Laundry washing machines conventionally receive a controlled amount of water at the outset of a wash cycle, to saturate the articles of clothing or other laundry placed in a wash basket thereof, and to provide an additional amount of “free water,” (i.e., water in the wash tub not absorbed by the clothes) within which the load of laundry may be agitated to induce cleansing during the wash cycle. Typically, the wash basket is a perforated container, rotatably mounted within an outer stationary tub serving to hold the wash liquid. In a conventional arrangement, the water level in the tub is determined by a user-selected load size setting. For example, the user selects from a number of load size settings (e.g., ‘Small’, ‘Medium’, or ‘Large’), and based on that selection, water is added to the wash tub until a predetermined pressure reading is reached, corresponding to the user-selected load size, whereupon the washer fill is terminated and the next wash cycle (e.g., agitation) commences.
Certain shortcomings are inherent in this conventional technique. Namely, the user-selected load size might not correspond to the actual size of the load of clothes in the wash basket. For instance, a user selecting a large load size for washing just a few clothing items will unnecessarily waste both water, and energy used to heat the water, during the wash cycle. Similarly, a user selecting too small a load size for the clothing load may not supply enough free water to the wash tub for optimal cleansing of the clothes during the wash cycle.
Previous attempts have been made to improve upon the above-described conventional technique for filling a wash tub. U.S. Pat. No. 5,408,716 to Dausch et al. describes a technique which involves measuring pressure surges and cavitations at a sensor positioned beneath the tub, and filling the tub until cavitation substantially decreases. This decrease in cavitation is interpreted as an indication that the tub contains an adequate amount of water for washing the load.
Another technique for filling a wash tub is described in U.S. Pat. No. 4,697,293 to Knoop. This technique involves monitoring the water level during an initial tub fill with a pressure sensor to reach a predetermined minimum water level. A low speed agitation is then engaged using a vertically oriented agitator inside the wash basket, while pressure readings continue to be recorded. The pressure oscillation ranges are used to estimate the load size, then the tub is filled with additional water as needed reach the predetermined optimum water level based on the estimated load size and user-selected fabric type.
U.S. Pat. No. 4,835,991 to Knoop et al. discloses a technique similar to the earlier Knoop patent for controlling the water fill level. In this technique, a maximum rollover rate of the clothes is determined based on the oscillation range of pressure readings during agitation, and the water fill level is controlled accordingly.
Despite the previous attempts to improve upon the conventional wash tub filling process, there remains a need for a wash tub filling process that can efficiently and accurately regulate the amount of water dispensed into the wash tub based on the load size.
According to a first aspect of the invention, a motor pulse may be used to momentarily spin a wash basket inside of a wash tub partially filled with wash liquid (e.g. water). Liquid pressure readings may be taken during and shortly after the motor pulse. Based on these pressure readings, a determination is made whether there is a sufficient amount of free water in the tub for washing the laundry load. Iterative cycles of dispensing water into the tub, stopping the fill, pulsing the tub spin motor, and taking pressure readings, may continue until a controller determines that the wash tub contains an appropriate amount of free water for the load, whereupon the fill process may be terminated and the next phase of the wash cycle may commence.
According to another aspect of the present invention, additional pressure readings are performed during the fill process. For example, a time interval may occur during which the water filling process is momentarily stopped, and during which multiple pressure readings may be taken. During this interval, water from the wetted clothes above the free water line may drip or run-off into the pool of free water accumulated in the tub. Additionally, trapped air bubbles in the load may rise to the surface. Thus, the pressure readings may record an increase or decrease in the free water level in the tub during the interval, depending on the load size and type, the water level, and the amount of wetted clothes above the water line. Pressure readings may also be taken to measure the change in water pressure during a momentary interval during which a drainage pump provided in the wash tub drainage line is turned on. These and other measurements, such as the flow rate of water into the tub, user-selected water temperature, and user-selected wash cycle, may be used in determining whether the wash tub contains a sufficient amount of free water for washing the clothes.
