The present disclosure relates to surgical devices. More specifically, the present disclosure relates to powered surgical devices with articulating loading units.
Surgical fastener devices for applying fasteners or staples to tissue are well known. These fastener devices include single-use devices which are preloaded with one or more staples and are disposable after a single use. Multiple use devices are also available and are preloaded with a plurality of staples. Multiple use devices may include a handle assembly that is electromechanically, e.g., powered, or manually actuated. These devices may be used with single use loading units (SULU) or multiple use loading units (MULU). The loading units include a body and an end effector, and are attached to the handle assembly, either directly or via an adapter assembly couplable to the handle assembly. The loading units may also include an articulating end effector. In powered surgical devices, which utilize motors to actuate and/or articulate the end effector, the motors may inadvertently cause unwanted movement of the end effector. Accordingly, there is a need for powered surgical devices that minimize and/or mitigate the effects of inadvertent movement.
According to one embodiment of the present disclosure, a surgical device includes a handle assembly having a controller; a first motor; and a second motor. The surgical device also includes an adapter assembly having: a tubular housing defining a longitudinal axis having a proximal end portion configured to couple to the handle assembly, and a distal end portion; a first actuation assembly disposed within the tubular housing and coupled to the first motor; and a second actuation assembly disposed within the tubular housing and coupled to the second motor. The surgical device further includes an end effector configured to couple to the distal end portion of the adapter assembly. The end effector is coupled to the first actuation assembly that articulates the end effector about an articulation axis that is perpendicular to the longitudinal axis. The end effector also includes a flexible drive beam coupled to the second actuation assembly and movable axially by the second actuation assembly. The controller is configured to maintain an initial articulation position of the end effector in response to axial movement of the flexible drive beam.
According to one aspect of the above embodiment, the end effector includes an anvil assembly and a cartridge assembly. The flexible drive beam is configured to move axially through the anvil assembly and the cartridge assembly to pivot the anvil assembly relative to the cartridge assembly.
According to another aspect of the above embodiment, the controller is further configured to adjust the first motor to compensate for a change in the initial articulation position due to movement of the flexible drive beam.
According to a further aspect of the above embodiment, the controller includes a memory and stores the initial articulation position of the end effector in the memory. The controller is further configured to compensate for a change in the initial articulation position due to movement of the flexible drive beam to maintain the initial articulation position. The memory stores a database having a plurality of articulation correction values, each of which corresponds to one of a plurality of longitudinal position values of the flexible drive beam. The controller is further configured to adjust the first motor based on an articulation correction value corresponding to a longitudinal position value. The controller is further configured to determine the longitudinal position value based on rotation of the second motor.
According to yet another aspect of the above embodiment, the surgical device further includes an articulation sensor configured to obtain a measured articulation position of the end effector. The controller is further configured to adjust the first motor based on the measured articulation position.
According to another embodiment of the present disclosure, a method for controlling a surgical device includes operating a first motor to actuate a first actuation assembly configured to articulate an end effector to an initial articulation position; operating a second motor to actuate a second actuation assembly configured to move a flexible drive beam through the end effector; and maintaining the initial articulation position by adjusting the first motor in response to actuation of the second actuation assembly and movement of the flexible drive beam.
According to one aspect of the above embodiment, the method further includes measuring an articulation position of the end effector during movement of the flexible drive beam to obtain a measured articulation position. The method further includes adjusting the first motor to compensate for a change in the initial articulation position based on the measured articulation position.
According to another aspect of the above embodiment, the method further includes: storing a database having a plurality of articulation correction values, each of which corresponds to one of a plurality of longitudinal position values of the flexible drive beam. The method further includes adjusting the first motor based on an articulation correction value corresponding to a longitudinal position value and determining the longitudinal position value based on rotation of the second motor.
Embodiments of the present disclosure are described herein with reference to the accompanying drawings, wherein:
Embodiments of the present disclosure are now described in detail with reference to the drawings in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein, the term “clinician” refers to a doctor, a nurse or any other care provider and may include support personnel. Throughout this description, the term “proximal” will refer to the portion of the device or component thereof that is closer to the clinician and the term “distal” will refer to the portion of the device or component thereof that is farther from the clinician. Additionally, in the drawings and in the description that follows, terms such as front, rear, upper, lower, top, bottom, and similar directional terms are used simply for convenience of description and are not intended to limit the disclosure. In the following description, well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail.
The present disclosure provides a powered surgical device including a handle assembly, a loading unit, which is interconnected to the handle assembly via an adapter assembly. The loading unit includes an end effector, which is configured to articulate about an articulation axis that is perpendicular to a longitudinal axis defined by the adapter assembly. The end effector includes a pair of jaw members—an anvil assembly and a cartridge assembly including staples. In embodiments, the end effector may articulate up to about 45 degrees relative to the longitudinal axis in either direction. The handle assembly includes one or more motors which are configured to actuate the end effector, including its articulation, in response to clinician's inputs, such as pressing a switch corresponding to desired articulation direction.
Initially, the clinician orients the end effector into a desired position, e.g., by rotating the adapter assembly and/or articulating the end effector. After the end effector is disposed about desired tissue region, the clinician actuates the end effector to clamp about the tissue, eject staples into the tissue and cut the tissue by advancing a flexible drive beam through the end effector. After the stapling and cutting is completed, the flexible drive beam is retracted to open the jaw members and release the tissue.
