The following disclosure relates generally to integrated fuel injectors and igniters and associate components for storing, injecting, and igniting various fuels.
Gasoline-fueled engines are generally designed to achieve manufacturing cost savings that allow intentional design inefficiencies and losses due to the control method and purpose of throttling (restricting) the air entering the engine and due to the production of homogeneous air-fuel mixtures that are delivered to the combustion chambers. Gasoline engines are operated throughout the designed operating speeds or RPM (Revolutions Per Minute) and torque range at approximately stoichiometric air/fuel proportions to form a homogeneous mixture that is spark ignitable everywhere in the combustion chamber. Control of the power produced is a function of the degree of throttling to reduce the air intake and corresponding reduction (limitation) of the amount of fuel that is added. In modern engines that achieve some degree of toxic emissions reduction, fuel is proportioned in response to the magnitude of the intake system vacuum to provide a homogeneous charge that is on the surplus air or “lean fuel side” of the stoichiometric air/fuel ratio for complete combustion.
Most homogeneous charge engines are operated with variable restriction (throttling) of the air entering the intake system and with electronically operated fuel injectors that spray fuel into the intake system at each location or intake manifold port of a mechanical cam operated intake valve. Thus the cam-operated intake valve provides the final timing of the entry into each combustion chamber of the resulting homogeneous air-fuel mixture.
At “idle” (lowest sustained RPM) and during deceleration of the engine, which produce the highest intake vacuum conditions, about 14.7 mass parts of air is mixed with a little less than one mass part of fuel (or about 14.7:1) to form a homogeneous charge with the least amount of energy release upon combustion. When accelerating and traveling at a higher RPM, more air is throttled into the intake system and more fuel can be added to maintain the approximate 14.7:1 air/fuel proportions in the homogeneous charge that is provided for cruise and higher power operation.
Maintaining a vacuum in the intake system of an engine requires considerable power, which must be subtracted from the output power that the engine can deliver. In all modes of operation including idle, cruise and acceleration, substantial power of an engine is spent on parasitic losses, including the power required for intake vacuum maintenance.
Diesel engines do not throttle the air entering the combustion chambers, which provides the advantage of avoiding the loss of output power that is required to maintain an intake system vacuum. The air/fuel ratios for diesel engines under full load are between 17:1 and 29:1. When idling or under no load, this ratio can exceed 145:1. Within the combustion chamber of a direct injection operated diesel, localized air/fuel ratios vary. Because the diesel fuel injection is designed to deliver liquid fuel as streams or droplets, it may not be possible to initially achieve a homogenous mixing of the fuel with the air.
Ignition and sustained combustion can only occur after “atomization” in which high velocity sprays of liquid fuel droplets evaporate by penetrating sufficient hot air and then “crack” by penetrating additional hot air to break large molecules into smaller components that can be oxidized to release sufficient heat to produce a continuing chain reaction.
High-pressure diesel fuel injection results in better fuel atomization to reduce the amount of fuel that fails to complete the oxidation sequence to thus allow various pollutants including visible smoke particles to pass out of the combustion chamber. Recent advancements have provided increased fuel injection pressures, which causes more heat to be generated in the pumping system and requires greater power to be diverted from the engine's output power in order to accomplish the fuel pumping and fuel re-circulation requirements for cooling the high pressure fuel delivery circuits.
Combustion characteristics of diesel fuel as a result of droplet evaporation and chemical cracking in compression heated air is a function of variables such as: Compression ratio, Barometric pressure, Supercharge pressure, Temperature of air entering the combustion chamber, Temperature of the compressed air after heat losses to the piston, cylinder, and head, Timing of start of injection, Injection pressure, Injection orifice size, number, and orientation, Injection duration, Injector discharge curve, and so on.
Given particular magnitudes of compression ratio, barometric pressure, supercharge pressure, and the air temperature at the beginning of compression, and the temperature of the compressed air after heat losses to the piston, cylinder, and engine head components, the electronic timing of the start of direct diesel fuel injection may be adjusted to meet the torque requirement or engine load. In high speed diesel engines for automotive applications, optimized injection at start up, idle or no external load is about 2 crankshaft degrees Before Top Dead Center (BTDC) to 4 degrees After Top Dead Center (ATDC) in some instances to allow quicker start up.
At part load timing of the beginning of diesel fuel may be adjusted to about 8 degrees BTDC to 4 degrees ATDC. Because of the considerable “diesel delay” time needed for the diesel fuel droplets to evaporate and crack depending upon the temperature and pressure of the air as a result of the rate and degree of compression and resulting heat losses to the piston, cylinder, and engine head components, the timing of the beginning of diesel fuel injection must be advanced. To produce maximum rated toque for full load, the start of diesel fuel injection may begin at 8 to 16 degrees BTDC and the duration of combustion at the maximum fuel rate varies between about 40 to 70 degrees of crankshaft rotation.
Timing the initiation of diesel fuel injection too early during the compression stroke causes considerable combustion when the piston is still rising, reducing net torque production and compromised thermal efficiency because of greater heat losses to the piston, cylinder and engine head components. This results in an increased rate of fuel consumption and engine maintenance. However such operation may be purposely done to increase the heat delivery to catalytic reactors and other after treatment equipment. The sharp rise in cylinder pressure during compression also increases bearing and ring wear and engine noise. In comparison, if the beginning of diesel fuel injection is too late, net torque is also reduced and incomplete combustion results, increasing the emissions of unburned hydrocarbons.
In more popular homogeneous charge engines with port fuel injected gasoline operation, the amount of fuel injected is directly proportional to the degree that the air is throttled and the injector “open” or opening time. In comparison, a modern diesel injector will more nearly vary the mass flow of diesel fuel as functions of the difference between the injection and combustion chamber pressures, the density of the fuel, which is temperature dependent, and the dynamic compressibility of the fuel.
In order to cope with the variables noted previously and in attempts to reduce problematic emissions, electronically controlled and operated diesel fuel injectors may provide several injection periods for different compromises and purposes including:
First-injection of short duration to reduce the rate of combustion pressure rise, which may reduce combustion noise and to some degree reduce Oxides of Nitrogen (NOx) production during rapid pressure rise “diesel knock” combustion;
Second-injection of the major portion of fuel delivery is then added to provide the main injection phase;
Third-injection may be added in an attempt to penetrate less spent air to reduce soot emissions by kindling an after-burn to consume otherwise quenched hydrocarbons that failed to burn completely as a result of the first and second injections; and
Fourth-injection at up to 180 crankshaft degrees later, to provide a retarded post-injection to serve as a non-power producing re-heating purpose, particularly for enabling NOx accumulator-type catalytic converters and/or to sufficiently increase the average exhaust gas temperature for “burning out” collected hydrocarbon particles in a process called “regeneration” of a ceramic particulate filter.
Typical diesel fuel injection amounts vary from about 1 cubic millimeter for First-injection or pre-injection up to about 50 cubic millimeters for full-load delivery. The injection duration is 1-2 milliseconds.
Most automotive types of diesel engines utilize common rail delivery of fuel to each diesel fuel injector. This provides separation of fuel pressurization and fuel injection functions and thus a common rail system is generally able to supply fuel over a broader range of injection timing and pressure values than previous systems with combined mechanical pressurization and timing operations.
A high-pressure pump pressurizes the fuel for delivery by the common rail. A master fuel rail control and pressure regulation valve allows the fuel pressure to be maintained at a level set by the Electronic Control Unit. The common rail pressure that is maintained serves each fuel injector. An electronic computer (ECU) receives sensor inputs of the fuel pressure, engine speed, camshaft position, accelerator pedal travel, supercharger boost pressure, intake air temperature, and engine coolant temperature. Depending upon the application, additional sensors may report vehicle speed, exhaust temperature, exhaust oxygen concentration, catalyst backpressure, and particulate trap back pressure.
In most instances common rail diesel engines still require glow plugs to preheat the air to enable start-up in cold weather. In addition to controlling the glow plugs, additional functions of the ECU are to adjust the mechanical supercharger or exhaust driven turbocharger boost pressure, the degree of exhaust gas recirculation and in some engines the intake port tunable flaps to induce swirl or other intake air flow momentums.