In another embodiment, a wash tub fill time may be calculated for adding water from a water supply into the wash tub. The fill time calculation may be based on a load size determination as described above, as well as one or more flow rate determinations taken during various stages of the water fill process. For example, an initial flow rate may be determined during an initial stage of the fill process, followed by an updated flow rate determined after the load size determination. The updated flow rate may allow for a more accurate wash tub fill time calculation, so that when water is added to the wash tub for a duration of time equal to the wash tub fill time, the tub will be filled with a sufficient amount of water for the load size.
The above and other objects, features and advantages of the present invention will be readily apparent and fully understood from the following detailed description of preferred embodiments, taken in connection with the appended drawings.
With reference to
A pressure sensor 28 is provided to measure the liquid pressure at or near the bottom of the wash tub 14. In this example, sensor 28, located near the control panel area of the washing machine, is connected to the tub 14 at a “tap point” 24 located along the side wall of the wash tub 14, adjacent to the bottom of the tub 14. A flexible hose 26 places the pressure sensor 28 in fluid communication with the tap point 24. Preferably, the tap point 24 is configured to develop a pressure head that reflects both static water pressure and water pressure resulting from water movement (e.g., rotation) within the tub 14. Additionally, the hose 26 leading from the tap point 24 to the sensor 28 is preferably an essentially directly vertically oriented hose 26 (no S-bend or dip) to avoid water build-up in the air column that may adversely affect pressure readings.
In general, pressure sensor 28 may operate as follows. As water fills the wash tub 14, a column of air is trapped in the hose 26 between the tap point 24 and a transducer positioned at the pressure sensor 28. As the amount of water in the tub 14 increases, the pressure in the air column increases and presses against the transducer. Unlike the mechanical pressure actuated switches that have conventionally been included in washing machines to provide a means for terminating the water fill upon reaching a fill amount corresponding to a user selected load size, the present invention preferably utilizes a transducer that generates an electrical signal which varies substantially linearly with the pressure of the air column, which in turn varies linearly with the water pressure at tap point 24. While the pressure may be referred to in terms of inches of water, the pressure sensor actually outputs an electrical signal in millivolts (mV), as described further with reference to
A motor 22, for example, an induction motor with a simple on-off control, is operably connected to the wash basket 16 to rotate (i.e., spin) the basket 16 within the stationary outer wash tub 14 in a conventional fashion. The operation of the motor 22 (e.g., on-off control thereof) is directed by the controller 30 of the washing machine 10. The controller 30 may receive various inputs, including readings from pressure sensor 28 and detected user-selected wash cycle settings (e.g., wash type, size, temperature, fabric type, etc.). Additionally, data indicating the age of the appliance, e.g., in terms of cycles of use to date, may be maintained and input to the controller 30 to account for significant wear-out phenomena. Based on these inputs, a control algorithm, and coefficients included in the control algorithm (which may be determined through regression analyses), the controller 30 coordinates the wash operation cycles, including opening and closing flow control valves to dispense water into the wash tub 14, activating the drainage pump 32 to drain the wash tub 14, and operating the motor 22 and the associated transmission to spin the wash basket 16 and oscillate the agitator 18.
Adaptive fill methodologies in accordance with the invention may advantageously be carried out using a suitably programmed electronic controller controlling the timing and coordination of the operation of the washer components. Thus, many existing washing machine designs may be readily adapted to carry out the inventive fill methodologies, through the provision of a controller 30 programmed or otherwise configured in accordance with the present invention, and an electronic pressure sensor which provides a pressure level indicating output to the controller.