During retraction, the flexible drive beam may inadvertently change the articulation position of the end effector due to the lateral forces imparted on the end effector by the flexible drive beam. Thus, rather than remaining stationary during retraction of the flexible drive beam, the end effector is unintentionally moved, i.e., “twitches.” This twitching may be approximately 13.5 degrees on average depending on the original angle of articulation. Furthermore, when the end effector is articulated to the left, which may be accomplished by moving an articulation link of the adapter assembly proximally (e.g., pulling the articulation link), the retraction twitch may increase in conjunction with an increase in the distance that the articulation link has been moved. When the end effector is articulated to the right, which is accomplished by moving the articulation link distally (e.g., pushing the articulation link), the retraction twitch causes a quick increase in push articulation, followed by a gradual decrease in articulation back to the originally set articulation position. The cause of the change in articulation may be due to a net moment in the jaws caused by the bending of the flexible drive beam during articulation.
The present disclosure provides for a system and method to counteract the net moment in the end effector by controlling an articulation motor during retraction of the flexible drive beam. The handle assembly includes a controller which controls operation of the articulation motor and a firing motor. The controller is configured to execute software including a set of computer-readable instructions, which embody an anti-twitch algorithm. The adapter assembly includes a load sensing assembly, such as a strain gauge, configured to measure strain imparted on the articulation actuation assembly during retraction of the flexible drive beam to provide feedback to the controller. The controller then corrects for the detected twitch due to the retraction by operating the articulation motor to compensate for the twitching in a closed-loop control scheme.
In another embodiment, the controller may operate the articulation motor without relying on closed-loop control scheme and instead utilizing data including a correction factor corresponding to an articulation angle of the end effector. The data may be collected empirically or derived. For each articulation position as well as the longitudinal position of the flexible drive beam the data includes a preset correction factor, allowing the controller to estimate the amount of movement the articulation motor would move the articulation link to compensate for the twitch. Thus, an open loop control scheme may be based on collected data including changes in articulation position corresponding to initial articulation at the start of firing.
The handle assembly is also configured to maintain the articulation position of the end effector during firing (e.g., movement in the distal direction) of the flexible drive beam as well as during the retraction of the drive beam. While using the closed loop algorithm based on sensor feedback for pull (e.g., left) articulation, the handle assembly gradually reduces the degree of articulation during firing and quickly restores the degree of articulation to its initial firing position during retraction. Using the open loop control scheme, the articulation position may be adjusted during retraction or firing using a preprogramed anti-twitch pattern corresponding to the collected data.
With reference to
The handle assembly 20 includes a handle housing 22 having a lower housing portion 24, an intermediate housing portion 26 extending from and/or supported on a portion of the lower housing portion 24, and an upper housing portion 28 extending from and/or supported on a portion of the intermediate housing portion 26. The handle assembly 20 also includes a plurality of controls 23, which may include buttons, touchscreen, or any other user input devices, for allowing the clinician to control the operation of the surgical device 10.
As shown in
With reference to
The controller 38 may include any suitable logic controller (e.g., FPGA) and a memory storing software instructions executable by the logic controller to operate the motors 36a, 36b, 36c as well as other components of the surgical device 10. The memory of the controller 38 may also store various data in addition to software instructions. The controller 38 is also coupled to the controls 23 and is configured to operate the motors 36a, 36b, 36c in response to user inputs through the controls 23.
With reference to
With reference to
As shown in
The articulation sensor 61 is coupled to controller 38 through the electrical connector 32 that is configured to engage the electrical receptacle 29. This allows the articulation sensor 61 to transmit a sensor signal corresponding to the articulation position. The controller 38 may utilize the sensor signal as a feedback parameter in a closed-loop control scheme.
With reference to
Drive assembly 50 includes a flexible drive beam 54 having a distal end portion 54a and a proximal engagement section 54b. The distal end portion 54a includes an I-beam 55 having a knife 55a. The I-beam 55 is configured to travel through the anvil assembly 46 and the cartridge assembly 48, thereby pushing the anvil assembly 46 toward the cartridge assembly 48 to clamp tissue. The proximal engagement section 54b includes diametrically opposed inwardly extending fingers 54c that engage the drive member 56 (
Cartridge assembly 48 of end effector 44 includes a staple cartridge 58 removably supported in a carrier 60. Staple cartridge 58 defines a central longitudinal slot 58a, and a plurality of linear rows of staple retention slots 58b positioned on each side of the central longitudinal slot 58a. Each of the staple retention slots 58b receives a single staple 62 and a portion of a staple pusher 64. During operation of the surgical device 10, drive assembly 50 abuts an actuation sled 66 and pushes actuation sled 66 through the staple cartridge 58. As the actuation sled 66 moves through staple cartridge 58, cam wedges of the actuation sled 66 sequentially engage staple pushers 64 to move staple pushers 64 vertically within staple retention slots 58b and sequentially eject a single staple 62 therefrom for formation against an anvil plate 46a of anvil assembly 46.
Proximal body portion 42 of loading unit 40 includes an articulation link 52 having a hooked proximal end portion 52a which extends from a proximal end of loading unit 40 which engages the opposing articulation link 57 coupled to the actuation assembly 35a of the adapter assembly 30. Articulation link 52 has a distal end portion 52b pivotably secured to end effector 44. As the articulation link 57 is moved in an axial direction by the actuation assembly 35a of the adapter assembly 30, either proximally or distally, the articulation link 52 of the loading unit 40 is also moved in the same manner. Axial movement of the articulation link 52, in turn, articulates (e.g., pivots) the end effector 44 about a pivot pin 59, which defines the axis Y-Y.
With reference to
After actuating the controls 23, the controller 38 moves actuation assembly 35b to open or close the anvil assembly 46 by moving the actuating assembly 35b. More specifically, the controller 38 instructs the motor 36b to rotate a predetermined number of revolutions to open or close the anvil assembly 46. Once the anvil assembly 46 has been opened or closed, the controller 38 then obtains an initial articulation position. The controller 38 may interrupt movement of the actuation assembly 35b to obtain the articulation position. In embodiments, the initial articulation position may be the last stored articulation position, which is stored in memory of the controller 38. More specifically, the controller 38 continuously records the articulation position, which corresponds to the number of rotations of the motor 36a, which operates the actuation assembly 35a for articulating the end effector 44. This allows the controller 38 to continuously track the articulation position, as such the last recorded articulation position may be used as an initial articulation position for the purposes of this method.
