Adaptive control concept for hybrid PDC/roller cone bits

Information

  • Patent Grant
  • 8056651
  • Patent Number
    8,056,651
  • Date Filed
    Tuesday, April 28, 2009
    15 years ago
  • Date Issued
    Tuesday, November 15, 2011
    13 years ago
Abstract
An earth boring drill bit comprising a bit body having a longitudinal axis along a path of the bit, a first plurality of cutters mounted to the body, and a second plurality of cutters rotatably mounted to the body, wherein a longitudinal axial relationship between the first plurality of cutters and the second plurality of cutters is adjustable. The first and/or second plurality of cutters may be mounted to the body in such a manner as to allow them to slide parallel to the longitudinal axis. The longitudinal axial relationship may be adjusted to exchange the first plurality of cutters and the secondary plurality of cutters between a primary cutting position and a secondary cutting position. The bit may include a sensor to provide an indication of a formation type being excavated by the bit and a processor to control the longitudinal axial relationship based on the indication.
Description
TITLE OF THE INVENTION

Adaptive Control Concept for Hybrid PDC/Roller Cone Bits


CROSS REFERENCE TO RELATED APPLICATIONS

None.


STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not applicable.


REFERENCE TO APPENDIX

Not applicable.


BACKGROUND OF THE INVENTION

1. Field of the Invention


The inventions disclosed and taught herein relate generally to earth boring drill bits; and more specifically relate to hybrid PDC/roller cone earth boring drill bits.


2. Description of the Related Art


U.S. Pat. No. 4,343,371 discloses a “hybrid rock bit . . . wherein a pair of opposing extended nozzle drag bit legs are positioned adjacent a pair of opposed tungsten carbide roller cones. The extended nozzle face nearest the hole bottom has a multiplicity of diamond inserts mounted therein. The diamond inserts are strategically positioned to remove the ridges between the kerf rows in the hole bottom formed by the inserts in the roller cones.”


U.S. Pat. No. 7,398,837 discloses a “drill bit assembly [that] has a body portion intermediate a shank portion and a working portion. The working portion has at least one cutting element. In some embodiments, the drill bit assembly has a shaft with an end substantially coaxial to a central axis of the assembly. The end of the shaft substantially protrudes from the working portion, and at least one downhole logging device is disposed within or in communication with the shaft.”


U.S. Pat. No. 7,350,568 discloses a “method for logging a well. Includes receiving energy with at least one array of elements coupled to a drill bit, wherein the at least one array of elements functions as an electronic array. An apparatus for logging a well includes a drill bit and at least one array of elements coupled to the drill bit, wherein the at least one array of elements functions as an electronic array.”


The inventions disclosed and taught herein are directed to an improved hybrid PDC/roller cone earth boring drill bit.


BRIEF SUMMARY OF THE INVENTION

The present invention includes an earth boring drill bit comprising a bit body having a longitudinal axis along a path of the bit, a first plurality of cutters mounted to the body, and a second plurality of cutters rotatably mounted to the body, wherein a longitudinal axial relationship between the first plurality of cutters and the second plurality of cutters is adjustable. The first and/or second plurality of cutters may be mounted to the body in such a manner as to allow them to move essentially parallel to the longitudinal axis. The longitudinal axial relationship may be adjusted to exchange the first plurality of cutters and the secondary plurality of cutters between a primary cutting position and a secondary cutting position. The bit may include one or more sensors to provide an indication of a formation type being excavated by the bit and a processor to control the longitudinal axial relationship based on the indication.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS


FIG. 1 illustrates a first elevation view of a particular embodiment of an earth boring drill bit utilizing certain aspects of the present inventions;



FIG. 2 illustrates a second elevation view of a particular embodiment of an earth boring drill bit utilizing certain aspects of the present inventions;



FIG. 3 illustrates a third elevation view of a particular embodiment of an earth boring drill bit utilizing certain aspects of the present inventions;



FIG. 4 illustrates a fourth elevation view of a particular embodiment of an earth boring drill bit utilizing certain aspects of the present inventions;



FIG. 5 illustrates a first simplified partial block diagram of a particular embodiment of an earth boring drill bit utilizing certain aspects of the present inventions; and



FIG. 6 illustrates a second simplified partial block diagram of a particular embodiment of an earth boring drill bit utilizing certain aspects of the present inventions.