In
Throughout the discussion of the flow diagram of
In step 201, water flows from the water supply 20 to begin an initial fill of the wash tub 14. During the initial fill, the clothes in the basket 16 are wetted, and free water begins to accumulate at the bottom of the tub 14. Besides simply adding water to the tub 14, the initial fill is preferably designed to effectively evenly saturate the clothes at the outset and before a substantial amount of free water collects in the bottom of the wash tub. To aid in this respect, the water supply 20 outlet may comprise a wide spray nozzle and/or multiple spray nozzles positioned about the top of wash tub 14.
The first interval of the graph of
In step 202, during the initial water fill, the motor 22 may be temporarily energized, or pulsed, one or more times to rotate the wash basket 16 while water is sprayed into the tub 14. Using this motor pulse, the clothes in the basket 16 are sprayed with water from different angles, resulting in a quicker and more even saturation of the clothes above the free water line. The initial motor pulse is shown in
In step 203, one or more flow rate calculations are performed during the initial fill. The flow rate refers to the rate at which water from the water supply 20 is entering the wash tub 14. This rate may change over time depending on external factors, such as the volume and pressure of water in the pipes connected to the washing machine 10, and the water temperature and wash cycle selected by the user. A variety of techniques may be used for measuring flow rate. For example, two pressure readings (e.g., P2 and P3 in the graph of
In step 204, the initial dispensing of water into the wash tub 14 is stopped once it is determined that the amount of free water in the tub 14 has reached a predetermined level (e.g., a target free water volume, or target free water height in the wash tub 14). The first iteration of step 204 corresponds to the pressure reading P4 on the graph of
As described in steps 205-211 below, at this water level a determination will be made as to whether the amount of free water in the tub 14 is sufficient to wash the load of clothes. The point at which the target water level is reached in step 204 may be determined using pressure readings from the pressure sensor 28. Readings from the sensor 28 are used to determine the volume (or height) of free water in the wash tub 14. Thus, when the controller 30 determines that a certain pressure threshold has been reached, the flow from the water supply 20 is shut off, and the process continues with steps 205-211.
In step 205, after the previous addition of water to the wash tub 14, a predetermined time interval occurs during which the water fill process is paused. One purpose of the pause is to allow the free water in the tub 14 to settle to a generally static state after the filling, making the subsequent pressure readings more consistent and stable. The length of the time required for the water to settle may be relatively short, (e.g., approximately five seconds), and may also depend on factors such as the amount and temperature of the free water in the tub. The settling time corresponds to the period between pressure readings P4 and P5 in the graph of
Another purpose for the pause relates to a drip measurement (DELTA2) that may be performed in step 206. After the dispensing of water has been stopped in step 204, some of the wetted clothes in the wash basket 16 may still be above the free water line in the wash tub 14. In step 206, the drip measurement DELTA2 is performed as a series of timed liquid pressure readings in the tub 14 to gather information about the wetted clothes above the water line. During the pause in step 205, water may drip or run off of the saturated clothes above the water line, joining the free water pool and thus slightly raising the water level in the tub 14. The timed pressure readings of step 206 are influenced by this change in the free water level in the tub 14, and thus provide information regarding the amount of wetted clothes still above the water line. Also during this pause, air bubbles trapped in articles of the load may escape to the surface, slightly lowering the water level in the tub 14 an amount which bears a relation to the amount of clothing below the water line. Through regression analyses, as described below, it has been determined that the direction and the amount of the pressure change under these circumstances bears a correlation to the load size. Thus, the counteracting nature of the dripping effect and the bubbling effect influences during the timed pause of step 205, yields data relevant to the load size determination.
Further information regarding the amount of clothing above the water line may be obtained using the flow rate data collected in step 203. To the extent that non-saturated clothing remains above the water line, a detected flow rate based on pressure readings within the tub will vary from an actual flow rate from the water supply 20 due to progressive water absorption in the wash load as the water line rises.