Once the initial articulation position is saved in the memory, the controller 38 proceeds to fire or retract the flexible drive beam 54. As the actuation assembly 35b is moved, the controller 38 compensates for the changes in the articulation position of end effector 44 based on the current position of the flexible drive beam 54. The controller 38 stores in the memory a database of articulation correction values for adjusting the position of the motor 36a, which is responsible for moving the actuation assembly 35a to articulate the end effector 44. The database also includes a plurality of position values of the motor 36b, which is responsible for moving the actuation assembly 35b, which moves the flexible drive beam 54 during firing or retraction. Each of the position values of the flexible drive beam 54 corresponds to the articulation correction values in the database. In the database, the articulation correction values may be obtained by measuring the changes in the articulation position during firing and retraction of the flexible drive beam 54. In additional embodiments, the articulation correction values may be derived using transfer functions correlating firing and/or retraction movements with articulation positions.
As the flexible drive beam 54 is moved, the controller 38 adjusts the position of the actuation assembly 35a based on the corresponding articulation correction value. More specifically, the controller 38 compensates for the changes in the articulation position of the end effector 44 due to the movement of the actuation assembly 35b (responsible for moving the flexible drive beam 54) by moving the actuation assembly 35a (responsible for articulating the end effector 44). For each rotation of the motor 36b, the controller 38a instructs the motor 36a to actuate the actuation assembly 35a based on the articulation correction values, which provide the number of rotations for motor 36a. As the flexible drive beam 54 is moved, the controller 38 continues to adjust the articulation position based on the database until firing or retraction of the flexible drive beam 54 is completed.
After actuating the controls 23 to close or open the anvil assembly 46, the controller 38 moves actuation assembly 35b to open or close the anvil assembly 46 by moving the actuating assembly 35b. Once the anvil assembly 46 has been opened or closed, the controller 38 then obtains an initial articulation position by querying the articulation sensor 61 to obtain the articulation position. The controller 38 may interrupt movement of the actuation assembly 35b to obtain the initial articulation position.
Once the initial articulation position is saved in the memory, the controller 38 proceeds to fire or retract the flexible drive beam 54. As the actuation assembly 35b is moved, the controller 38 compensates for the changes in the articulation position of end effector 44 based on changes in the articulation position of the end effector 44 according to the readings from the articulation sensor 61. As the flexible drive beam 54 is moved, the controller 38 compensates for the changes in the articulation position of the end effector 44 due to the movement of the actuation assembly 35b (responsible for moving the flexible drive beam 54) by moving the actuation assembly 35a (responsible for articulating the end effector 44). As the flexible drive beam 54 is moved, the controller 38 continues to adjust the articulation position based on the database until firing or retraction of the flexible drive beam 54 is completed.
In embodiments, the methods of
It will be understood that various modifications may be made to the embodiments of the presently disclosed adapter assemblies. Therefore, the above description should not be construed as limiting, but merely as exemplifications of embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the present disclosure.
This application claims the benefit of and priority to U.S. Provisional Patent Application No. 62/702,995 filed Jul. 25, 2018, the entire disclosure of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
37165 | Gary | Dec 1862 | A |
3209754 | Brown | Oct 1965 | A |
3273562 | Brown | Sep 1966 | A |