The high-pressure pumps supply diesel fuel at up to 1600 Bar (23,500 PSI) through the common rail system. Such pumps are driven from the crankshaft and in many instances are radial piston designs. Lubrication of these very high-pressure pump components is by carefully filtered diesel fuel. A typical pump requires the engine to contribute up to about 4 kW from the net output capacity.
Fuel pressure control is typically performed by a solenoid valve in which the valve opening is varied by pulse width modulation at a frequency of 1 KHz. At times when the pressure control valve is not activated, an internal spring maintains a fuel pressure of about 100 Bar (1500 PSI). At times that the valve is activated, force applied by the electromagnetic plunger aids the spring, reducing the net opening of the valve to increase the delivered fuel pressure. Fuel pressure control valves may also act as a mechanical pressure damper to reduce high frequency pressure pulses from the pump.
Two approaches to diesel engine emissions reduction are popular: Exhaust gas recirculation, and Urea addition in the exhaust system to provide hydrogen-induced reduction of oxides of nitrogen that have been produced by the combustion chamber operations.
Exhaust gas recirculation provides a portion of the exhaust gas for mixing with the intake air charge to reduce oxides of nitrogen emissions. It reduces the oxygen concentration and availability in the combustion chamber, the peak combustion temperature, and the exhaust gas temperature. It also greatly reduces the volumetric efficiency of the engine. Recirculation rates may be as high as 50 percent during parts of the operating conditions.
Recirculation causes many of the same efficiency compromises that throttling the air produces in homogeneous charge engine operation.
Unburned fuel oxidation-type catalytic converters are used to reduce hydrocarbon and carbon monoxide emissions by promoting reaction of unburned fuel constituents with oxygen that is preheated in the combustion chamber. Unburned fuel constituents such as carbon monoxide and hydrocarbons that escape through the exhaust valve of the combustion chamber are oxidized to form water and carbon dioxide. In order to rapidly reach their operating temperature, this type of catalytic converter is fitted close to the engine.
Accumulator-type catalytic converters are also used to attenuate oxides of nitrogen that are produced in the combustion process. This type of reactor breaks down NOx by increasing the dwell time by storing it over periods from 30 seconds to several minutes. Nitrogen oxides combine with metal oxides on the surface of the NOx accumulator to form nitrates at times that the air/fuel ratio is fuel lean to provide fuel combustion with excess oxygen.
However, such NOx storage is only short-term and when the oxides of nitrogen block the access to additional oxides of nitrogen, the “polarized” catalytic converter must be regenerated by a process of releasing and converting the stored NOx into diatomic molecules of nitrogen and oxygen. Such regeneration requires the engine to briefly operate at a rich mixture. Illustratively, the engine must be run at a rich-fuel mixture of an air/fuel ratio of about 13.8:1 for a time sufficient to allow new arrivals of NOx to combine temporarily with metal oxides on the surfaces of the NOx accumulator.
Detecting when regeneration must occur, and then when it has been sufficiently completed, is complex and subject to false signals. One approach is to utilize a model that infers and calculates the quantity of stored nitrogen oxides on the basis of catalytic converter temperature. Another approach provides a specific NOx sensor located downstream of the accumulator catalytic converter for detection of the loss of effectiveness of the metal oxides in the accumulator assembly. Determination of sufficient regeneration is either by a model-based approach or an oxygen sensor located downstream of the catalyst bed. A change in signal from high oxygen to low oxygen may indicate the approach to the end of the regeneration operation.
In order assure that the NOx storage catalyst system works effectively from cold start or lightly loaded engine operations, an electric resistance heater is often provided to heat the exhaust gas. This creates another parasitic loss of power and increases the fuel consumption of the engine to produce the electricity, store it in a battery, and to dissipate the stored energy in a way that does not provide useful work by the engine. In addition, it is another costly maintenance item.
Another type of parasitic loss and operating expense concerns the use of a reducing agent such as dilute urea as an exhaust treatment for reducing NOx in diesel exhaust gases. In this approach, a reducing agent such as dilute urea solution is added to the exhaust in relatively small quantities. A hydrolyzing catalytic converter dissociates the urea to ammonia, which releases hydrogen to react with NOx to form nitrogen and water. This system is may be sufficiently effective for reducing NOx emissions so that leaner than normal air/fuel ratios can be used, hopefully resulting in improved fuel economy to offset some of the urea dispensing system and cost of operation. The urea tank is instrumented to alert the need to be refilled as needed to provide reduced oxides of nitrogen in the exhaust.
These and other limitations exist with respect to operating gasoline- and diesel-fueled engines.
The present application incorporates by reference in its entirety the subject matter of the U.S. Patent Applications, filed concurrently herewith on Oct. 27, 2010 and titled: INTEGRATED FUEL INJECTOR IGNITERS SUITABLE FOR LARGE ENGINE APPLICATIONS AND ASSOCIATED METHODS OF USE AND MANUFACTURE, U.S. patent application Ser. No. 12/913,744, now U.S. Pat. No. 8,225,768; and FUEL INJECTOR SUITABLE FOR INJECTING A PLURALITY OF DIFFERENT FUELS INTO A COMBUSTION CHAMBER, U.S. Provisional Patent Application No. 61/407,437.
Overview
The present disclosure describes devices, systems, and methods for combusting a fuel within a combustion chamber. The disclosure further describes devices, systems, and methods for controlling the ionization within a combustion chamber, associated systems, assemblies, components, and methods. For example, several of the embodiments described below are directed to adaptively controlling the ionization within a combustion chamber based on various conditions within the combustion chamber and/or based on various conditions at regions at or near an igniter/injector within the combustion chamber. Certain details are set forth in the following description and in
Many of the details, dimensions, angles, shapes, and other features shown in the Figures are merely illustrative of particular embodiments of the disclosure. Accordingly, other embodiments can have other details, dimensions, angles, and features without departing from the spirit or scope of the present disclosure. In addition, those of ordinary skill in the art will appreciate that further embodiments of the disclosure can be practiced without several of the details described below.
Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present disclosure. Thus, the occurrences of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. The headings provided herein are for convenience only and do not interpret the scope or meaning of the claimed disclosure.
Suitable Systems and Components
In the illustrated embodiment, the injector 110 includes a body 112 having a middle portion 116 extending between a base portion 114 and a nozzle portion 118. The nozzle portion 118 extends at least partially through a port in an engine head 107 to position an end portion 119 of the nozzle portion 118 at the interface with the combustion chamber 104. The injector 110 further includes a passage or channel 123 extending through the body 112 from the base portion 114 to the nozzle portion 118. The channel 123 is configured to allow fuel to flow through the body 112. The channel 123 is also configured to allow other components, such as an actuator 122, to pass through the body 112, as well as instrumentation components and/or energy-conversion and source components of the injector 110. In certain embodiments, the actuator 122 can be a cable or rod that has a first end portion that is operatively coupled to a flow control device or valve 120 carried by the end portion 119 of the nozzle portion 118. As such, the flow valve 120 is positioned proximate to the interface with the combustion chamber 104. Although not shown in
According to another feature of the illustrated embodiment, the actuator 122 also includes a second end portion operatively coupled to a driver 124. The second end portion can further be coupled to a controller or processor 126. As explained in detail below with reference to various embodiments of the disclosure, the controller 126 and/or the driver 124 are configured to rapidly and precisely actuate the actuator 122 to inject fuel into the combustion chamber 104 via the flow valve 120. For example, in certain embodiments, the flow valve 120 can move outwardly (e.g., toward the combustion chamber 104) and in other embodiments the flow valve 120 can move inwardly (e.g., away from the combustion chamber 104) to meter and control injection of the fuel. Moreover, in certain embodiments, the driver 124 can tension the actuator 122 to retain the flow valve 120 in a closed or seated position, and the driver 124 can relax the actuator 122 to allow the flow valve 120 to inject fuel, and vice versa. The driver 124 can be responsive to the controller as well as other force inducing components (e.g., acoustic, electromagnetic and/or piezoelectric components) to achieve the desired frequency and pattern of the injected fuel bursts.