DETAILED DESCRIPTION

The Figures described above and the written description of specific structures and functions below are not presented to limit the scope of what Applicants have invented or the scope of the appended claims. Rather, the Figures and written description are provided to teach any person skilled in the art to make and use the inventions for which patent protection is sought. Those skilled in the art will appreciate that not all features of a commercial embodiment of the inventions are described or shown for the sake of clarity and understanding. Persons of skill in this art will also appreciate that the development of an actual commercial embodiment incorporating aspects of the present inventions will require numerous implementation-specific decisions to achieve the developer's ultimate goal for the commercial embodiment. Such implementation-specific decisions may include, and likely are not limited to, compliance with system-related, business-related, government-related and other constraints, which may vary by specific implementation, location and from time to time. While a developer's efforts might be complex and time-consuming in an absolute sense, such efforts would be, nevertheless, a routine undertaking for those of skill in this art having benefit of this disclosure. It must be understood that the inventions disclosed and taught herein are susceptible to numerous and various modifications and alternative forms. Lastly, the use of a singular term, such as, but not limited to, “a,” is not intended as limiting of the number of items. Also, the use of relational terms, such as, but not limited to, “top,” “bottom,” “left,” “right,” “upper,” “lower,” “down,” “up,” “side,” and the like are used in the written description for clarity in specific reference to the Figures and are not intended to limit the scope of the invention or the appended claims.


Particular embodiments of the invention may be described below with reference to block diagrams and/or operational illustrations of methods. It will be understood that each block of the block diagrams and/or operational illustrations, and combinations of blocks in the block diagrams and/or operational illustrations, can be implemented by analog and/or digital hardware, and/or computer program instructions. Such computer program instructions may be provided to a processor of a general-purpose computer, special purpose computer, ASIC, and/or other programmable data processing system. The executed instructions may create structures and functions for implementing the actions specified in the block diagrams and/or operational illustrations. In some alternate implementations, the functions/actions/structures noted in the figures may occur out of the order noted in the block diagrams and/or operational illustrations. For example, two operations shown as occurring in succession, in fact, may be executed substantially concurrently or the operations may be executed in the reverse order, depending upon the functionality/acts/structure involved.


Computer programs for use with or by the embodiments disclosed herein may be written in an object oriented programming language, conventional procedural programming language, or lower-level code, such as assembly language and/or microcode. The program may be executed entirely on a single processor and/or across multiple processors, as a stand-alone software package or as part of another software package.


Applicants have created an earth boring drill bit comprising a bit body having a longitudinal axis along a path of the bit, a first plurality of cutters mounted to the body, and a second plurality of cutters rotatably mounted to the body, wherein a longitudinal axial relationship between the first plurality of cutters and the second plurality of cutters is adjustable. The first and/or second plurality of cutters may be mounted to the body in such a manner as to allow them to move essentially parallel to the longitudinal axis. The longitudinal axial relationship may be adjusted to exchange the first plurality of cutters and the secondary plurality of cutters between a primary cutting position and a secondary cutting position. The bit may include one or more sensors to provide an indication of a formation type being excavated by the bit and a processor to control the longitudinal axial relationship based on the indication.



FIG. 1 is an illustration of a hybrid bit 11 that incorporates both rolling cones and fixed polycrystalline diamond compact (PDC) cutters mounted on dual cutting structures, similar to those shown in U.S. Pat. No. 4,343,371 and U.S. Patent Application Publication No. 20080296068, both of which are incorporated herein by specific reference. More specifically, referring also to FIG. 2, the bit 11 comprises a bit body 13 having a longitudinal axis 15 that defines an axial center of the bit body 13. A plurality of roller cone support arms 17 extend from the bit body 13 in the longitudinal axial direction. The bit body 13 also has a plurality of blades 19 that extend in the longitudinal axial direction. The number of each of arms 17 and blades 19 is at least one but may be more than two.


Roller cones 21 are mounted to respective ones of the arms 17. A plurality of roller cone cutting inserts or cutters 25 are mounted to the roller cones 21. In this manner, the roller cone cutters 25 are rotatably mounted to the bit body 13. In addition, a plurality of fixed cutting elements 31, such as PDC cutters, are mounted to the blades 19. Examples of roller cone cutting elements 25 and fixed cutting elements 31 include tungsten carbide inserts, cutters made of super hard material such as polycrystalline diamond, and others known to those skilled in the art.



