The present application claims priority from Korean Patent Application Nos. 10-2010-0038422 and 10-2011-0018707 filed on Apr. 26, 2010 and Mar. 3, 2011, the entire subject matter of which is incorporated herein by reference.
The present disclosure generally relates to strain imaging, and more particularly to adaptive clutter filtering in an ultrasound system.
An ultrasound system has become an important and popular diagnostic tool since it has a wide range of applications. Specifically, due to its non-invasive and non-destructive nature, the ultrasound system has been extensively used in the medical profession. Modern high-performance ultrasound systems and techniques are commonly used to produce two or three-dimensional images of internal features of an object (e.g., human organs).
Generally, the ultrasound system may operate in a Brightness-mode (B-mode) visualizing a reflectivity of an ultrasound signal reflected from a target object as a 2-dimensional image, a Doppler mode visualizing a velocity of a moving object as spectral Doppler by using the Doppler effect, a color Doppler mode visualizing velocity and direction of a moving object with colors by using the Doppler effect and an elasticity mode visualizing mechanical characteristics of tissues such as the elasticity of the same.
In the color Doppler mode, the ultrasound system may transmit an ultrasound signal to the target object and receive the ultrasound echoes to thereby form a Doppler signal. The ultrasound system may form a color Doppler image based on the Doppler signal. The Doppler signal may include a low frequency signal (the so-called clutter signal) due to the motion of a cardiac wall or valve of a heart and a noise in addition to a signal caused by a blood flow (referred to as “blood flow signal”). The clutter signal may have amplitude, which is over 100 times than that of the blood flow signal. The clutter signal may be an obstacle to accurately detect a velocity of the blood flow. Thus, it is required to remove the clutter signal from the Doppler signal to accurately detect the velocity of the blood flow.
A frequency down mixing method has been used to remove the clutter signal. According to the frequency down mixing method, frequency components corresponding to the clutter signal are estimated and then down mixing, i.e., frequency shifting, is performed upon the Doppler signal such that a center frequency of the clutter signal becomes zero. Thereafter, the clutter filtering is performed to remove the clutter signal.
Generally, the ultrasound system may acquire an amount of the ultrasound data by the ensemble number and estimate the frequency components corresponding to the clutter signal by using the acquired ultrasound data. However, it may be difficult to accurately estimate the frequency components corresponding to the clutter signal and frequency components corresponding to the blood flow signal by using the ultrasound data corresponding to the limited ensemble number.
To cope with the above problem, the conventional clutter filtering has been performed by setting a high cutoff frequency of a high pass filter. When the cutoff frequency is set high, a Doppler signal (i.e., blood flow signal) corresponding to a blood flow of a relatively low speed may be removed and a clutter signal of a relatively high frequency may not be removed. Thus, the motion of the blood flow may not be accurately indicated on a color Doppler image.
Embodiments for adaptively performing clutter filtering in an ultrasound system are disclosed herein. In one embodiment, by way of non-limiting example, an ultrasound system comprises: an ultrasound data acquisition unit configured to perform a transmit/receive operation including transmitting ultrasound signals to a target object and receiving ultrasound echoes reflected from the target object to thereby acquire ultrasound data for color Doppler imaging; and a processing unit configured to extract a plurality of frequency components of the ultrasound data using an autoregressive model and compute a mean frequency component of the plurality of frequency components, the processing unit being further configured to detect frequency components corresponding to a clutter signal based on the plurality of frequency components and the mean frequency component and perform clutter filtering upon the ultrasound data by using the frequency components corresponding to the clutter signal.
In another embodiment, a method of performing cluttering filtering in an ultrasound system, comprises: a) performing a transmit/receive operation including transmitting ultrasound signals to a target object and receiving ultrasound echoes reflected from the target object to thereby acquire ultrasound data for color Doppler imaging; b) extracting a plurality of frequency components of the ultrasound data using an autoregressive model; c) detecting a mean frequency component of the plurality of frequency components; d) detecting frequency components corresponding to a clutter signal based on the plurality of frequency components and the mean frequency component; and e) performing clutter filtering upon the ultrasound data by using the frequency components corresponding to the clutter signal.
The Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used in determining the scope of the claimed subject matter.
A detailed description may be provided with reference to the accompanying drawings. One of ordinary skill in the art may realize that the following description is illustrative only and is not in any way limiting. Other embodiments of the present invention may readily suggest themselves to such skilled persons having the benefit of this disclosure.
Referring to
The ultrasound data acquisition unit 120 may be configured to transmit ultrasound beams to a target object and receive ultrasound echoes reflected from the target object to thereby form ultrasound data representative of the target object. An operation of the ultrasound acquisition unit will be described in detail by referring to
The ultrasound data acquisition unit 120 may further include an ultrasound probe 320, which is coupled to the Tx signal forming section 210. The ultrasound probe 320 may include an array transducer containing a plurality of transducer elements for reciprocal conversion between electric signals and ultrasound signals. The ultrasound probe 320 may be configured to transmit ultrasound signals in response to the Tx signals. In one embodiment, the transmitted ultrasound signals may include first ultrasound signals based on the first Tx pattern of the Tx signals and second ultrasound signals based on the second Tx pattern of the Tx signals. The ultrasound probe 320 may be further configured to receive ultrasound echoes reflected from the target object to thereby output receive signals. In one embodiment, the receive signals may include first receive signals associated with the first ultrasound signals and second receive signals associated with the second ultrasound signals. The ultrasound probe 320 may include a convex probe, a linear probe and the like.
The ultrasound data acquisition unit 120 may further include a beam forming section 330, which is coupled to the ultrasound probe 320. The beam forming section 330 may be configured to digitize the receive signals into digital signals. The beam forming section 330 may be configured to apply delays to the digital signals in consideration of distances between the elements of the ultrasound probe 320 and focal points. The beam forming section 330 may further sum the delayed digital signals to form receive-focused signals. In one embodiment, the beam forming section 330 may form first receive-focused signals based on the first receive signals and second receive-focused signals based on the second receive signals.
The ultrasound data acquisition unit 120 may further include an ultrasound data forming section 340, which is coupled to the beam forming section 330. The ultrasound data forming section 340 may be configured to form ultrasound data based on the receive-focused signals. In one embedment, the ultrasound data forming section 340 may form first ultrasound data for a B-mode image BI. The first ultrasound data may be radio frequency data, although it is not limited thereto. The ultrasound data forming section 340 may form second ultrasound data corresponding to the ROI for a Color Doppler image (i.e., ensemble data). The second ultrasound data may include in-phase/quadrature data, although the second ultrasound data may not be limited thereto.
Referring to
If the input information is provided through the user input unit 110, then the processing unit 130 may set the ROI on the B-mode image based on the input information at S404. In response to setting the ROI, the processing unit 130 may control the ultrasound data acquisition unit 120 for operation in the color Doppler mode to thereby obtain the second ultrasound data from the ROI (i.e., ensemble data).
The processing unit 130 may be configured to estimate a plurality of frequency components and first strengths (or powers) of the second ultrasound data by using the autoregressive (AR) model at S406. Generally, a function H(z) of an mth order AR model may be expressed as the following equation.
wherein a numerator may be represented by a minimized dispersion e and poles, which are roots of a denominator, may be represented by a polynomial of linear prediction coefficients ak and z.
Linear prediction may be adopted to estimate the linear prediction coefficient ak of equation (1). The linear prediction is a technique that estimates a current value from linear sum of previous values of a given signal. Assuming that N discrete signals (xn)nε[0,N] are provided, forward linear prediction yn and backward linear prediction zn may be indicated as linear prediction coefficients (an)nε[1,k] of k coefficients.
The forward linear prediction yn may be represented by the minimized sum Fk of squared errors, as follows.