In certain embodiments, the actuator 122 can include one or more integrated sensing and/or transmitting components to detect combustion chamber properties and conditions. For example, the actuator 122 can be formed from fiber optic cables, insulated transducers integrated within a rod or cable, or can include other sensors to detect and communicate combustion chamber data. Although not shown in
Such feedback and adaptive adjustment by the controller 126, driver 124, and/or actuator 126 also allows optimization of outcomes such as power production, fuel economy, and minimization or elimination of pollutive emissions including oxides of nitrogen. U.S. Patent Application Publication No. 2006/0238068, which is incorporated herein by reference in its entirety, describes suitable drivers for actuating ultrasonic transducers in the injector 110 and other injectors described herein.
The injector 110 can also optionally include an ignition and flow adjusting device or cover 121 (shown in broken lines in
According to another aspect of the illustrated embodiment, and as described in detail below, at least a portion of the body 112 is made from one or more dielectric materials 117 suitable to enable the high energy ignition to combust different fuels, including unrefined fuels or low energy density fuels. These dielectric materials 117 can provide sufficient electrical insulation of the high voltage for the production, isolation, and/or delivery of spark or plasma for ignition. In certain embodiments, the body 112 can be made from a single dielectric material 117. In other embodiments, however, the body 112 can include two or more dielectric materials. For example, at least a segment of the middle portion 116 can be made from a first dielectric material having a first dielectric strength, and at least a segment of the nozzle portion 118 can be made from a dielectric material having a second dielectric strength that is greater than the first dielectric strength. With a relatively strong second dielectric strength, the second dielectric material can protect the injector 110 from thermal and mechanical shock, fouling, voltage tracking, etc. Examples of suitable dielectric materials, as well as the locations of these materials on the body 112, are described in detail below.
In addition to the dielectric materials, the injector 110 can also be coupled to a power or high voltage source to generate the ignition event to combust the injected fuels. The first electrode can be coupled to the power source (e.g., a voltage generation and/or multiplying source such as a capacitance discharge, induction, or piezoelectric system) via one or more conductors extending through the injector 110. Regions of the nozzle portion 118, the flow valve 120, and/or the cover 121 can operate as a first electrode to generate an ignition event (e.g., spark, plasma, compression ignition operations, high energy capacitance discharge, extended induction sourced spark, and/or direct current or high frequency plasma, in conjunction with the application of ultrasound to quickly induce, impel, and complete combustion) with a corresponding second electrode of the engine head 107. As explained in detail below, the first electrode can be configured for durability and long service life. In still further embodiments of the disclosure, the injector 110 can be configured to provide energy conversion from combustion chamber sources and/or to recover waste heat or energy via thermochemical regeneration to drive one or more components of the injector 110 from the energy sourced by the combustion events.
According to another aspect of the illustrated embodiment, the injector 210 can further include instrumentation for sensing various properties of the combustion processes in combustion chamber 202 (e.g., properties of the fuel penetration into air, ignition, combustion process, the combustion chamber 202, the engine 204, etc.). In response to these sensed conditions, the injector 210 can adaptively optimize the fuel injection and ignition characteristics, modify ionization levels, and so on to achieve increased fuel efficiency and power production, decrease noise, engine knock, heat losses and/or vibration to extend the engine and/or vehicle life. Moreover, the injector 210 also includes actuating components to inject the fuel into the combustion chamber 202 to achieve specific flow or spray patterns 205, as well as the phase, of the injected fuel. For example, the injector 210 can include one or more valves positioned proximate to the interface of the combustion chamber 202. The actuating components of the injector 210 provide for precise, high frequency operation of the valve to control at least the following features: the timing of fuel injection initiation and completion; the frequency and duration of repeated fuel injections; and/or the timing and selection of ignition events.
Thus, systems and injectors according to the present disclosure provide the ability to replace conventional injectors, glow plugs, or spark plugs (e.g., diesel fuel injectors, spark plugs for gasoline, etc.) and develop full rated power with a wide variety of renewable fuels, such as hydrogen, methane, and various inexpensive fuel alcohols produced from widely available sewage, garbage, and crop and animal wastes. Although these renewable fuels may have approximately 3,000 times less energy density compared to refined fossil fuels, the systems and injectors of the present disclosure are capable of injecting and igniting these renewable fuels for efficient energy production and greatly reduced or eliminated overall production of greenhouse gases.
As discussed herein, in some embodiments an ionization control system communicates with injectors to control, modify, and/or tailor ionization levels within a combustion chamber.
Systems, devices, components, and modules described herein, such as those shown in
Software and other modules may be accessible via local memory, via a network, via a browser or other application in an ASP context, or via other means suitable for the purposes described herein. Examples of the technology can also be practiced in distributed computing environments where tasks or modules are performed by remote processing devices, which are linked through a communications network, such as a Local Area Network (LAN), Wide Area Network (WAN), or the Internet. In a distributed computing environment, program modules may be located in both local and remote memory storage devices. Data structures described herein may comprise computer files, variables, programming arrays, programming structures, or any electronic information storage schemes or methods, or any combinations thereof, suitable for the purposes described herein. User interface elements described herein may comprise elements from graphical user interfaces, command line interfaces, and other interfaces suitable for the purposes described herein. Screenshots presented and described herein can be displayed differently as known in the art to input, access, change, manipulate, modify, alter, and work with information.
Examples of the technology may be stored or distributed on computer-readable media, including magnetically or optically readable computer discs, hard-wired or preprogrammed chips (e.g., EEPROM semiconductor chips), nanotechnology memory, biological memory, or other data storage media. Indeed, computer implemented instructions, data structures, screen displays, and other data under aspects of the system may be distributed over the Internet or over other networks (including wireless networks), on a propagated signal on a propagation medium (e.g., an electromagnetic wave(s), a sound wave, etc.) over a period of time, or they may be provided on any analog or digital network (packet switched, circuit switched, or other scheme).
The adaptive control system 410 includes a monitoring module or component 510 that monitors conditions within a combustion chamber. For example, the monitoring module 510 may monitor a temperature within a combustion chamber during combustion, a pressure within a combustion chamber during combustion, or other conditions described herein.
The adaptive control system 410 also includes a determination module or component 520 that determines a monitored condition matches certain criteria. The determination module 520 may receive information from the monitoring module 510 regarding certain conditions within a combustion chamber and determine that the conditions match predetermined or specified criteria associated with desirable or undesirable conditions within the combustion chamber.
In response to information received from the determination module 520, a modification module or component 530 may modify or control one or more parameters associated with a combustion event. For example, the modification module 530 may transmit control information to an injector instructing the injector to modify the application of an ionization voltage and/or current across electrodes used to combust fuel within the combustion chamber.
The adaptive control system 410 also includes a memory module or component 540 that stores information, criteria, logs, algorithms, and/or other information associated with the adaptive control of ionization levels within a combustion chamber, as well as other modules 550 or components, such as modules that communicate information to other devices on a network, modules that facilitate user interaction with the adaptive control system 410 (e.g., user interfaces, touch screens, and so on), and other components that facilitate performing the routines and methods described herein.
An embedded controller 662 receives signals from the sensors 662D and 662P for production of analog or digitized fuel-delivery and spark-ignition events as a further improvement in efficiency, power production, operational smoothness, fail-safe provisions, and longevity of engine components. The controller 662 may record sensor indications or information to determine the time between each cylinder's torque development to derive positive and negative engine acceleration as a function of adaptive fuel-injection and spark-ignition timing, and flow data in order to determine adjustments needed for optimizing desired engine operation parameters. Accordingly, the controller 662 may act as the master computer to control various selections of operations by the injector, as well as to communicate with the adaptive control system 410 and its various modules. Of course, the injector 600 may include other components that receive control data from the adaptive control system 410.