FIG. 1 and FIG. 2 show both the roller cone cutting elements 25 and fixed cutting elements 31 in a neutral position or relationship with regard to the longitudinal axis 15. In this position, the roller cone cutting elements 25 and fixed cutting elements 31 overlap and complement each other.


However, certain formation types favor the roller cone cutting elements 25 over the fixed cutting elements 31, or vice versa. For example, the roller cone cutting elements 25 are often better suited to dense rock formations, whereas the fixed cutting elements 31 may be better suited to softer or more homogeneous formations. Therefore, it is best to match the drill bit type to the formation type the bit 11 is expected to encounter. To further complicate matters, the drill bit 11 may encounter many different formation types while excavating a single well or borehole.


Therefore, the drill bit 11 of the present invention is preferably adjustable, such that either the roller cone cutting elements 25 or the fixed cutting elements 31 may be primary, with the other being secondary. In other words, the drill bit 11 of the present invention is preferably adjustable, such that either the roller cone cutting elements 25 may be in a primary cutting position, with the fixed cutting elements 31 in a secondary cutting position, and vice versa.


The present invention's ability to exchange the roller cone cutting elements 25 and the fixed cutting elements 31 between the primary cutting position and the secondary cutting position ensures that the formation is drilled, or excavated, as efficiently as possible with the least amount of wear on the bit 10. This ability to vary which elements 25,31 are primary and secondary may also improve the steerability of the bit 10 and bottom hole assembly (BHA) in varying formations.


In one embodiment, this adjustability is provided by mounting the roller cone cutting elements 25 and/or the fixed cutting elements 31 on the bit body 13 in such a manner as to allow them to be moved, or shifted, essentially parallel to the longitudinal axis 15 of the bit 11. In another embodiment, this adjustability is provided by mounting the arms 17 and/or the blades 19 on the bit body 13 in such a manner as to allow them to be moved essentially parallel to the longitudinal axis 15 of the bit 11. In one embodiment, the movement is essentially a linear shifting, or sliding, of the arms 17 and/or the blades 19 along the bit body 13, such as through the use of a track, rail, channel, or groove system. However, other forms of movement may be used and the movement may involve more than simple displacement along the longitudinal axis 15 of the bit 11. For example, the arms 17 and/or the blades 19 may be spirally, or helically, mounted on the bit body 13, such that the movement is a corkscrew motion about the body 13 of the bit 10. In still other embodiments, the movement may be even more complex. For example, the body 13 and the arms 17 and/or the blades 19 may have locking notched or toothed surfaces therebetween to prevent the arms 17 and/or the blades 19 from sliding with respect to the body 13, such that the arms 17 and/or the blades 19 move away from the body 13, slide, or shift, along the axis 15, and then move back toward the body 13. In any case, a longitudinal axial relationship between the roller cone cutting elements 25 and the fixed cutting elements 31 may be adjusted, such that the roller cone cutting elements 25 are in the primary cutting position, with the fixed cutting elements 31 in the secondary cutting position, or vice versa.


In this manner, the drill bit 11 of the present invention may be matched to the formation type being excavated. It should be understood that the primary cutting position is slightly deeper in the borehole than the secondary cutting position. This adjustment, or relative position/movement, may vary depending on many factors, such as bit or BHA design or application and/or the formation. In one embodiment, there may be approximately one eighth inch difference between the primary cutting position and the secondary cutting position. In other embodiments, this difference, adjustment, or movement, may be between one and two hundredths of an inch. In still other embodiments, this difference, adjustment, or movement, may be between three thousandths of an inch and one quarter inch. Finally, in some embodiments, the bit 10 may accommodate more than one eighth of an inch of relative movement.


For example, as shown in FIG. 3, the arms 17 may be extended such than the roller cone cutting elements 25 extend beyond, or are deeper than, a cutting depth 51 of the fixed cutting elements 31 mounted on the blades 19. In the configuration shown in FIG. 3, the roller cone cutting elements 25 are in the primary cutting position, with the fixed cutting elements 31 in the secondary cutting position. Alternatively, as shown in FIG. 4, the arms 17 may be retracted such than the roller cone cutting elements 25 do not extend to, or are shallower than, the cutting depth 51 of the fixed cutting elements 31 mounted on the blades 19. In the configuration, shown in FIG. 4, the fixed cutting elements 31 are in the primary cutting position, with the roller cone cutting elements 25 in the secondary cutting position.