In
In conjunction with steps 205-206, the controller 30, comparing the pressure differences between the two readings, may now make a determination regarding the amount of water necessary to wash the clothes in the basket 16. For example, if the water level decreased substantially between the two readings, the controller 30 may determine that most or all of the articles of clothing in the basket 16 are submerged below the free water line, using a control algorithm and coefficients therefore, determined by regression analysis. In contrast, if the water level increased substantially between the two pressure readings, the controller 30 might determine that most of the wetted articles are still above the water line. This information may be used as the sole factor from which it is determined whether there is a sufficient amount of water in the wash tub 14 for the laundry load. However, in preferred embodiments, this information is just one of several factors used by the controller 30 in making the determination.
In step 207, the motor 22 driving the rotation of the wash basket 16 within the wash tub 14 is “pulsed,” i.e., briefly activated or energized. This motor pulse briefly spins the wash basket 16 and the load of clothes, imparting a centrifugal force on both the water and clothing in the basket 16. As described in detail below with reference to
Referring briefly to
Referring now to step 208, during and/or shortly after the motor pulse of step 207, one or more pressure readings are taken using the pressure sensor 28. These pressure readings measure the effect of the motor pulse on the free water and clothes in the basket 16, and further enable the controller 30 to determine whether there is a sufficient (suitable minimum) amount of water in the tub 14 for washing the particular load. Specifically, the controller 30 may store the minimum pressure reading during the spinning of the tub 14 and compare this value to the pressure reading in the tub 14 just before the motor pulse. It has been observed that the sensed liquid pressure in the tub 14 may drop during the motor pulse, and that the drop to the minimum pressure during the basket spinning, which may correspond to the very end of the pulse, is correlated to the amount of free water in the tub in relation to the laundry load. It has also been observed that following the motor pulse, while the wash basket 16 is still spinning but decelerating, the pressure readings taken by the sensor 28 may be greater than the pressure readings taken before the pulse. As mentioned above, multiple pressure readings may be taken during these different phases of the motor pulse: before the motor pulse, during the pulse and the associated acceleration of the wash basket 16, shortly after the pulse during the deceleration of the wash basket 16, and after the spinning of the basket 16 has stopped.
The motor pulse of step 207 and pressure sensor readings of step 208 correspond to the graph area of
Referring now to step 209, drainage pump 32 may be run for between 3 and 5 seconds to drain a small amount of water (e.g., less than one liter) from the wash tub 14. While, or shortly after, the drainage pump 32 is turned on, the drain measurement (DELTADRAIN1) may be performed in step 210. The drain measurement DELTADRAIN1, corresponding to the amount of wash liquid drained during the brief running of the drainage pump 32, is calculated as the difference between pressure readings P10 and P11 in
The drainage path may extend from a drain inlet located on or near the outer wall of the wash tub 14, such that pump 32 pumps water out from the region between the wash tub 14 and nested wash basket 16. As water is evacuated from this region in step 210, free water in the wash basket 16 will flow through the perforations in the wash basket 16 to fill the voide created. The nature and extent of this flow will vary in relation to the amount of free water and the relative size of the load. A pressure drop at the sensor will occur if the water drained from the tub flows out at a higher rate than free water flows in between wash tub 14 and wash basket 16 to replace it. Thus, if the DELTADRAIN1 measures a large drop in the wash tub pressure, this may indicate that the wash basket contains a relatively small amount of free water relative to the load size, and that an additional amount of free water may be needed to effectively wash the laundry load. To the extent that the pressure drop is smaller or non-existent, this is an indication that there may be a sufficient amount of free water in the tub for the particular load