A substantially transparent check valve 684 may protect the fiber optic bundle or cable 660 below the flow control valve 674. In some cases, the check valve 684 may be fast closing and include a ferromagnetic element encapsulated within a transparent body. Various geometries of components may assist in operation of the check valve 684, including a ferromagnetic disk within a transparent disk or a ferromagnetic ball within a transparent ball, as shown. In operation, the geometries enable the check valve 684 to be magnetically forced to the normally closed position to be very close to flow control valve 674 and the end of cable 660, as shown. When the flow control valve 674 is lifted to provide fuel flow, the check valve 684 is forced to the open position within the well bore that cages it within the intersecting slots 688 that allow fuel to flow through a magnetic valve seat 690 past the check valve 684 and through slots 688 to present a very high surface to volume penetration of fuel into the air in the combustion chamber. Accordingly, the cable 660 monitors the combustion chamber events by receiving and transmitting radiation frequencies that pass through the check valve 684. Suitable materials for the transparent portions of the check valve 684 include sapphire, quartz, high temperature polymers, ceramics, and other materials that are transparent to desired monitoring frequencies.
In some cases, it may be desirable to produce the greatest torque with the least fuel consumption. In areas such as congested city streets, where oxides of nitrogen emissions are objectionable, adaptive fuel injection and ignition timing provides maximum torque without allowing peak combustion temperatures to reach 2,200° C. (4,000° F.). A flame temperature detector that utilizes a small diameter fiber optic cable 660 or a larger transparent insulator 672 may be used to detect peak combustion temperatures. In such cases, the insulator 672 may be manufactured with heat and abrasion resisting coatings such as sapphire or diamond-coating on the combustion chamber face of a high temperature polymer, or from quartz, sapphire, or glass for combined functions within the injector 600, including the light-pipe transmission of radiation produced by combustion to a sensor 662D of controller 662, as shown. Further, the controllers 662, 643, and/or 632 may monitor the signal from sensor 662D in each combustion chamber to communicate conditions to the adaptive control system 410 that can adaptively adjust the fuel-injection and/or spark-ignition timing to adapt the ionization to desired levels.
Thus, virtually any distance from the interface to the combustion chamber to a location above the tightly spaced valves and valve operators of a modern engine can be provided by fuel control forces transmitted to normally closed flow control valve 674 by insulative cable 660 along with integral spark ignition at the most optimum spark plug or diesel fuel injector location. The configuration of the fuel injector 600 allows an injector to replace the spark plug or diesel fuel injector to provide precision fuel-injection timing and adaptive spark-ignition for high efficiency stratified charge combustion of a very wide variety of fuel selections, including less expensive fuels, regardless of octane, cetane, viscosity, temperature, or fuel energy density ratings, and to provide adaptable ionization levels within a combustion chamber. Engines that were previously limited in operation to fuels with specific octane or cetane ratings are transformed to more efficient longer lived operation by the present disclosure on fuels that cost less and are far more beneficial to the environment. In addition, it is possible to operate an injector as a pilot fuel delivery and ignition system or as a spark-only ignition system to return the engine to original operation on gasoline delivered by carburetion or intake manifold fuel injection systems. Similarly, it is possible to configure injector 600 for operation with diesel fuel or alternative spark-ignited fuels according to these various fuel metering, ionization control, and other ignition combinations.
Thus, the system can adaptively control fuel-injection timing and spark-ignition timing for such purposes as maximizing fuel economy, specific power production, assuring lubricative film maintenance on combustion chamber cylinders, minimizing noise, controlling ionization levels, and so on. In some cases, the injector 600 may extend the cable 660 fixedly through the flow control valve 674 to or near the combustion chamber face of fuel distribution nozzle to view combustion chamber events through the center of slots 688, as shown. In some cases, the cable 660 can form one or more free motion flexure extents, such as loops above armature-stop ball 635, which preferably enables armature 648 to begin movement and develop momentum before starting to lift cable 660 to thus suddenly lift flow control valve, and fixedly passes through the soft magnet core 654 to deliver radiation wavelengths from the combustion chamber to sensor 640, as shown.
In some embodiments, the sensor 640 may be separate or integrated into the controller 643 as shown. For example, an optoelectronic sensor system may comprehensively monitor combustion chamber conditions, including combustion, expansion, exhaust, intake, fuel injection and ignition events as a function of pressure and/or radiation detection in the combustion chamber of engine 630, as shown. Thus, the temperature and corresponding pressure signals from sensor 640 and/or sensor 662D and/or sensor 662P enable controller 632 to instantly or quickly correlate the temperature and time at temperature, as fuel is combusted with the combustion chamber pressure, piston position, and with the chemical nature of the products of combustion.
Such correlation is readily accomplished by operating an engine with combined data collection of piston position, combustion chamber pressure by the technology disclosed in U.S. Pat. Nos. 6,015,065; 6,446,597; 6,503,584; 5,343,699; and 5,394,852; along with co-pending application 60/551,219 and combustion chamber radiation data as provided by fiber optic bundle/light pipe assembly/cable 660 to sensor 640 as shown. Correlation functions that are produced thus enable the radiation signal delivered by cable 660 to sensor 640 and piston position data to indicate the combustion chamber pressure, temperature, and pattern of combustion conditions as needed to adaptively optimize various engine functions such as maximization of fuel economy, power production, avoidance of oxides of nitrogen, avoidance of heat losses and the like. Thereafter the data provided by cable 660 and sensor 640 to controller 643 can enable rapid and adaptive control of the engine functions with a very cost effective injector.
In some embodiments, a more comprehensively adaptive injection system can incorporate both the sensor 640 and cable 660 along with one or more pressure sensors as is known in the art and/or as is disclosed in the patents and co-pending applications included by reference herein. In some cases, the system, via one or more controllers, monitors the rotational acceleration of the engine for adaptive improvement of fuel economy and power production management. Engine acceleration accordingly may be monitored by numerous techniques including crankshaft or camshaft timing, distributor timing, gear tooth timing, piston speed detection, and so on. Engine acceleration as a function of controlled variables including fuel species selection, fuel species temperature, fuel injection timing, injection pressure, injection repetition rate, ignition timing and combustion chamber temperature mapping facilitate improvements with conventional or less-expensive fuels in engine performance, fuel economy, emissions control, engine life, and so on.
In some embodiments, a development of spark plasma ignition with adaptive timing to optimize combustion of widely varying fuel viscosities, heating values, and vapor pressures is achieved by combining the remote valve operator 648 and the flow control valve 674 to be positioned at or substantially adjacent to the combustion chamber interface. This configuration virtually eliminates harmful before or after dribble because there is little or no clearance volume between flow control valve 674 and the combustion chamber. Fuel flow impedance, ordinarily caused by channels that circuitously deliver fuel, is avoided by locating the flow control valve 674 at the combustion chamber interface. In some embodiments, the flow control valve 674 can be urged to the normally closed condition by a suitable mechanical spring or by compressive force on cable or rod 660 as a function of force applied by spring or by magnetic spring attraction to valve seat 690, including combinations of such closing actions.
In some embodiments, pressure-tolerant performance is achieved by providing free acceleration of the armature driver 648 followed by impact on the ball 635, which is fixed on cable 660 at a location that is configured to suddenly lift or displace the ball 635. In some cases, the driver 648 moves relatively freely toward the electromagnetic pole piece and past stationery cable 660, as shown. After considerable momentum has been gained, the driver 648 strikes the ball 635 within the spring well shown. The ball 635 may be attached to the cable 660 within the spring 636, as shown. Thus, in operation, the sudden application of a large or much larger force by this impact could be developed by a direct acting solenoid valve causing the relatively smaller inertia and normally closed flow control valve 674 to suddenly lift from the upper valve seat of the passageway in seat 690.
Any suitable seat for flow control valve 674 may be utilized, however, for applications with combustion chambers of small engines, the injector may incorporate a permanent magnet within or as seat 690 to urge flow control valve 674 to the normally closed condition, as shown. Such sudden impact actuation of flow control valve 674 by armature 648 enables assured precision flow of fuel regardless of fuel temperature, viscosity, presence of slush crystals, or the applied pressure that may be necessary to assure desired fuel delivery rates. Permanent magnets such as SmCo and NdFeB readily provide the desired magnetic forces at operating temperatures up to 205° C. (401° F.) and assure that the flow control valve 674 is urged to the normally closed position on magnetic valve seat 690 to virtually eliminate clearance volume and after dribble.