Such adjustment may be accomplished manually or automatically, at the surface or with the bit 11 in the borehole. This adjustment may be accomplished while actively drilling during a pause in drilling. For example, the bit 10 may be lifted off the More specifically, as shown in FIG. 5 and FIG. 6, in some embodiments, one or more sensors 61 provide some indication of the formation type being excavated by the bit 11 and a processor 65 controls the longitudinal axial relationship between the roller cone cutting elements 25, the fixed cutting elements 31, and/or the bit body 13 based on the indication.


For example, as shown in FIG. 5, the sensors 61 may sense a relatively soft formation type and provide an indication of the formation type to the processor 65. The processor 65 may decide to place the fixed cutting elements 31 in the primary cutting position and/or place the roller cone cutting elements 25 in the secondary cutting position. To do so, in some embodiments, the processor 65 triggers one or more actuators 67, causing the actuators 67 to retract the arms 17, thereby placing the roller cone cutting elements 25 in the secondary cutting position and the fixed cutting elements 31 in the primary cutting position.


Alternatively, as shown in FIG. 6, the sensor 61 may sense a relatively hard formation type and provide an indication of the formation type to the processor 65. The processor 65 may decide to place the roller cone cutting elements 25 in the primary cutting position and/or place the fixed cutting elements 31 in the secondary cutting position. To do so, in some embodiments, the processor 65 triggers the actuators 67, causing the actuators 67 to extend the arms 17, thereby placing the roller cone cutting elements 25 in the primary cutting position and the fixed cutting elements 31 in the secondary cutting position.


In this manner, the bit 11 of the present invention may exchange the fixed cutting elements 31 and the roller cone cutting elements 25 between the primary cutting position and the secondary cutting position. In other words, the longitudinal axial relationship between the first plurality of cutters and the second plurality of cutters may be adjusted in this manner. This exchange, or adjustment, may occur many times during excavation of a single borehole. Furthermore, this exchange, or adjustment, may be accomplished automatically, with or without intervention from an operator or external systems. Therefore, the sensor 61, the processor 65, and/or the actuators 67 may be internal to, or integral with, the bit 11. Alternatively, the sensor 61, the processor 65, and/or the actuators 67 may be external to the bit 11. For example, the sensors 61 and/or the processor 65 may be mounted within the bit body 13, in a shank of the bit 11, in a sub behind or above the bit 11, or be part of a measurement or logging while drilling (MWD) tool or a near bit resistivity tool. In one embodiment, the sensors 61 are placed as close to the cutting elements 25,31, or bit face, as possible in order to provide the formation type change indication as quickly as possible. However, sensors 61 in the bit shank and/or elsewhere in the BHA may provide the formation type indication soon enough for efficient operation, while keeping the sensors 61 protected.


The sensor(s) 61 may be gamma ray, resistivity, sonic, or other downhole real time sensors used to recognize formation changes and/or the current formation type being drilled. The formation type indication, formation type determination, and/or and indication of the relative positions of the fixed cutting elements 31 and the roller cone cutting elements 25 may be communicated to the surface. A operator at the surface may review this data and determine whether the positions need to be exchanged and communicate a command to the processor 65 and/or directly trigger the actuators 67. The actuators 67 may be hydraulic, electrical, and/or electromechanical. For example, the actuator(s) 67 may comprise a small downhole motor to compress or relax one or more spring loaded hydraulic pistons.


Other and further embodiments utilizing one or more aspects of the inventions described above can be devised without departing from the spirit of Applicant's invention. For example, while the roller cone support arm 17 has been shown to move with respect to the longitudinal axis 15 of the bit body 11, the blades 19 may move with respect to the longitudinal axis 15 of the bit body 11 in other embodiments. In other words, the roller cone support arm 17 and/or the blades 19 may slide with respect to the longitudinal axis 15 of the bit body 11. Thus, the roller cone cutting elements 25 and/or fixed cutting elements 31 may slide with respect to the other and/or the longitudinal axis 15 of the bit body 11. In some embodiments, only a portion of one or more blade(s) 19, or a select group of the cutters 25,31, may be moved to effectuate the change between primary and secondary cutting structures. The bit 10 may also include one or more locking lugs, or similar structure to prevent movement of the arms 17 and/or blades 19 with respect to the body 13. In this case, the bit 10 may include additional actuators 67 to engage/disengage the lugs. Alternatively, the actuators 67 may be configured to engage/disengage the lugs after/before moving the arms 17 and/or blades 19. In some embodiments, the roller cone cutting elements 25 and/or fixed cutting elements 31 may be placed in a neutral position, such as that shown in FIG. 1 and FIG. 2, as well as the primary and secondary positions shown in FIG. 3 and FIG. 4.