3499591 | Green | Mar 1970 | A |
3528693 | Pearson et al. | Sep 1970 | A |
3744495 | Johnson | Jul 1973 | A |
3862631 | Austin | Jan 1975 | A |
3949924 | Green | Apr 1976 | A |
4060089 | Noiles | Nov 1977 | A |
4204623 | Green | May 1980 | A |
4217902 | March | Aug 1980 | A |
4263903 | Griggs | Apr 1981 | A |
4275813 | Noiles | Jun 1981 | A |
4331277 | Green | May 1982 | A |
4428376 | Mericle | Jan 1984 | A |
4429695 | Green | Feb 1984 | A |
4444181 | Wevers et al. | Apr 1984 | A |
4454875 | Pratt et al. | Jun 1984 | A |
4456006 | Wevers et al. | Jun 1984 | A |
4485816 | Krumme | Dec 1984 | A |
4485817 | Swiggett | Dec 1984 | A |
4488523 | Shichman | Dec 1984 | A |
4508253 | Green | Apr 1985 | A |
4508523 | Leu | Apr 1985 | A |
4522206 | Whipple et al. | Jun 1985 | A |
4534350 | Golden et al. | Aug 1985 | A |
4535772 | Sheehan | Aug 1985 | A |
4566620 | Green et al. | Jan 1986 | A |
4570623 | Ellison et al. | Feb 1986 | A |
4606343 | Conta et al. | Aug 1986 | A |
4606344 | Di Giovanni | Aug 1986 | A |
4610383 | Rothfuss et al. | Sep 1986 | A |
4612923 | Kronenthal | Sep 1986 | A |
4612933 | Brinkerhoff et al. | Sep 1986 | A |
D286442 | Korthoff et al. | Oct 1986 | S |
4627437 | Bedi et al. | Dec 1986 | A |
4635637 | Schreiber | Jan 1987 | A |
4662371 | Whipple et al. | May 1987 | A |
4671280 | Dorband et al. | Jun 1987 | A |
4705038 | Sjostrom et al. | Nov 1987 | A |
4712550 | Sinnett | Dec 1987 | A |
4719917 | Barrows et al. | Jan 1988 | A |
4724839 | Bedi et al. | Feb 1988 | A |
4731058 | Doan | Mar 1988 | A |
4805617 | Bedi et al. | Feb 1989 | A |
4807628 | Peters et al. | Feb 1989 | A |
4852558 | Outerbridge | Aug 1989 | A |
4913144 | Del Medico | Apr 1990 | A |
4960420 | Goble et al. | Oct 1990 | A |
4962877 | Hervas | Oct 1990 | A |
4990153 | Richards | Feb 1991 | A |
4994073 | Green | Feb 1991 | A |
4995877 | Ams et al. | Feb 1991 | A |
5040715 | Green et al. | Aug 1991 | A |
5065929 | Schulze et al. | Nov 1991 | A |
5089009 | Green | Feb 1992 | A |
5108422 | Green et al. | Apr 1992 | A |
5114399 | Kovalcheck | May 1992 | A |
5129570 | Schulze et al. | Jul 1992 | A |
5143453 | Weynant nee Girones | Sep 1992 | A |
5203864 | Phillips | Apr 1993 | A |
5207697 | Carusillo et al. | May 1993 | A |
5209756 | Seedhom et al. | May 1993 | A |
5246443 | Mai | Sep 1993 | A |
5258008 | Wilk | Nov 1993 | A |
5271543 | Grant et al. | Dec 1993 | A |
RE34519 | Fox et al. | Jan 1994 | E |
5282829 | Hermes | Feb 1994 | A |
5300081 | Young et al. | Apr 1994 | A |
5307976 | Olson et al. | May 1994 | A |
5312023 | Green et al. | May 1994 | A |
5312024 | Grant et al. | May 1994 | A |
5313935 | Kortenbach et al. | May 1994 | A |
5318221 | Green et al. | Jun 1994 | A |
5326013 | Green et al. | Jul 1994 | A |
5330486 | Wilk | Jul 1994 | A |
5332142 | Robinson et al. | Jul 1994 | A |
5342376 | Ruff | Aug 1994 | A |
5350355 | Sklar | Sep 1994 | A |
5356064 | Green et al. | Oct 1994 | A |
5359993 | Slater et al. | Nov 1994 | A |
5364001 | Bryan | Nov 1994 | A |
5381943 | Allen et al. | Jan 1995 | A |
5383874 | Jackson et al. | Jan 1995 | A |
5383880 | Hooven | Jan 1995 | A |
5389098 | Tsuruta et al. | Feb 1995 | A |
5391166 | Eggers | Feb 1995 | A |
5395030 | Kuramoto et al. | Mar 1995 | A |
5395033 | Byrne et al. | Mar 1995 | A |
5400267 | Denen et al. | Mar 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5405344 | Williamson et al. | Apr 1995 | A |
5411508 | Bessler et al. | May 1995 | A |
5413267 | Solyntjes et al. | May 1995 | A |
5431323 | Smith et al. | Jul 1995 | A |
5464144 | Guy et al. | Nov 1995 | A |
5467911 | Tsuruta et al. | Nov 1995 | A |
5478344 | Stone et al. | Dec 1995 | A |
5482100 | Kuhar | Jan 1996 | A |
5485947 | Olson et al. | Jan 1996 | A |
5487499 | Sorrentino et al. | Jan 1996 | A |
5497933 | DeFonzo et al. | Mar 1996 | A |
5500000 | Feagin et al. | Mar 1996 | A |
5503320 | Webster et al. | Apr 1996 | A |
5507743 | Edwards et al. | Apr 1996 | A |
5518163 | Hooven | May 1996 | A |
5518164 | Hooven | May 1996 | A |
5526822 | Burbank et al. | Jun 1996 | A |
5529235 | Boiarski et al. | Jun 1996 | A |
5531744 | Nardella et al. | Jul 1996 | A |
5533661 | Main et al. | Jul 1996 | A |
5535934 | Boiarski et al. | Jul 1996 | A |