For example, if the flow control valve 674 is incorporated with armature 648 for delivery within the bore of an insulator 664 to conductive nozzle 670, the after dribble of fuel that temporarily rested in the clearance volume shown could be as much in volume as the intended fuel delivery at the desired time in the engine cycle. Such flow of after dribble could be during the last stages of expansion or during the exhaust stroke and therefore would be mostly, if not completely, wasted, while causing flame impingement loss of protective cylinder wall lubrication, needless piston heating, and increased friction due to differential expansion, and overheating of exhaust system components. Further, conventional valve operation systems would be limited to pressure drops of about 7 atmospheres compared to more than 700 atmospheres as provided by the sudden impact of driver 648 on cable 660 and thus on flow control valve 674. Cryogenic slush fuels with prohibitively difficult textures and viscosities comparable to applesauce or cottage cheese are readily delivered through relatively large passageways to normally closed flow control valve 674, which rests upon the large diameter orifice in seat 690. Rapid acceleration, then sudden impact of large inertia electro-magnet armature 648 transfers a very large lifting force through dielectric cable 660 to suddenly and assuredly lift flow control valve 674 off the large orifice in seat 690 to open normally closed check valve 684, if present, and jet the fuel slush mixture into the combustion chamber. The same assured delivery if provided without or with limited after dribble for fuels in any phase or mixtures of phases including hydrogen and other very low viscosity fuels at temperatures of 400° F. (204° C.) or higher as may be intermittently provided.
Adaptive Control of Ionization Levels in a Combustion Chamber
As described herein, in some embodiments, an injector, such as injector 100 or 600, monitors conditions within a combustion chamber, communicates monitored information to a control system, receives feedback from the control system, and adjusts operation based on the feedback. Thus, an injector receiving commands or instructions from a control system can adaptively adjust ionization levels within a combustion chamber to achieve desired levels of ionization, providing for rapid developments of sustained combustion within the combustion chamber, among other benefits.
Various regions may be monitored at certain time periods, such as regions located near or between electrodes, near or within check valves, and so on. Example regions of injector 600 that may be monitored include:
Regions of air in the gap between electrodes, such as a gap between electrodes 685 and 688, just before the arrival of fuel as it passes valves such as 674 and/or 684;
Regions of fuel that is controlled and metered by valve 674 to pass through the gap between electrodes, such as a gap between electrodes 685 and 688;
Regions of air and fuel in the gap between electrodes, such as a gap between electrodes 685 and 688;
Regions of air-fuel-air layers in the gap between electrodes, such as a gap between electrodes 685 and 688; and other regions.
In step 820, the system detects or determines a certain, satisfactory, and/or suitable condition at or in the monitored region. For example, the system, using various components described here, determines that a certain condition associated with a certain amount of fuel located between two electrodes has been satisfied.
In step 830, the system applies an ionization voltage to electrodes at or near the region determined to satisfy the predetermined conditions. For example, the system in response to determining that sufficient fuel is located in a gap between electrodes 685 and 688, applies a voltage across the electrodes, causing a combustion event and achieving a desired ionization level,
Thus, in some embodiments, the system employs routine 800 in order to time one or more applications of ionizing voltage to produce sufficient ionization at or near a combustion chamber interface of a region of fuel, a region of air and fuel, and/or a region of an air-fuel-air mixture.
Thus, the system can achieve sufficient and efficient ionization of these substances, causing a comparatively more rapid development of sustained combustion than can be provided by conventional engine operations. By employing routine 800, the system utilizes comparatively less energy for such ionization than required to compress the air sufficiently and pump fuel to very high pressures and to operate glow plugs when required to cause combustion after a characteristic delay.
In cases when the system operates with a diesel engine, the ionization as provided in one or more of the regions described herein is sufficient to provide substantial evaporation, molecular cracking and ionization to achieve a much more rapid sustained reaction with air in the combustion chamber. The timing of the start of ionized air and/or fuel injection is later if not entirely after TDC (ATDC), producing comparatively more work per fuel value to increase the range and fuel efficiency of the engine, among other benefits.
In addition to adaptively controlling the application of ionization voltage to achieve certain combustion events, the system may also adaptively control ionization levels within a combustion chamber. That is, the degree of ionization may be adaptively increased or decreased to achieve a desired degree of accelerated completion of combustion of fuel that is delivered by one or more fuel injection events per power cycle of an engine.
In step 910, the system monitors one or more conditions within the combustion chamber. The system may utilize the monitoring module 510 in collaboration with various components of an injector that monitor conditions, such as the cable 660, the insulator 672, the sensors 662, and/or others. Examples of conditions that may be monitored include: the torque produced per BTU or Kcal of fuel value that is injected per each fuel injection event, the maximum temperature of combustion, the pressure produced by the combustion process, and other conditions described herein.
In step 920, the system compares the monitored conditions to desirable or ideal conditions. The system may detect or determine that one or more monitored condition satisfies a rule or threshold, or does not satisfy a rule or threshold. For example, the system may detect a maximum temperature higher than a threshold value or a pressure lower than a threshold value, and determine that a rule associated with adjusting the ionization level has been satisfied.
In step 930, the system, in response to determinations made in step 920 adjusts one or more parameters associated with a combustion event within a combustion chamber, which adjusts the degree of ionization within the combustion chamber. The system may increase or decrease the parameter. Example parameters or variables include: Compression ratio, Barometric pressure, Supercharge pressure, Temperature of air entering the combustion chamber, Temperature of the compressed air after heat losses to the piston, cylinder, and head, Timing of start of injection, Injection pressure, Injection orientation and stratified ionization pattern, Injection duration, Injector discharge curve, and so on.
Thus, in some cases, a relatively minor amount of fuel and/or air may be ionized to trigger comparatively earlier completion of combustion than by conventional spark development in a tiny fraction of the total homogeneous mixture present, and similarly a relatively minor amount of fuel and/or air may be ionized to trigger comparatively earlier completion of diesel fuel combustion than can be accomplished by compression ignition sequences. In some cases, it may be desirable to ionize all or a majority of the fuel molecules that enter the combustion chamber to assure the most effective utilization of surplus air as an insulator of the accelerated combustion process.
In addition to the routines and methods described with respect to
Particularly valuable benefits result from adaptively ionizing the substances listed in Table 1, including reduction if not elimination of the subsystems now required for operation of homogeneous charge and diesel engines. Subsystems such as those listed in Table 2 may be eliminated with great savings in the operating costs and reductions in emissions:
It will be apparent that various changes and modifications can be made without departing from the scope of the disclosure. For example, the dielectric strength may be altered or varied to include alternative materials and processing means. The actuator and driver may be varied depending on fuel or the use of the injector. The cap may be used to insure the shape and integrity of the fuel distribution and the cap may vary in size, design or position to provide different functions, performance and protection. Alternatively, the injector may be varied, for example, the electrode, the optics, the actuator, various catalysts, the nozzle or the body may be made from alternative materials or may include alternative configurations than those shown and described and still be within the spirit of the disclosure.
Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in a sense of “including, but not limited to.” Words using the singular or plural number also include the plural or singular number, respectively. When the claims use the word “or” in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list.
The various embodiments described above can be combined to provide further embodiments. All of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet are incorporated herein by reference, in their entirety. Aspects of the disclosure can be modified, if necessary, to employ fuel injectors and ignition devices with various configurations, and concepts of the various patents, applications, and publications to provide yet further embodiments of the disclosure.
These and other changes can be made to the disclosure in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the disclosure to the specific embodiments disclosed in the specification and the claims, but should be construed to include all systems and methods that operate in accordance with the claims. Accordingly, the invention is not limited by the disclosure, but instead its scope is to be determined broadly by the following claims.