Additionally, rather than being embedded within the bit body 13, as shown, the sensor 61 and/or the processor 65 may be located elsewhere in the bottom hole assembly, drill string, and/or at the surface. Further, the various methods and embodiments of the present invention can be included in combination with each other to produce variations of the disclosed methods and embodiments. Discussion of singular elements can include plural elements and vice-versa.


The order of steps can occur in a variety of sequences unless otherwise specifically limited. The various steps described herein can be combined with other steps, interlineated with the stated steps, and/or split into multiple steps. Similarly, elements have been described functionally and can be embodied as separate components or can be combined into components having multiple functions.


The inventions have been described in the context of preferred and other embodiments and not every embodiment of the invention has been described. Obvious modifications and alterations to the described embodiments are available to those of ordinary skill in the art. The disclosed and undisclosed embodiments are not intended to limit or restrict the scope or applicability of the invention conceived of by the Applicants, but rather, in conformity with the patent laws, Applicants intend to fully protect all such modifications and improvements that come within the scope or range of equivalent of the following claims.

Claims
  • 1. An earth boring drill bit comprising: a bit body having a longitudinal axis along a path of the bit;a first plurality of cutters mounted to the body; a second plurality of cutters rotatably mounted to the body;wherein a longitudinal axial relationship between the first plurality of cutters and the second plurality of cutters is adjustable;a sensor providing an indication of a formation type being excavated by the bit; anda processor programmed to control the longitudinal axial relationship based on the indication.
  • 2. The bit as set forth in claim 1, wherein the first plurality of cutters are mounted to the body in such a manner as to allow them to move along the longitudinal axis.
  • 3. The bit as set forth in claim 1, wherein the second plurality of cutters are mounted to the body in such a manner as to allow them to move along the longitudinal axis.
  • 4. The bit as set forth in claim 1, wherein the longitudinal axial relationship may be adjusted to exchange the first plurality of cutters and the secondary plurality of cutters between a primary cutting position and a secondary cutting position.
  • 5. The bit as set forth in claim 1, wherein the processor is further programmed to cause the first plurality of cutters to shift parallel to the longitudinal axis based on the indication.
  • 6. The bit as set forth in claim 1, wherein the processor is further programmed to cause the second plurality of cutters to shift parallel to the longitudinal axis based on the indication.
  • 7. The bit as set forth in claim 1, wherein the processor is further programmed to adjust the longitudinal axial relationship to exchange the first plurality of cutters and the secondary plurality of cutters between a primary cutting position and a secondary cutting position based on the indication.
  • 8. An earth boring drill bit assembly comprising: a bit body having a longitudinal axis along a path of the bit;a first plurality of cutters mounted to the body ;a second plurality of cutters rotatably mounted to the body;a sensor providing an indication of a formation type adjacent the body; anda processor programmed to control a longitudinal axial relationship between the first plurality of cutters and the second plurality of cutters based on the indication.