5535937 | Boiarski et al. | Jul 1996 | A |
5558671 | Yates | Sep 1996 | A |
5560532 | DeFonzo et al. | Oct 1996 | A |
5562239 | Boiarski et al. | Oct 1996 | A |
5571285 | Chow et al. | Nov 1996 | A |
5575799 | Bolanos et al. | Nov 1996 | A |
5582611 | Tsuruta et al. | Dec 1996 | A |
5584835 | Greenfield | Dec 1996 | A |
5601224 | Bishop et al. | Feb 1997 | A |
5601558 | Torrie et al. | Feb 1997 | A |
5607095 | Smith et al. | Mar 1997 | A |
5609285 | Grant et al. | Mar 1997 | A |
5609560 | Ichikawa et al. | Mar 1997 | A |
5624452 | Yates | Apr 1997 | A |
5632433 | Grant et al. | May 1997 | A |
5634926 | Jobe | Jun 1997 | A |
5642848 | Ludwig et al. | Jul 1997 | A |
5653374 | Young et al. | Aug 1997 | A |
5658300 | Bito et al. | Aug 1997 | A |
5658312 | Green et al. | Aug 1997 | A |
5662662 | Bishop et al. | Sep 1997 | A |
5665085 | Nardella | Sep 1997 | A |
5667513 | Torrie et al. | Sep 1997 | A |
5667517 | Hooven | Sep 1997 | A |
5667527 | Cook | Sep 1997 | A |
5669544 | Schulze et al. | Sep 1997 | A |
5673841 | Schulze et al. | Oct 1997 | A |
5676674 | Bolanos et al. | Oct 1997 | A |
5680981 | Mililli et al. | Oct 1997 | A |
5680982 | Schulze et al. | Oct 1997 | A |
5690675 | Sawyer et al. | Nov 1997 | A |
5692668 | Schulze et al. | Dec 1997 | A |
5695506 | Pike et al. | Dec 1997 | A |
5695524 | Kelley et al. | Dec 1997 | A |
5702447 | Walch et al. | Dec 1997 | A |
5704534 | Huitema et al. | Jan 1998 | A |
5713505 | Huitema | Feb 1998 | A |
5713896 | Nardella | Feb 1998 | A |
5715987 | Kelley et al. | Feb 1998 | A |
5716366 | Yates | Feb 1998 | A |
5720753 | Sander et al. | Feb 1998 | A |
5725529 | Nicholson et al. | Mar 1998 | A |
5728110 | Vidal et al. | Mar 1998 | A |
5728116 | Rosenman | Mar 1998 | A |
5730757 | Benetti et al. | Mar 1998 | A |
5735848 | Yates et al. | Apr 1998 | A |
5738474 | Blewett | Apr 1998 | A |
5755726 | Pratt et al. | May 1998 | A |
5759171 | Coelho et al. | Jun 1998 | A |
5779130 | Alesi et al. | Jul 1998 | A |
5782397 | Koukline | Jul 1998 | A |
5785713 | Jobe | Jul 1998 | A |
5788698 | Savornin | Aug 1998 | A |
5810811 | Yates et al. | Sep 1998 | A |
5823066 | Huitema et al. | Oct 1998 | A |
5829662 | Allen et al. | Nov 1998 | A |
5830121 | Enomoto et al. | Nov 1998 | A |
5849023 | Mericle | Dec 1998 | A |
5849028 | Chen | Dec 1998 | A |
5855311 | Hamblin et al. | Jan 1999 | A |
5861005 | Kontos | Jan 1999 | A |
5865361 | Milliman et al. | Feb 1999 | A |
5876401 | Schulze et al. | Mar 1999 | A |
5891156 | Gessner et al. | Apr 1999 | A |
5893813 | Yamamoto | Apr 1999 | A |
5895396 | Day et al. | Apr 1999 | A |
5906607 | Taylor et al. | May 1999 | A |
5911721 | Nicholson et al. | Jun 1999 | A |
5918791 | Sorrentino et al. | Jul 1999 | A |
5928222 | Kleinerman | Jul 1999 | A |
5944717 | Lee et al. | Aug 1999 | A |
5944736 | Taylor et al. | Aug 1999 | A |
5954259 | Viola et al. | Sep 1999 | A |
5961521 | Roger | Oct 1999 | A |
5964394 | Robertson | Oct 1999 | A |
5968044 | Nicholson et al. | Oct 1999 | A |
5976171 | Taylor | Nov 1999 | A |
5980518 | Carr et al. | Nov 1999 | A |
5980548 | Evans et al. | Nov 1999 | A |
5991355 | Dahlke | Nov 1999 | A |
5991650 | Swanson et al. | Nov 1999 | A |
5992724 | Snyder | Nov 1999 | A |
5997552 | Person et al. | Dec 1999 | A |
6004335 | Vaitekunas et al. | Dec 1999 | A |
6007550 | Wang et al. | Dec 1999 | A |
6010054 | Johnson et al. | Jan 2000 | A |
6013077 | Harwin | Jan 2000 | A |
6015417 | Reynolds, Jr. | Jan 2000 | A |
6017354 | Culp et al. | Jan 2000 | A |
6030410 | Zurbrugg | Feb 2000 | A |
6032849 | Mastri et al. | Mar 2000 | A |
6039731 | Taylor et al. | Mar 2000 | A |
6051007 | Hogendijk et al. | Apr 2000 | A |
6063078 | Wittkampf | May 2000 | A |
6063095 | Wang et al. | May 2000 | A |
6077246 | Kullas et al. | Jun 2000 | A |
6079606 | Milliman et al. | Jun 2000 | A |
6080150 | Gough | Jun 2000 | A |
6083242 | Cook | Jul 2000 | A |
6090123 | Culp et al. | Jul 2000 | A |
6092422 | Binnig et al. | Jul 2000 | A |
6109500 | Alli et al. | Aug 2000 | A |
6113592 | Taylor | Sep 2000 | A |
6123702 | Swanson et al. | Sep 2000 | A |
H1904 | Yates et al. | Oct 2000 | H |
6126058 | Adams et al. | Oct 2000 | A |
6126651 | Mayer | Oct 2000 | A |
6127811 | Shenoy et al. | Oct 2000 | A |