The present application is a continuation of U.S. patent application Ser. No. 12/913,749, filed Oct. 27, 2010, now U.S. Pat. No. 8,733,331, and titled ADAPTIVE CONTROL SYSTEM FOR FUEL INJECTORS AND IGNITERS, which claims priority to and the benefit of each of the following: U.S. Provisional Application No. 61/304,403, filed Feb. 13, 2010 and titled FULL SPECTRUM ENERGY AND RESOURCE INDEPENDENCE, and U.S. Provisional Application No. 61/312,100, filed Mar. 9, 2010 and titled SYSTEM AND METHOD FOR PROVIDING HIGH VOLTAGE RF SHIELDING, FOR EXAMPLE, FOR USE WITH A FUEL INJECTOR. The present application is a continuation-in-part of each of the following: U.S. patent application Ser. No. 12/841,170, filed Jul. 21, 2010, now U.S. Pat. No. 8,555,860, and titled INTEGRATED FUEL INJECTORS AND IGNITERS AND ASSOCIATED METHODS OF USE AND MANUFACTURE; U.S. patent application Ser. No. 12/804,510, filed Jul. 21, 2010, now U.S. Pat. No. 8,074,625, and titled FUEL INJECTOR ACTUATOR ASSEMBLIES AND ASSOCIATED METHODS OF USE AND MANUFACTURE; U.S. patent application Ser. No. 12/841,146, filed Jul. 21, 2010, now U.S. Pat. No. 8,413,634, and titled INTEGRATED FUEL INJECTOR IGNITERS WITH CONDUCTIVE CABLE ASSEMBLIES; U.S. patent application Ser. No. 12/841,149, filed Jul. 21, 2010, now U.S. Pat. No. 8,365,700, and titled SHAPING A FUEL CHARGE IN A COMBUSTION CHAMBER WITH MULTIPLE DRIVERS AND/OR IONIZATION CONTROL; U.S. patent application Ser. No. 12/841,135, filed Jul. 21, 2010, now U.S. Pat. No. 8,192,852, and titled CERAMIC INSULATOR AND METHODS OF USE AND MANUFACTURE THEREOF; U.S. patent application Ser. No. 12/804,509, filed Jul. 21, 2010, now U.S. Pat. No. 8,561,598, and titled METHOD AND SYSTEM OF THERMOCHEMICAL REGENERATION TO PROVIDE OXYGENATED FUEL, FOR EXAMPLE, WITH FUEL-COOLED FUEL INJECTORS; and U.S. patent application Ser. No. 12/804,508, filed Jul. 21, 2010, now U.S. Pat. No. 8,387,599, and titled METHODS AND SYSTEMS FOR REDUCING THE FORMATION OF OXIDES OF NITROGEN DURING COMBUSTION IN ENGINES. Furthermore, each of the preceding applications: claims priority to and the benefit of U.S. Provisional Application No. 61/237,425, filed Aug. 27, 2009 and titled OXYGENATED FUEL PRODUCTION; claims priority to and the benefit of U.S. Provisional Application No. 61/237,466, filed Aug. 27, 2009 and titled MULTIFUEL MULTIBURST; claims priority to and the benefit of U.S. Provisional Application No. 61/237,479, filed Aug. 27, 2009 and titled FULL SPECTRUM ENERGY; is a continuation-in-part of U.S. patent application Ser. No. 12/581,825, now U.S. Pat. No. 8,297,254, filed Oct. 19, 2009 and titled MULTIFUEL STORAGE, METERING AND IGNITION SYSTEM; is a continuation-in-part of PCT Application No. PCT/US09/67044, filed Dec. 7, 2009 and titled INTEGRATED FUEL INJECTORS AND IGNITERS AND ASSOCIATED METHODS OF USE AND MANUFACTURE; is a continuation-in-part of U.S. patent application Ser. No. 12/653,085, now U.S. Pat. No. 8,635,985, filed Dec. 7, 2009 and titled INTEGRATED FUEL INJECTORS AND IGNITERS AND ASSOCIATED METHODS OF USE AND MANUFACTURE; claims priority to and the benefit of U.S. Provisional Application No. 61/304,403, filed Feb. 13, 2010 and titled FULL SPECTRUM ENERGY AND RESOURCE INDEPENDENCE; and claims priority to and the benefit of U.S. Provisional Application No. 61/312,100, filed Mar. 9, 2010 and titled SYSTEM AND METHOD FOR PROVIDING HIGH VOLTAGE RF SHIELDING, FOR EXAMPLE, FOR USE WITH A FUEL INJECTOR. Moreover, U.S. patent application Ser. No. 12/581,825, now U.S. Pat. No. 8,297,254, is a divisional of U.S. patent application Ser. No. 12/006,774 (now U.S. Pat. No. 7,628,137), filed Jan. 7, 2008 and titled MULTIFUEL STORAGE, METERING AND IGNITION SYSTEM. PCT Application No. PCT/US09/67044 claims priority to and the benefit of U.S. Provisional Application No. 61/237,466, filed Aug. 27, 2009 and titled MULTIFUEL MULTIBURST. U.S. patent application Ser. No. 12/653,085, now U.S. Pat. No. 8,635,985, is a continuation-in-part of U.S. patent application Ser. No. 12/006,774 (now U.S. Pat. No. 7,628,137), filed Jan. 7, 2008 and titled MULTIFUEL STORAGE, METERING AND IGNITION SYSTEM; and claims priority to and the benefit of U.S. Provisional Application No. 61/237,466, filed Aug. 27, 2009 and titled MULTIFUEL MULTIBURST. Each of the applications referenced above is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1307088 | Drummond | Jun 1919 | A |
1451384 | Whyte | Apr 1923 | A |
2255203 | Wiegand | Sep 1941 | A |
2864974 | Beye | Dec 1958 | A |
3058453 | May | Oct 1962 | A |
3060912 | May | Oct 1962 | A |
3081758 | May | Mar 1963 | A |
3149620 | Cataldo | Sep 1964 | A |
3243335 | Faile | Mar 1966 | A |
3286164 | De Huff | Nov 1966 | A |
3361161 | Schwartz | Jan 1968 | A |
3373724 | Papst | Mar 1968 | A |
3520961 | Suda et al. | Jul 1970 | A |
3551738 | Young | Dec 1970 | A |
3594877 | Suda et al. | Jul 1971 | A |
3608050 | Carman et al. | Sep 1971 | A |
3689293 | Beall | Sep 1972 | A |
3762170 | Fitzhugh | Oct 1973 | A |
3802194 | Tanasawa et al. | Apr 1974 | A |
3926169 | Leshner et al. | Dec 1975 | A |
3931438 | Beall et al. | Jan 1976 | A |
3960995 | Kourkene | Jun 1976 | A |
3976039 | Henault | Aug 1976 | A |
3997352 | Beall | Dec 1976 | A |
4066046 | McAlister | Jan 1978 | A |
4095580 | Murray et al. | Jun 1978 | A |
4099494 | Goloff et al. | Jul 1978 | A |
4105004 | Asai et al. | Aug 1978 | A |
4122816 | Fitzgerald et al. | Oct 1978 | A |
4135481 | Resler, Jr. | Jan 1979 | A |
4183467 | Sheraton et al. | Jan 1980 | A |
4203393 | Giardini | May 1980 | A |
4281797 | Kimata et al. | Aug 1981 | A |
4313412 | Hosaka et al. | Feb 1982 | A |
4330732 | Lowther | May 1982 | A |
4332223 | Dalton | Jun 1982 | A |
4364342 | Asik | Dec 1982 | A |
4364363 | Miyagi et al. | Dec 1982 | A |
