan. 25, 2022 Patent Owner's Notice of Appeal to the U.S. Court of Appeals for the Federal Circuit, Sotera Wireless, Inc. v. Masimo Corporation, Inter Partes Review No. IPR2020-01078, 83 pages.
US 9,579,050, 02/2017, Al-Ali (withdrawn).
US 8,845,543, Diab et al. (withdrawn).
Coetzee, et al., “Noise-Resistant Pulse Oximetry Using a Synthetic Reference Signal,” IEEE Transactions on Biomedical Engineering, IEEE Service Center, Piscataway, NJ, vol. 47, No. 8, dated Aug. 1, 2000.
Invitation to Pay Additional Fees document, including communication relating to the results of a partial Search Report issued in related application No. PCT/US2011/026545, dated Jun. 22, 2011, in 5 pages.
“Propaq Encore Vital Signs Monitor: Reference Guide,” Welch Allyn, Inc., 2009 in 144 pages.
Provisional Applications (2)
Number Date Country
61328630 Apr 2010 US
61309419 Mar 2010 US
Continuations (3)
Number Date Country
Parent 16184908 Nov 2018 US
Child 15583718 US
Parent 15881602 Jan 2018 US
Child 16184908 US
Parent 13037184 Feb 2011 US
Child 15583718 US
Reissues (2)
Number Date Country
Parent 15583718 May 2017 US
Child 16800971 US
Parent 15583718 May 2017 US
Child 15881602 US