6132425 | Gough | Oct 2000 | A |
6165169 | Panescu et al. | Dec 2000 | A |
6166538 | D'Alfonso | Dec 2000 | A |
6179840 | Bowman | Jan 2001 | B1 |
6187009 | Herzog et al. | Feb 2001 | B1 |
6187019 | Stefanchik et al. | Feb 2001 | B1 |
6190401 | Green et al. | Feb 2001 | B1 |
6193501 | Masel et al. | Feb 2001 | B1 |
6202914 | Geiste et al. | Mar 2001 | B1 |
6217573 | Webster | Apr 2001 | B1 |
6228534 | Takeuchi et al. | May 2001 | B1 |
6231565 | Tovey et al. | May 2001 | B1 |
6236874 | Devlin et al. | May 2001 | B1 |
6237604 | Burnside et al. | May 2001 | B1 |
6241139 | Milliman et al. | Jun 2001 | B1 |
6245065 | Panescu et al. | Jun 2001 | B1 |
6248117 | Blatter | Jun 2001 | B1 |
6250532 | Green et al. | Jun 2001 | B1 |
6258111 | Ross et al. | Jul 2001 | B1 |
6264086 | McGuckin, Jr. | Jul 2001 | B1 |
6264087 | Whitman | Jul 2001 | B1 |
6264653 | Falwell | Jul 2001 | B1 |
6281471 | Smart | Aug 2001 | B1 |
6288534 | Starkweather et al. | Sep 2001 | B1 |
6290701 | Enayati | Sep 2001 | B1 |
6293943 | Panescu et al. | Sep 2001 | B1 |
6295330 | Skog et al. | Sep 2001 | B1 |
6315184 | Whitman | Nov 2001 | B1 |
6329778 | Culp et al. | Dec 2001 | B1 |
6330965 | Milliman et al. | Dec 2001 | B1 |
6346104 | Daly et al. | Feb 2002 | B2 |
6355066 | Kim | Mar 2002 | B1 |
6364884 | Bowman et al. | Apr 2002 | B1 |
6387092 | Burnside et al. | May 2002 | B1 |
6388240 | Schulz et al. | May 2002 | B2 |
6402766 | Bowman et al. | Jun 2002 | B2 |
H2037 | Yates et al. | Jul 2002 | H |
6412279 | Coleman et al. | Jul 2002 | B1 |
6425903 | Voegele | Jul 2002 | B1 |
6436097 | Nardella | Aug 2002 | B1 |
6436107 | Wang et al. | Aug 2002 | B1 |
6436110 | Bowman et al. | Aug 2002 | B2 |
6443973 | Whitman | Sep 2002 | B1 |
6447517 | Bowman | Sep 2002 | B1 |
6461372 | Jensen et al. | Oct 2002 | B1 |
6478210 | Adams et al. | Nov 2002 | B2 |
6497707 | Bowman et al. | Dec 2002 | B1 |
6505768 | Whitman | Jan 2003 | B2 |
6515273 | Al-Ali | Feb 2003 | B2 |
6524316 | Nicholson et al. | Feb 2003 | B1 |
6533157 | Whitman | Mar 2003 | B1 |
6540751 | Enayati | Apr 2003 | B2 |
6544273 | Harari et al. | Apr 2003 | B1 |
6554852 | Oberlander | Apr 2003 | B1 |
6562071 | Jarvinen | May 2003 | B2 |
6578579 | Burnside et al. | Jun 2003 | B2 |
6601748 | Fung et al. | Aug 2003 | B1 |
6601749 | Sullivan et al. | Aug 2003 | B2 |
6602252 | Mollenauer | Aug 2003 | B2 |
6611793 | Burnside et al. | Aug 2003 | B1 |
6616821 | Broadley et al. | Sep 2003 | B2 |
6629986 | Ross et al. | Oct 2003 | B1 |
6651669 | Burnside | Nov 2003 | B1 |
6656177 | Truckai et al. | Dec 2003 | B2 |
6669073 | Milliman et al. | Dec 2003 | B2 |
6669705 | Westhaver et al. | Dec 2003 | B2 |
6696008 | Brandinger | Feb 2004 | B2 |
6698643 | Whitman | Mar 2004 | B2 |
6699177 | Wang et al. | Mar 2004 | B1 |
6716233 | Whitman | Apr 2004 | B1 |
6736085 | Esnouf | May 2004 | B1 |
6792390 | Burnside et al. | Sep 2004 | B1 |
6793652 | Whitman et al. | Sep 2004 | B1 |
6817508 | Racenet et al. | Nov 2004 | B1 |
6830174 | Hillstead et al. | Dec 2004 | B2 |
6843403 | Whitman | Jan 2005 | B2 |
6846307 | Whitman et al. | Jan 2005 | B2 |
6846308 | Whitman et al. | Jan 2005 | B2 |
6846309 | Whitman et al. | Jan 2005 | B2 |
6849071 | Whitman et al. | Feb 2005 | B2 |
6861639 | Al-Ali | Mar 2005 | B2 |
6872214 | Sonnenschein et al. | Mar 2005 | B2 |
6899538 | Matoba | May 2005 | B2 |
6900004 | Satake | May 2005 | B2 |
6905057 | Swayze et al. | Jun 2005 | B2 |
6926636 | Luper | Aug 2005 | B2 |
6953139 | Milliman et al. | Oct 2005 | B2 |
6959852 | Shelton, IV et al. | Nov 2005 | B2 |
6964363 | Wales et al. | Nov 2005 | B2 |
6979328 | Baerveldt et al. | Dec 2005 | B2 |
6981628 | Wales | Jan 2006 | B2 |
6981941 | Whitman et al. | Jan 2006 | B2 |
6988649 | Shelton, IV et al. | Jan 2006 | B2 |
7000819 | Swayze et al. | Feb 2006 | B2 |
7032798 | Whitman et al. | Apr 2006 | B2 |
7044353 | Mastri et al. | May 2006 | B2 |
7048687 | Reuss et al. | May 2006 | B1 |
7055731 | Shelton, IV et al. | Jun 2006 | B2 |
7059508 | Shelton, IV et al. | Jun 2006 | B2 |
7077856 | Whitman | Jul 2006 | B2 |
7083075 | Swayze et al. | Aug 2006 | B2 |
7097089 | Marczyk | Aug 2006 | B2 |
7111769 | Wales et al. | Sep 2006 | B2 |
7118564 | Ritchie et al. | Oct 2006 | B2 |