Referring now to step 211, the controller 30 performs calculations to determine whether there is a suitable minimum amount of water in the wash tub 14 for washing the current load of clothes. The controller 30 may use all or a selected subset of the different measurements described in the steps above to make this determination. For example, the DELTA2 drip measurement performed in step 206, the DELTAPULSEMIN1 and DELTAPULSEMIN1 measurements performed in step 208, and the DELTADRAIN1 measurement performed in step 210 might be used as variables in an algorithm executed by the controller 30. Accordingly, the determination of step 211 may involve the following logic performed at the controller 30:
In Equation 1, the values C1-C6 represent constant coefficients stored at the controller 30, which may be determined through regression analyses on the washer 10. To perform such a regression analysis, several test laundry loads may be washed during the design and manufacturing stages of the washer 10. Each test load may have unique predetermined size, fabric type(s), and other associated characteristics. Then, during the wash cycle for a test load, the different pressure readings and calculations described above are performed, and a load size determination is performed in step 211 using Equation 1. For this initial load size determination, the coefficients C1-C6 are assigned an initial default set of values. After performing the initial load size determination using Equation 1, the accuracy of the determination is evaluated based on the known load size, and some or all of the coefficients C1-C6 are adjusted based on this evaluation. As is well known in statistical analyses, many iterations of an experiment with certain known factors, along with continuous adjustment of the unknown variables based on the success rate, can eventually “solve” for the unknown variables. Thus, a regression analysis can be performed to determine suitable values for the coefficients C1-C6 for the tested washer 10. These coefficients C1-C6 may then be hard-coded into Equation 1 in the controller 30 of that washer 10, allowing the controller to make accurate load size determinations for subsequent laundry loads. Thus, although different washers may have different physical characteristics (e.g., tub size, tub shape, motor force, basket perforation pattern, etc.), which may lead to different values for their respective coefficients C1-C6, the same regression analysis approach may be used for the different washers to find suitable coefficients C1-C6 for Equation 1 for use in load size determinations.
Other factors such as the temperature of the water and the fabric type and/or selected wash cycle (e.g., Normal, Delicates, Heavy Duty, etc.) may also be used in the load size determination of step 211. To incorporate these and other factors, a distinct set of coefficients C1-C6 may be generated for each possible combination of the user-selected temperature setting, fabric type, and wash cycle, and a look-up table of the sets of coefficients may be stored in the controller 30 and referred to before applying Equation 1 in a load size determination. To generate a look-up table of multiple coefficient sets, the initial set of coefficients C1-C6 may first be determined through a regression analysis as described above. Then, the subsequent sets of coefficients corresponding to different combinations of user settings may be generated by weighting the initial coefficients C1-C6 appropriately. For example, it may be desirable to configure the controller 30 so that when the user indicates a ‘Delicates’ wash cycle on the control panel of the washer 10, there is a slightly increased likelihood that the load size determination of step 211 will determine that the load size is not small, i.e., is medium or large, so that a relatively larger amount of water is dispensed into the wash tub. Accordingly, the sets of coefficients in the look-up table corresponding to a user-selected delicates wash cycle may be slightly weighted so that A1 is more likely to be greater than or equal to C6 in Equation 1 above, for example, by increasing the values of one or more of C1-C5, or by decreasing the C6 value in those coefficient sets.
As an alternative to the load determination process described above, only a few or even just a single measurement may be used by the controller 30 in making the determination at step 211, albeit perhaps with less accuracy. For example, the controller 30 might determine the sufficiency of the current amount of free water in the tub 14 solely by using the DELTA2 drip measurement performed in step 206. In this case, the pulse of step 207 and pressure readings taken in steps 203, 208, and 210 would not need to be taken. As another example, the controller 30 may make the water level determination based solely on the motor pulse and DELTAPULSEMIN1 pulse measurement taken in steps 207-208. Based on some or all of the input variables, a control algorithm and coefficients included in the control algorithm (which may be determined through regression analyses), the controller coordinates the wash operation cycles, including opening and closing flow control valves to dispense water into the wash tub 14.