4368707 | Leshner et al. | Jan 1983 | A |
4377455 | Kadija et al. | Mar 1983 | A |
4402036 | Hensley et al. | Aug 1983 | A |
4469160 | Giamei | Sep 1984 | A |
4483485 | Kamiya et al. | Nov 1984 | A |
4511612 | Huther et al. | Apr 1985 | A |
4514712 | McDougal | Apr 1985 | A |
4528270 | Matsunaga | Jul 1985 | A |
4531679 | Pagdin | Jul 1985 | A |
4536452 | Stempin et al. | Aug 1985 | A |
4567857 | Houseman et al. | Feb 1986 | A |
4574037 | Samejima et al. | Mar 1986 | A |
4677960 | Ward | Jul 1987 | A |
4684211 | Weber et al. | Aug 1987 | A |
4688538 | Ward et al. | Aug 1987 | A |
4716874 | Hilliard et al. | Jan 1988 | A |
4733646 | Iwasaki | Mar 1988 | A |
4736718 | Linder | Apr 1988 | A |
4742265 | Giachino et al. | May 1988 | A |
4760818 | Brooks et al. | Aug 1988 | A |
4760820 | Tozzi | Aug 1988 | A |
4774914 | Ward | Oct 1988 | A |
4774919 | Matsuo et al. | Oct 1988 | A |
4830286 | Asslaender et al. | May 1989 | A |
4841925 | Ward | Jun 1989 | A |
4922883 | Iwasaki | May 1990 | A |
4967708 | Linder et al. | Nov 1990 | A |
4977873 | Cherry et al. | Dec 1990 | A |
4982708 | Stutzenberger | Jan 1991 | A |
5034852 | Rosenberg | Jul 1991 | A |
5035360 | Green et al. | Jul 1991 | A |
5036669 | Earleson et al. | Aug 1991 | A |
5055435 | Hamanaka et al. | Oct 1991 | A |
5056496 | Morino et al. | Oct 1991 | A |
5076223 | Harden et al. | Dec 1991 | A |
5095742 | James et al. | Mar 1992 | A |
5109817 | Cherry | May 1992 | A |
5131376 | Ward et al. | Jul 1992 | A |
5134982 | Hosoi | Aug 1992 | A |
5150682 | Magnet | Sep 1992 | A |
5193515 | Oota et al. | Mar 1993 | A |
5207208 | Ward | May 1993 | A |
5211142 | Matthews et al. | May 1993 | A |
5220901 | Morita et al. | Jun 1993 | A |
5222481 | Morikawa | Jun 1993 | A |
5267601 | Dwivedi | Dec 1993 | A |
5297518 | Cherry | Mar 1994 | A |
5305360 | Remark et al. | Apr 1994 | A |
5328094 | Goetzke et al. | Jul 1994 | A |
5329606 | Andreassen | Jul 1994 | A |
5343699 | McAlister | Sep 1994 | A |
5361737 | Smith et al. | Nov 1994 | A |
5377633 | Wakeman | Jan 1995 | A |
5392745 | Beck | Feb 1995 | A |
5394852 | McAlister | Mar 1995 | A |
5421299 | Cherry | Jun 1995 | A |
5435286 | Carroll, III et al. | Jul 1995 | A |
5439532 | Fraas | Aug 1995 | A |
5456241 | Ward | Oct 1995 | A |
5473502 | Bonavia et al. | Dec 1995 | A |
5475772 | Hung et al. | Dec 1995 | A |
5497744 | Nagaosa et al. | Mar 1996 | A |
5517961 | Ward | May 1996 | A |
5531199 | Bryant et al. | Jul 1996 | A |
5534781 | Lee et al. | Jul 1996 | A |
5549746 | Scott et al. | Aug 1996 | A |
5568801 | Paterson et al. | Oct 1996 | A |
5584490 | Inoue et al. | Dec 1996 | A |
5588299 | DeFreitas | Dec 1996 | A |
5598699 | Few et al. | Feb 1997 | A |
5605125 | Yaoita | Feb 1997 | A |
5607106 | Bentz et al. | Mar 1997 | A |
5608832 | Pfandl et al. | Mar 1997 | A |
5649507 | Gregoire et al. | Jul 1997 | A |
5676026 | Tsuboi et al. | Oct 1997 | A |
5699253 | Puskorius et al. | Dec 1997 | A |
5702761 | DiChiara, Jr. et al. | Dec 1997 | A |
5704321 | Suckewer et al. | Jan 1998 | A |
5714680 | Taylor et al. | Feb 1998 | A |
5715788 | Tarr et al. | Feb 1998 | A |
5738818 | Atmur et al. | Apr 1998 | A |
5745615 | Atkins et al. | Apr 1998 | A |
5746171 | Yaoita | May 1998 | A |
5767026 | Kondoh et al. | Jun 1998 | A |
5769049 | Nytomt et al. | Jun 1998 | A |
5797427 | Buescher | Aug 1998 | A |
5806581 | Haasch et al. | Sep 1998 | A |
5816217 | Wong | Oct 1998 | A |
5832906 | Douville et al. | Nov 1998 | A |
5853175 | Udagawa | Dec 1998 | A |
5863326 | Nause et al. | Jan 1999 | A |
5876659 | Yasutomi et al. | Mar 1999 | A |
5896842 | Abusamra | Apr 1999 | A |
5915272 | Foley et al. | Jun 1999 | A |
5930420 | Atkins et al. | Jul 1999 | A |
5941207 | Anderson et al. | Aug 1999 | A |
6015065 | McAlister | Jan 2000 | A |
6017390 | Charych et al. | Jan 2000 | A |
6026568 | Atmur et al. | Feb 2000 | A |
6029627 | VanDyne | Feb 2000 | A |
6029640 | Bengtsson et al. | Feb 2000 | A |
6062498 | Klopfer | May 2000 | A |
6085990 | Augustin | Jul 2000 | A |
6092501 | Matayoshi et al. | Jul 2000 | A |
6092507 | Bauer et al. | Jul 2000 | A |
6093338 | Tani et al. | Jul 2000 | A |
6102303 | Bright et al. | Aug 2000 | A |
6138639 | Hiraya et al. | Oct 2000 | A |
6173913 | Shafer et al. | Jan 2001 | B1 |
6185355 | Hung | Feb 2001 | B1 |
6189522 | Moriya | Feb 2001 | B1 |
6253728 | Matayoshi et al. | Jul 2001 | B1 |
6267307 | Pontoppidan | Jul 2001 | B1 |
6281976 | Taylor et al. | Aug 2001 | B1 |
6335065 | Steinlage et al. | Jan 2002 | B1 |
6340015 | Benedikt et al. | Jan 2002 | B1 |
6360721 | Schuricht et al. | Mar 2002 | B1 |
6360730 | Koethe | Mar 2002 | B1 |
6378485 | Elliott | Apr 2002 | B2 |
6386178 | Rauch | May 2002 | B1 |
6418721 | Coleman et al. | Jul 2002 | B1 |
6443373 | Portugues | Sep 2002 | B1 |
6446597 | McAlister | Sep 2002 | B1 |
6453660 | Johnson et al. | Sep 2002 | B1 |
6455173 | Marijnissen et al. | Sep 2002 | B1 |
6478007 | Miyashita et al. | Nov 2002 | B2 |
6483311 | Ketterer et al. | Nov 2002 | B1 |
6490391 | Zhao et al. | Dec 2002 | B1 |
6501875 | Zhao et al. | Dec 2002 | B2 |
6503584 | McAlister | Jan 2003 | B1 |
6506336 | Beall et al. | Jan 2003 | B1 |
6516114 | Zhao et al. | Feb 2003 | B2 |
6517011 | Ayanji et al. | Feb 2003 | B1 |
6532315 | Hung et al. | Mar 2003 | B1 |
6542663 | Zhao et al. | Apr 2003 | B1 |
6543700 | Jameson et al. | Apr 2003 | B2 |
6549713 | Pi et al. | Apr 2003 | B1 |
6556746 | Zhao et al. | Apr 2003 | B1 |
6567599 | Hung | May 2003 | B2 |
6571035 | Pi et al. | May 2003 | B1 |
6578775 | Hokao | Jun 2003 | B2 |
6583901 | Hung | Jun 2003 | B1 |
6584244 | Hung | Jun 2003 | B2 |
6587239 | Hung | Jul 2003 | B1 |
6599028 | Shu et al. | Jul 2003 | B1 |
6604362 | Moeckel | Aug 2003 | B2 |
6615899 | Woodward et al. | Sep 2003 | B1 |