  • 9. The bit assembly as set forth in claim 8, wherein the processor is further programmed to trigger at least one actuator to cause the first plurality of cutters to shift parallel to the longitudinal axis based on the indication.
  • 10. The bit assembly as set forth in claim 8, wherein the processor is further programmed to trigger at least one actuator a plurality of actuators to cause the second plurality of cutters to shift parallel to the longitudinal axis based on the indication.
  • 11. The bit assembly as set forth in claim 8, wherein the processor is further programmed to trigger at least one actuator a plurality of actuators to adjust the longitudinal axial relationship to exchange the first plurality of cutters and the secondary plurality of cutters between a primary cutting position and a secondary cutting position based on the indication.
  • 12. A method of drilling a borehole in an earth formation, the method comprising the steps of: receiving an indication of a formation type adjacent a drill bit from a sensor located within the borehole; andtriggering an actuator to adjust a longitudinal axial relationship between a polycrystalline diamond compact (PDC) cutter and a roller cone cutter located on the drill bit in response to a processor programmed to analyze the indication.
  • 13. The method as set forth in claim 12, wherein the triggering step comprises exchanging the PDC cutter and the roller cone cutter between a primary cutting position and a secondary cutting position.
  • 14. The method as set forth in claim 12, wherein the triggering step comprises shifting the PDC cutter parallel to a longitudinal axis of the bit.
  • 15. The method as set forth in claim 12, wherein the triggering step comprises shifting the roller cone cutter parallel to a longitudinal axis of the bit.
  • 16. An earth boring drill bit assembly comprising: a bit body having a longitudinal axis along a path of the bit;at least one blade mounted to the body;a first plurality of cutters fixedly mounted to the blade;at least one leg mounted to the bodya second plurality of cutters rotatably mounted to the leg;a sensor providing an indication of a formation type adjacent the body; anda processor internal to the body and programmed to control a longitudinal axial relationship between the first plurality of cutters and the second plurality of cutters to exchange the first plurality of cutters and the secondary plurality of cutters between a primary cutting position and a secondary cutting position based on the indication.
  • 17. The bit assembly as set forth in claim 16, further including at least one locking lug configured to prevent movement of the blade with respect to the body and wherein the processor is further programmed to trigger a plurality of actuators to disengage the lugs and cause the first plurality of cutters to shift parallel to the longitudinal axis based on the indication.
  • 18. The bit assembly as set forth in claim 16, further including at least one locking lug configured to prevent movement of the leg with respect to the body and wherein the processor is further programmed to trigger a plurality of actuators to disengage the lugs and cause the second plurality of cutters to shift parallel to the longitudinal axis based on the indication.
US Referenced Citations (219)
Number Name Date Kind
930759 Hughes Aug 1909 A
1519641 Thompson Dec 1924 A
1821474 Mercer Sep 1931 A
1874066 Scott et al. Aug 1932 A
1879127 Schlumpf Sep 1932 A
1932487 Scott Oct 1933 A