7122029 | Koop et al. | Oct 2006 | B2 |
7128253 | Mastri et al. | Oct 2006 | B2 |
7128254 | Shelton, IV et al. | Oct 2006 | B2 |
7140528 | Shelton, IV | Nov 2006 | B2 |
7143924 | Scirica et al. | Dec 2006 | B2 |
7143925 | Shelton, IV et al. | Dec 2006 | B2 |
7143926 | Shelton, IV et al. | Dec 2006 | B2 |
7147138 | Shelton, IV | Dec 2006 | B2 |
7186966 | Al-Ali | Mar 2007 | B2 |
7193519 | Root et al. | Mar 2007 | B2 |
7217269 | El-Galley et al. | May 2007 | B2 |
7220232 | Suorsa et al. | May 2007 | B2 |
7240817 | Higuchi | Jul 2007 | B2 |
7241270 | Horzewski et al. | Jul 2007 | B2 |
7246734 | Shelton, IV | Jul 2007 | B2 |
7303108 | Shelton, IV | Dec 2007 | B2 |
7328828 | Ortiz et al. | Feb 2008 | B2 |
7335169 | Thompson et al. | Feb 2008 | B2 |
7364061 | Swayze et al. | Apr 2008 | B2 |
7380695 | Doll et al. | Jun 2008 | B2 |
7380696 | Shelton, IV et al. | Jun 2008 | B2 |
7404508 | Smith et al. | Jul 2008 | B2 |
7416101 | Shelton, IV et al. | Aug 2008 | B2 |
7419080 | Smith et al. | Sep 2008 | B2 |
7422136 | Marczyk | Sep 2008 | B1 |
7422139 | Shelton, IV et al. | Sep 2008 | B2 |
7431188 | Marczyk | Oct 2008 | B1 |
7431189 | Shelton, IV et al. | Oct 2008 | B2 |
7434715 | Shelton, IV et al. | Oct 2008 | B2 |
7441684 | Shelton, IV et al. | Oct 2008 | B2 |
7448525 | Shelton, IV et al. | Nov 2008 | B2 |
7461767 | Viola et al. | Dec 2008 | B2 |
7464846 | Shelton, IV et al. | Dec 2008 | B2 |
7464847 | Viola et al. | Dec 2008 | B2 |
7464849 | Shelton, IV et al. | Dec 2008 | B2 |
7481348 | Marczyk | Jan 2009 | B2 |
7487899 | Shelton, IV et al. | Feb 2009 | B2 |
7549563 | Mather et al. | Jun 2009 | B2 |
7552854 | Wixey et al. | Jun 2009 | B2 |
7556185 | Viola | Jul 2009 | B2 |
7568603 | Shelton, IV et al. | Aug 2009 | B2 |
7637409 | Marczyk | Dec 2009 | B2 |
7641093 | Doll et al. | Jan 2010 | B2 |
7644848 | Swayze et al. | Jan 2010 | B2 |
7648055 | Marczyk | Jan 2010 | B2 |
7670334 | Hueil et al. | Mar 2010 | B2 |
7694809 | Garbini et al. | Apr 2010 | B2 |
7721931 | Shelton, IV et al. | May 2010 | B2 |
7740159 | Shelton, IV et al. | Jun 2010 | B2 |
7753248 | Viola | Jul 2010 | B2 |
7757925 | Viola et al. | Jul 2010 | B2 |
7766207 | Mather et al. | Aug 2010 | B2 |
7766210 | Shelton, IV et al. | Aug 2010 | B2 |
7770775 | Shelton, IV et al. | Aug 2010 | B2 |
7784663 | Shelton, IV | Aug 2010 | B2 |
7815090 | Marczyk | Oct 2010 | B2 |
7823760 | Zemlok et al. | Nov 2010 | B2 |
7845534 | Viola et al. | Dec 2010 | B2 |
7870989 | Viola et al. | Jan 2011 | B2 |
7886953 | Schwemberger et al. | Feb 2011 | B2 |
7887530 | Zemlok et al. | Feb 2011 | B2 |
7905897 | Whitman et al. | Mar 2011 | B2 |
7909221 | Viola et al. | Mar 2011 | B2 |
7922063 | Zemlok et al. | Apr 2011 | B2 |
7931660 | Aranyi et al. | Apr 2011 | B2 |
7950560 | Zemlok et al. | May 2011 | B2 |
7955352 | McEwen et al. | Jun 2011 | B2 |
8006885 | Marczyk | Aug 2011 | B2 |
8006887 | Marczyk | Aug 2011 | B2 |
8011551 | Marczyk et al. | Sep 2011 | B2 |
8020742 | Marczyk | Sep 2011 | B2 |
8025199 | Whitman et al. | Sep 2011 | B2 |
8038044 | Viola | Oct 2011 | B2 |
8052024 | Viola et al. | Nov 2011 | B2 |
8066721 | Kortenbach et al. | Nov 2011 | B2 |
8074858 | Marczyk | Dec 2011 | B2 |
8092493 | Marczyk | Jan 2012 | B2 |
8128645 | Sonnenschein et al. | Mar 2012 | B2 |
8132705 | Viola et al. | Mar 2012 | B2 |
8157150 | Viola et al. | Apr 2012 | B2 |
8186555 | Shelton, IV et al. | May 2012 | B2 |
8201721 | Zemlok et al. | Jun 2012 | B2 |
8210412 | Marczyk | Jul 2012 | B2 |
8240536 | Marczyk | Aug 2012 | B2 |
8240537 | Marczyk | Aug 2012 | B2 |
8267924 | Zemlok et al. | Sep 2012 | B2 |
8328823 | Aranyi et al. | Dec 2012 | B2 |
8348125 | Viola et al. | Jan 2013 | B2 |
20020103489 | Ku | Aug 2002 | A1 |
20020111641 | Peterson et al. | Aug 2002 | A1 |
20020165541 | Whitman | Nov 2002 | A1 |
20030090201 | Peng | May 2003 | A1 |
20030114851 | Truckai et al. | Jun 2003 | A1 |
20030120306 | Burbank et al. | Jun 2003 | A1 |
20040232201 | Wenchell et al. | Nov 2004 | A1 |
20050006429 | Wales et al. | Jan 2005 | A1 |
20050010235 | VanDusseldorp | Jan 2005 | A1 |
20050131390 | Heinrich et al. | Jun 2005 | A1 |
20050139636 | Schwemberger et al. | Jun 2005 | A1 |
20050177176 | Gerbi et al. | Aug 2005 | A1 |