Typically, the linear prediction coefficients (an)nε[1,N] may be selected through minimization of the sum of squared errors. The backward linear prediction zn may be represented by the minimized sum Bk of squared errors, as follows.
To estimate the linear prediction coefficients (an)nε[1,N] for minimizing the error of the forward linear prediction or the backward linear prediction, initial state parameters may be stabilized by the Burg's recursion based on the Levinson-Durbin recursion.
If the linear prediction coefficients of the AR model, in which the initial state parameters may be stabilized by the Burg's recursion based on the Levinson-Durbin recursion, are estimated, then all poles of the denominator in equation (1) may be estimated.
In one embodiment, the processing unit 130 may be configured to detect two poles for the second ultrasound data by using the second order AR model and detect frequency components and strengths corresponding to the respective two poles. In one embodiment, the AR model may not be limited to the second order AR model. The second order AR model may be defined as follows.
wherein p1 represents a first pole of the second order AR model function H(z) and p2 represents a second pole of the second order AR model function H(z).
The processing unit 130 may be further configured to detect frequency components ω1 and ω2 corresponding to the respective two poles of the second ultrasound data as the following equation.
Further, the processing unit 130 may be further configured to compute a mean frequency component ω3 and a second strength (or power) corresponding to the second ultrasound data by using auto-correlation at S408. In another embodiment, the processing unit 130 may be configured to compute a mean frequency component ω3 and a second strength (or power) corresponding to the second ultrasound data by using the fast Fourier transform.
The processing unit 130 may be configured to detect frequency components corresponding to the clutter signal by using the frequency components ω1 and ω2 and the mean frequency component ω3 at S410. The step of S410 will be described in detail by referring to
If it is determined that the frequency components ω1 and ω2 are greater than the Doppler threshold Dth at S502, then the processing unit 130 may be configured to determine that the clutter signal does not exist in the Doppler signal. This is so that the detection of the frequency components corresponding to the clutter signal may not be carried out.
On the other hand, if it is determined that at least one of the frequency components ω1 and ω2 is less than the Doppler threshold Dth at S502, then the processing unit 130 may be configured to compare the frequency components ω1 and ω2 with a predetermined clutter threshold Cth at S504. If it is determined that the frequency components ω1 and ω2 are less than the clutter threshold Cth at S502, then the frequency components ω1 and ω2 may be considered as a noise and a clutter signal. This is so that the processing unit 130 may be configured to detect the mean frequency component ω3 as the frequency component corresponding to the clutter signal at S506.
However, if it is determined that at least one of the frequency components ω1 and ω2 is greater than the Clutter threshold Cth at S504, then the processing unit 130 may be configured to compare the frequency components ω1 and ω2 with the mean frequency component ω3 at S508. The processing unit 130 is further configured to detect proximate frequency components from the mean frequency component ω3 as the frequency components corresponding to the clutter signal at S510.
Referring back to
Further, if the frequency components corresponding to the clutter signal are not detected, then the processing unit 130 may be configured to compare the first strengths and the second strengths for the second ultrasound data to perform noise removal upon the second ultrasound data. The noise removal may be performed by using a well-known method so that the detailed description thereof will be omitted herein. The processing unit 130 may be configured to form a color Doppler image by using the second ultrasound data with the clutter signal filtered at S414.
Referring to
The display unit 150 may display the B-mod image and the color Doppler image, which have been formed in the processing unit 130. The display unit 150 may include at least one of a cathode ray tube (CRT) display, a liquid crystal display (LCD), an organic light emitting diode (OLED) display and the like.
Although embodiments have been described with reference to a number of illustrative embodiments thereof, it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the spirit and scope of the principles of this disclosure. More particularly, numerous variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the disclosure, the drawings and the appended claims. In addition to variations and modifications in the component parts and/or arrangements, alternative uses will also be apparent to those skilled in the art.
Number | Date | Country | Kind |
---|---|---|---|
10-2010-0038422 | Apr 2010 | KR | national |
10-2011-0018707 | Mar 2011 | KR | national |