2030722 Scott Feb 1936 A
2198849 Waxler Apr 1940 A
2216894 Stancliff Oct 1940 A
2244537 Kammerer Jun 1941 A
2297157 McClinton Sep 1942 A
2320136 Kammerer May 1943 A
2320137 Kammerer May 1943 A
2380112 Kinnear Jul 1945 A
RE23416 Kinnear Oct 1951 E
2719026 Boice Sep 1955 A
2815932 Wolfram Dec 1957 A
2994389 Le Bus, Sr. Aug 1961 A
3010708 Hlinsky et al. Nov 1961 A
3055443 Edwards Sep 1962 A
3066749 Hildebrandt Dec 1962 A
3126066 Williams, Jr. Mar 1964 A
3174564 Morlan Mar 1965 A
3239431 Raymond Mar 1966 A
3269469 Kelly, Jr. Aug 1966 A
3387673 Thompson Jun 1968 A
3424258 Nakayama Jan 1969 A
3583501 Aalund Jun 1971 A
RE28625 Cunningham Nov 1975 E
4006788 Garner Feb 1977 A
4140189 Garner Feb 1979 A
4190126 Kabashima Feb 1980 A
4270812 Thomas Jun 1981 A
4285409 Allen Aug 1981 A
4293048 Kloesel, Jr. Oct 1981 A
4320808 Garrett Mar 1982 A
4343371 Baker, III et al. Aug 1982 A
4359112 Garner et al. Nov 1982 A
4369849 Parrish Jan 1983 A
4386669 Evans Jun 1983 A
4410284 Herrick Oct 1983 A
4444281 Schumacher, Jr. et al. Apr 1984 A
4527637 Bodine Jul 1985 A
4572306 Dorosz Feb 1986 A
4657091 Higdon Apr 1987 A
4664705 Horton et al. May 1987 A
4690228 Voelz et al. Sep 1987 A
4726718 Meskin et al. Feb 1988 A
4727942 Galle et al. Mar 1988 A
4738322 Hall et al. Apr 1988 A
4765205 Higdon Aug 1988 A
4874047 Hixon Oct 1989 A
4875532 Langford, Jr. Oct 1989 A
4892159 Holster Jan 1990 A
4915181 Labrosse Apr 1990 A
4932484 Warren et al. Jun 1990 A
4936398 Auty et al. Jun 1990 A
4943488 Sung et al. Jul 1990 A
4953641 Pessier Sep 1990 A
4984643 Isbell et al. Jan 1991 A
4991671 Pearce et al. Feb 1991 A
5016718 Tandberg May 1991 A
5027912 Juergens Jul 1991 A
5028177 Meskin et al. Jul 1991 A
5030276 Sung et al. Jul 1991 A
5049164 Horton et al. Sep 1991 A
5116568 Sung et al. May 1992 A
5145017 Holster et al. Sep 1992 A
5176212 Tandberg Jan 1993 A
5224560 Fernandez Jul 1993 A
5238074 Tibbitts et al. Aug 1993 A
5287936 Grimes et al. Feb 1994 A
5289889 Gearhart et al. Mar 1994 A
5337843 Torgrimsen et al. Aug 1994 A
5346026 Pessier et al. Sep 1994 A
5361859 Tibbitts Nov 1994 A
5429200 Blackman et al. Jul 1995 A
5439068 Huffstutler et al. Aug 1995 A
5452771 Blackman et al. Sep 1995 A
5467836 Grimes et al. Nov 1995 A
5472057 Winfree Dec 1995 A
5472271 Bowers et al. Dec 1995 A
5513715 Dysart May 1996 A
5518077 Blackman et al. May 1996 A
5547033 Campos, Jr. Aug 1996 A
5553681 Huffstutler et al. Sep 1996 A
5558170 Thigpen et al. Sep 1996 A
5560440 Tibbitts Oct 1996 A
5570750 Williams Nov 1996 A
5593231 Ippolito Jan 1997 A
5606895 Huffstutler Mar 1997 A
5624002 Huffstutler Apr 1997 A
5641029 Beaton et al. Jun 1997 A
5644956 Blackman et al. Jul 1997 A
5655612 Grimes et al. Aug 1997 A
D384084 Huffstutler et al. Sep 1997 S
5695018 Pessier et al. Dec 1997 A
5695019 Shamburger, Jr. Dec 1997 A
5755297 Young et al. May 1998 A
5862871 Curlett Jan 1999 A
5868502 Cariveau et al. Feb 1999 A
5873422 Hansen et al. Feb 1999 A
5941322 Stephenson et al. Aug 1999 A
5944125 Byrd Aug 1999 A
5967246 Caraway et al. Oct 1999 A
5979576 Hansen et al. Nov 1999 A
5988303 Arfele Nov 1999 A
5992542 Rives Nov 1999 A
5996713 Pessier et al. Dec 1999 A
6092613 Caraway et al. Jul 2000 A
6095265 Alsup Aug 2000 A
6109375 Tso Aug 2000 A
6116357 Wagoner et al. Sep 2000 A
6173797 Dykstra et al. Jan 2001 B1
6220374 Crawford Apr 2001 B1
6241036 Lovato et al. Jun 2001 B1
6260635 Crawford Jul 2001 B1
6279671 Panigrahi et al. Aug 2001 B1
6283233 Lamine et al. Sep 2001 B1
6296069 Lamine et al. Oct 2001 B1
RE37450 Deken et al. Nov 2001 E
6345673 Siracki Feb 2002 B1
6360831 Akesson et al. Mar 2002 B1
6386302 Beaton May 2002 B1
6401844 Doster et al. Jun 2002 B1