20050192609 | Whitman et al. | Sep 2005 | A1 |
20050247753 | Kelly et al. | Nov 2005 | A1 |
20060000867 | Shelton et al. | Jan 2006 | A1 |
20070023477 | Whitman et al. | Feb 2007 | A1 |
20070029363 | Popov | Feb 2007 | A1 |
20070084897 | Shelton et al. | Apr 2007 | A1 |
20070102472 | Shelton | May 2007 | A1 |
20070175949 | Shelton et al. | Aug 2007 | A1 |
20070175950 | Shelton et al. | Aug 2007 | A1 |
20070175951 | Shelton et al. | Aug 2007 | A1 |
20070175955 | Shelton et al. | Aug 2007 | A1 |
20070219563 | Voegele | Sep 2007 | A1 |
20080029570 | Shelton et al. | Feb 2008 | A1 |
20080029573 | Shelton et al. | Feb 2008 | A1 |
20080029574 | Shelton et al. | Feb 2008 | A1 |
20080029575 | Shelton et al. | Feb 2008 | A1 |
20080135600 | Hiranuma et al. | Jun 2008 | A1 |
20080169329 | Shelton et al. | Jul 2008 | A1 |
20080185419 | Smith et al. | Aug 2008 | A1 |
20080197167 | Viola et al. | Aug 2008 | A1 |
20080255413 | Zemlok et al. | Oct 2008 | A1 |
20080255607 | Zemlok | Oct 2008 | A1 |
20090018624 | Levinson et al. | Jan 2009 | A1 |
20090090201 | Viola | Apr 2009 | A1 |
20090090763 | Zemlok et al. | Apr 2009 | A1 |
20100200636 | Zemlok et al. | Aug 2010 | A1 |
20100312257 | Aranyi | Dec 2010 | A1 |
20100320254 | Zemlok et al. | Dec 2010 | A1 |
20110034910 | Ross et al. | Feb 2011 | A1 |
20110036890 | Ma | Feb 2011 | A1 |
20110062211 | Ross et al. | Mar 2011 | A1 |
20110168757 | Viola et al. | Jul 2011 | A1 |
20110172681 | Aranyi et al. | Jul 2011 | A1 |
20110190738 | Zemlok et al. | Aug 2011 | A1 |
20110301579 | Marczyk et al. | Dec 2011 | A1 |
20110303735 | Marczyk | Dec 2011 | A1 |
20120055972 | Marczyk | Mar 2012 | A1 |
20120074197 | Marczyk | Mar 2012 | A1 |
20120089131 | Zemlok | Apr 2012 | A1 |
20120175400 | Viola et al. | Jul 2012 | A1 |
20120193393 | Viola et al. | Aug 2012 | A1 |
20120198288 | Njo et al. | Aug 2012 | A1 |
20120220989 | Zemlok et al. | Aug 2012 | A1 |
20120223121 | Viola et al. | Sep 2012 | A1 |
20120241494 | Marczyk | Sep 2012 | A1 |
20120277790 | Zemlok et al. | Nov 2012 | A1 |
20120298718 | Marczyk | Nov 2012 | A1 |
20120298720 | Marczyk | Nov 2012 | A1 |
20170172573 | Viola et al. | Jun 2017 | A1 |
20180110518 | Overmyer et al. | Apr 2018 | A1 |
20180360446 | Shelton, IV | Dec 2018 | A1 |
20190183503 | Shelton, IV | Jun 2019 | A1 |
Number | Date | Country |
---|---|---|
2824590 | Apr 2014 | CA |
101683284 | Mar 2010 | CN |
102648864 | Aug 2012 | CN |
107635488 | Jan 2018 | CN |
0537570 | Apr 1993 | EP |
0647431 | Apr 1995 | EP |
0738501 | Oct 1996 | EP |
0770354 | May 1997 | EP |
1070487 | Jan 2001 | EP |
1201196 | May 2002 | EP |
1658817 | May 2006 | EP |
1813203 | Aug 2007 | EP |
3034011 | Jun 2016 | EP |
3289984 | Mar 2018 | EP |
2 849 589 | Jul 2004 | FR |
20199414129 | Jun 1994 | WO |
20199729694 | Aug 1997 | WO |
20199740760 | Nov 1997 | WO |
20199837825 | Sep 1998 | WO |
199952489 | Oct 1999 | WO |
0234140 | May 2002 | WO |
03026511 | Apr 2003 | WO |
03030743 | Apr 2003 | WO |
2004032760 | Apr 2004 | WO |
2007030753 | Mar 2007 | WO |
2007114868 | Oct 2007 | WO |
2007118179 | Oct 2007 | WO |
2007014355 | Apr 2009 | WO |
2009143092 | Nov 2009 | WO |
Entry |
---|
European Examination Report dated Oct. 7, 2020 issued in corresponding EP Appln. No. 19 188 040.0. |
Detemple, P., “Microtechnology in Modern Health Care”, Med Device Technol. 9(9):18-25 (1998). |
Abridged Data Sheet, “DeepCover Secure Authenticator with 1-Wire SHA-256 and 512-Bit User EEPROM”, Maxim Integrated Products, Inc. pp. 1-4; 42; Dec. 2012. |
Data Sheet “DS28E15-1-Sire SHA-256 Secure Authenticator with 512-Bit User EEPROM”; IC-on-Line, Electronic Component Manufacturers, pp. 1-2; Aug. 2013. |
Extended European Search Report dated Dec. 13, 2019 issued in corresponding EP Appln. No. 19188040.0. |
Office Action issued in corresponding Chinese Application No. 201910661529.0 dated Apr. 11, 2023, together with English language transslation (10 pages). |
Office Action issued in corresponding Japanese Application No. 2019-131092 mailed May 10, 2023, together with English language translation (16 pages). |
Number | Date | Country | |
---|---|---|---|
20200029960 A1 | Jan 2020 | US |
Number | Date | Country | |
---|---|---|---|
62702995 | Jul 2018 | US |