If the controller 30 determines in step 211 that the wash tub 14 contains a sufficient suitable minimum amount of free water for washing the load of clothes (211:Yes), control continues to step 213 and the washer fill process is completed for this wash cycle. However, if the controller 30 determines in step 211 that the wash tub 14 does not contain enough free water to wash the clothes (211:No), an additional amount of water is added to the wash tub 14 in step 212, before returning control to step 204 for repeating the actions and readings of steps 204-211. The amount of water added in step 212 can be determined as a predetermined volume based on measured flow rates DELTA1H and DELTA1C, or may correspond to a predetermined pressure reading representing the next water level iteration for the washing machine 10. For example, if the washing machine 10 has a predetermined water pressure reading associated with the ‘Small’ load size (e.g., pressure reading PS in
The graph section of
Pressure reading P12 on the graph of
The short relatively flat section of the graph between readings P12 and P13 in
In the graph area of
After the second motor pulse and associated pressure readings are taken, as shown in the graph of
Shortly after the drainage pump 32 is turned off at point P17 of
Similar to the coefficients used in Equation 1, the coefficients C7-C15 of Equation 2 may be determined through regression analyses on the washer 10. As described above, while the actual coefficient values may vary from one model of washer to the next, the equations themselves used for the load size determinations may stay constant. Additionally, once a regression analysis has been performed on a test group of washers of a certain model to determine suitable values for the coefficients C1-C15, these coefficient values may be assumed to be approximately the same for every washer of that model, and may therefore be hard-coded into the controller logic of those washers during the manufacturing process.
As shown in the graph of
It should be noted that an additional set of flow rate measurements may be performed during the time fill of the wash tub 14 to reach the next load size setting. For example, in
The determination of load size need only be made once in the process of washing a given load of laundry. For example, during a subsequent wash tub fill, for one or more rinse cycles following the wash cycle, the previous determination of load size obtained through use of the inventive process may be reapplied. However, during a rinse cycle, the washer 10 could perform one or more additional flow rate calculations (e.g., DELTA2T, DELTA2H, DELTA2C) to determine and monitor the overall flow rate and/or hot and cold water flow rates during a wash tub fill during the rinse cycle. In order to more accurately determine a fill cutoff time, the flow rate calculations during the rinse may be made more than once (e.g., every 30 seconds) during the rinse cycle time fill.
In
In step 401, the initial fill of the wash tub 14, and initial tub spin are performed. This step is similar to steps 201-202 described in reference to
In step 405, the controller 30 performs calculations to determine the size of the laundry load currently in the wash basket 16. However, in this example, the proper load level setting is always determined after a single iteration of measurements. In other words, the first iteration of step 211 only determines whether or not the current load is small, and if it is not, future measurements will be performed to determine the precise load size (e.g., ‘Medium’ or ‘Large’). In contrast, the determination in step 405 will make a final conclusion regarding the proper load size (e.g., ‘Small’, ‘Medium’, or ‘Large’) based solely on the measurements performed in steps 402-404. Thus, in this example, no future calculations or load size determinations are necessary. Accordingly, the determination of step 405 may involve implementation of the following logic at the controller 30:
As shown in
In
Alternatively, the timed water fill may be divided into a cold water fill and separate hot water fill, from the cold and hot water hoses of the water supply 20. By dividing the timed water fill into separate cold and hot fill times (e.g. B1C, B1H, B2C . . . ), the temperature of the water in the tub 14 may be more precisely controlled. For example, the small load fill time B1 may be divided into a short cold water fill time B1C followed by a longer hot water fill time B1H, based on the known temperatures of the cold and hot water sources, and the desired (e.g., user-selected) wash temperature. Thus, time T10 may be calculated as the point at which the cold water valve is closed and the hot water valve is open, or vice versa, to achieve a desired temperature for the water in the wash tub 14 at the small load target time TS.
Additional flow rate measurements may also be performed during the timed water fill, so that the load size-based target fill times (e.g., TS, TM, and TL) may be adjusted to account for any changes in the flow rate(s) since the initial flow rate measurement (DELTA1T in
The present invention has been described in terms of preferred and exemplary embodiments thereof. Numerous other embodiments, modifications and variations within the scope and spirit of the appended claims will occur to persons of ordinary skill in the art from a review of this disclosure.