6405811 Borchardt Jun 2002 B1
6408958 Isbell et al. Jun 2002 B1
6415687 Saxman Jul 2002 B2
6439326 Huang et al. Aug 2002 B1
6446739 Richman et al. Sep 2002 B1
6450270 Saxton Sep 2002 B1
6474424 Saxman Nov 2002 B1
6510906 Richert et al. Jan 2003 B1
6510909 Portwood et al. Jan 2003 B2
6527066 Rives Mar 2003 B1
6533051 Singh et al. Mar 2003 B1
6544308 Griffin et al. Apr 2003 B2
6562462 Griffin et al. May 2003 B2
6568490 Tso et al. May 2003 B1
6585064 Griffin et al. Jul 2003 B2
6589640 Griffin et al. Jul 2003 B2
6592985 Griffin et al. Jul 2003 B2
6601661 Baker et al. Aug 2003 B2
6601662 Matthias et al. Aug 2003 B2
6684967 Mensa-Wilmot et al. Feb 2004 B2
6729418 Slaughter, Jr. et al. May 2004 B2
6739214 Griffin et al. May 2004 B2
6742607 Beaton Jun 2004 B2
6745858 Estes Jun 2004 B1
6749033 Griffin et al. Jun 2004 B2
6797326 Griffin et al. Sep 2004 B2
6843333 Richert et al. Jan 2005 B2
6861098 Griffin et al. Mar 2005 B2
6861137 Griffin et al. Mar 2005 B2
6878447 Griffin et al. Apr 2005 B2
6883623 McCormick et al. Apr 2005 B2
6902014 Estes Jun 2005 B1
6986395 Chen Jan 2006 B2
6988569 Lockstedt et al. Jan 2006 B2
7096978 Dykstra et al. Aug 2006 B2
7111694 Beaton Sep 2006 B2
7137460 Slaughter, Jr. et al. Nov 2006 B2
7152702 Bhome et al. Dec 2006 B1
7198119 Hall et al. Apr 2007 B1
7234550 Azar et al. Jun 2007 B2
7270196 Hall Sep 2007 B2
7281592 Runia et al. Oct 2007 B2
7350568 Mandal et al. Apr 2008 B2
7350601 Belnap et al. Apr 2008 B2
7360612 Chen et al. Apr 2008 B2
7377341 Middlemiss et al. May 2008 B2
7387177 Zahradnik et al. Jun 2008 B2
7392862 Zahradnik et al. Jul 2008 B2
7398837 Hall et al. Jul 2008 B2
7416036 Forstner et al. Aug 2008 B2
7435478 Keshavan Oct 2008 B2
7462003 Middlemiss Dec 2008 B2
7473287 Belnap et al. Jan 2009 B2
7493973 Keshavan et al. Feb 2009 B2
7517589 Eyre Apr 2009 B2
7533740 Zhang et al. May 2009 B2
7568534 Griffin et al. Aug 2009 B2
7836975 Chen et al. Nov 2010 B2
7845435 Zahradnik et al. Dec 2010 B2
20020092684 Singh et al. Jul 2002 A1
20020108785 Slaughter, Jr. et al. Aug 2002 A1
20040238224 Runia Dec 2004 A1
20050087370 Ledgerwood, III et al. Apr 2005 A1
20050103533 Sherwood, Jr. et al. May 2005 A1
20050178587 Witman, IV et al. Aug 2005 A1
20050183892 Oldham et al. Aug 2005 A1
20050263328 Middlemiss Dec 2005 A1
20050273301 Huang Dec 2005 A1
20060032674 Chen et al. Feb 2006 A1
20060032677 Azar et al. Feb 2006 A1
20060162969 Belnap et al. Jul 2006 A1
20060196699 Estes et al. Sep 2006 A1
20060254830 Radtke Nov 2006 A1
20060266558 Middlemiss et al. Nov 2006 A1
20060266559 Keshavan et al. Nov 2006 A1
20060278442 Kristensen Dec 2006 A1
20060283640 Estes et al. Dec 2006 A1
20070029114 Middlemiss Feb 2007 A1
20070062736 Cariveau et al. Mar 2007 A1
20070079994 Middlemiss Apr 2007 A1
20070187155 Middlemiss Aug 2007 A1
20070221417 Hall et al. Sep 2007 A1
20080066970 Zahradnik et al. Mar 2008 A1
20080264695 Zahradnik et al. Oct 2008 A1
20080296068 Zahradnik et al. Dec 2008 A1
20090114454 Belnap et al. May 2009 A1
20090126998 Zahradnik et al. May 2009 A1
20090159338 Buske Jun 2009 A1
20090159341 Pessier et al. Jun 2009 A1
20090166093 Pessier et al. Jul 2009 A1
20090178855 Zhang et al. Jul 2009 A1
20090183925 Zhang et al. Jul 2009 A1
20110024197 Centala et al. Feb 2011 A1
20110162893 Zhang Jul 2011 A1
Foreign Referenced Citations (12)
Number Date Country
13 01 784 Aug 1969 DE
0225101 Jun 1987 EP
0157278 Nov 1989 EP
0391683 Jan 1996 EP
0874128 Oct 1998 EP
2089187 Aug 2009 EP
2183694 Jun 1987 GB
2000080878 Mar 2000 JP
2001159289 Jun 2001 JP
1 331 988 Aug 1987 SU
8502223 May 1985 WO
2008124572 Oct 2008 WO
Related Publications (1)
Number Date Country
20100270085 A1 Oct 2010 US