6621964 | Quinn et al. | Sep 2003 | B2 |
6626164 | Hitomi et al. | Sep 2003 | B2 |
6663027 | Jameson et al. | Dec 2003 | B2 |
6668630 | Kuglin et al. | Dec 2003 | B1 |
6672277 | Yasuoka et al. | Jan 2004 | B2 |
6700306 | Nakamura et al. | Mar 2004 | B2 |
6705274 | Kubo | Mar 2004 | B2 |
6722340 | Sukegawa et al. | Apr 2004 | B1 |
6725826 | Esteghlal | Apr 2004 | B2 |
6745744 | Suckewer et al. | Jun 2004 | B2 |
6756140 | McAlister | Jun 2004 | B1 |
6763811 | Tamol, Sr. | Jul 2004 | B1 |
6772965 | Yildirim et al. | Aug 2004 | B2 |
6776352 | Jameson | Aug 2004 | B2 |
6779513 | Pellizzari et al. | Aug 2004 | B2 |
6786200 | Viele et al. | Sep 2004 | B2 |
6832472 | Huang et al. | Dec 2004 | B2 |
6832588 | Herden et al. | Dec 2004 | B2 |
6841309 | Alpay et al. | Jan 2005 | B1 |
6845920 | Sato et al. | Jan 2005 | B2 |
6850069 | McQueeney et al. | Feb 2005 | B2 |
6851413 | Tamol, Sr. | Feb 2005 | B1 |
6854438 | Hilger et al. | Feb 2005 | B2 |
6871630 | Herden et al. | Mar 2005 | B2 |
6881386 | Rabinovich et al. | Apr 2005 | B2 |
6883490 | Jayne | Apr 2005 | B2 |
6883507 | Freen | Apr 2005 | B2 |
6898355 | Johnson et al. | May 2005 | B2 |
6899076 | Funaki et al. | May 2005 | B2 |
6904893 | Hotta et al. | Jun 2005 | B2 |
6912998 | Rauznitz et al. | Jul 2005 | B1 |
6925983 | Herden et al. | Aug 2005 | B2 |
6940213 | Heinz et al. | Sep 2005 | B1 |
6954074 | Zhu et al. | Oct 2005 | B2 |
6976683 | Eckert et al. | Dec 2005 | B2 |
6978767 | Bonutti | Dec 2005 | B2 |
6984305 | McAlister | Jan 2006 | B2 |
6993960 | Benson | Feb 2006 | B2 |
6994073 | Tozzi et al. | Feb 2006 | B2 |
7007658 | Cherry et al. | Mar 2006 | B1 |
7013863 | Shiraishi et al. | Mar 2006 | B2 |
7025358 | Ueta et al. | Apr 2006 | B2 |
7032845 | Dantes et al. | Apr 2006 | B2 |
7070126 | Shinogle | Jul 2006 | B2 |
7073480 | Shiraishi et al. | Jul 2006 | B2 |
7086376 | McKay | Aug 2006 | B2 |
7104246 | Gagliano et al. | Sep 2006 | B1 |
7104250 | Yi et al. | Sep 2006 | B1 |
7121253 | Shiraishi et al. | Oct 2006 | B2 |
7124964 | Bui | Oct 2006 | B2 |
7131426 | Ichinose et al. | Nov 2006 | B2 |
7137382 | Zhu et al. | Nov 2006 | B2 |
7138046 | Roychowdhury | Nov 2006 | B2 |
7140347 | Suzuki et al. | Nov 2006 | B2 |
7198208 | Dye et al. | Apr 2007 | B2 |
7204133 | Benson et al. | Apr 2007 | B2 |
7214883 | Leyendecker | May 2007 | B2 |
7249578 | Fricke et al. | Jul 2007 | B2 |
7255290 | Bright et al. | Aug 2007 | B2 |
7272487 | Christen et al. | Sep 2007 | B2 |
7278392 | Zillmer et al. | Oct 2007 | B2 |
7284543 | Kato et al. | Oct 2007 | B2 |
7302792 | Land, III et al. | Dec 2007 | B2 |
7305971 | Fujii | Dec 2007 | B2 |
7308889 | Post et al. | Dec 2007 | B2 |
7340118 | Wlodarczyk et al. | Mar 2008 | B2 |
7367319 | Kuo et al. | May 2008 | B2 |
7386982 | Runkle et al. | Jun 2008 | B2 |
7395146 | Ueda et al. | Jul 2008 | B2 |
7404395 | Yoshimoto | Jul 2008 | B2 |
7418940 | Yi et al. | Sep 2008 | B1 |
7435082 | Jayne | Oct 2008 | B2 |
7449034 | Mikkelsen et al. | Nov 2008 | B1 |
7481043 | Hirata et al. | Jan 2009 | B2 |
7484369 | Myhre | Feb 2009 | B2 |
7554250 | Kadotani et al. | Jun 2009 | B2 |
7625531 | Coates et al. | Dec 2009 | B1 |
7626315 | Nagase | Dec 2009 | B2 |
7627416 | Batenburg et al. | Dec 2009 | B2 |
7628137 | McAlister | Dec 2009 | B1 |
7628145 | Ishibashi et al. | Dec 2009 | B2 |
7650873 | Hofbauer et al. | Jan 2010 | B2 |
7690352 | Zhu et al. | Apr 2010 | B2 |
7703775 | Matsushita et al. | Apr 2010 | B2 |
7707832 | Commaret et al. | May 2010 | B2 |
7714483 | Hess et al. | May 2010 | B2 |
7721697 | Smith et al. | May 2010 | B2 |
7728489 | Heinz et al. | Jun 2010 | B2 |
7849833 | Toyoda | Dec 2010 | B2 |
7900850 | Zengerle et al. | Mar 2011 | B2 |
7918212 | Verdejo et al. | Apr 2011 | B2 |
7938102 | Sherry | May 2011 | B2 |
8037849 | Staroselsky et al. | Oct 2011 | B1 |
8069836 | Ehresman | Dec 2011 | B2 |
8091536 | Munshi et al. | Jan 2012 | B2 |
8104444 | Schultz | Jan 2012 | B2 |
8132560 | Ulrey et al. | Mar 2012 | B2 |
8147599 | McAlister | Apr 2012 | B2 |
8192852 | McAlister | Jun 2012 | B2 |
8240293 | Ikeda | Aug 2012 | B2 |
8267063 | McAlister | Sep 2012 | B2 |
8312759 | McAlister | Nov 2012 | B2 |
8318131 | McAlister | Nov 2012 | B2 |
8365706 | Grunwald | Feb 2013 | B2 |
8371273 | Ulrey et al. | Feb 2013 | B2 |
8416552 | Gefter et al. | Apr 2013 | B2 |
8441361 | McAlister | May 2013 | B2 |
8469009 | Munshi et al. | Jun 2013 | B2 |
8511259 | Ambrosini et al. | Aug 2013 | B2 |
8538663 | Jung et al. | Sep 2013 | B2 |
8578902 | Permuy et al. | Nov 2013 | B2 |
8601819 | Hammer et al. | Dec 2013 | B2 |
8646432 | McAlister et al. | Feb 2014 | B1 |
20020017573 | Sturman | Feb 2002 | A1 |
20020070287 | Jameson et al. | Jun 2002 | A1 |
20020084793 | Hung et al. | Jul 2002 | A1 |
20020131171 | Hung | Sep 2002 | A1 |
20020131666 | Hung et al. | Sep 2002 | A1 |
20020131673 | Hung | Sep 2002 | A1 |
20020131674 | Hung | Sep 2002 | A1 |
20020131706 | Hung | Sep 2002 | A1 |
20020131756 | Hung | Sep 2002 | A1 |
20020141692 | Hung | Oct 2002 | A1 |
20020150375 | Hung et al. | Oct 2002 | A1 |
20020151113 | Hung et al. | Oct 2002 | A1 |
20030012985 | McAlister | Jan 2003 | A1 |
20040008989 | Hung | Jan 2004 | A1 |
20040084017 | Viele et al. | May 2004 | A1 |
20040084026 | Zhu et al. | May 2004 | A1 |
20040187847 | Viele et al. | Sep 2004 | A1 |
20050126537 | Daniels et al. | Jun 2005 | A1 |
20050255011 | Greathouse et al. | Nov 2005 | A1 |
20050257776 | Bonutti | Nov 2005 | A1 |
20060016916 | Petrone et al. | Jan 2006 | A1 |
20060169244 | Allen | Aug 2006 | A1 |
20070186903 | Zhu et al. | Aug 2007 | A1 |
20070189114 | Reiner et al. | Aug 2007 | A1 |
20080017170 | Moroi et al. | Jan 2008 | A1 |
20090093951 | McKay et al. | Apr 2009 | A1 |
20090101114 | Czekala et al. | Apr 2009 | A1 |
20100108023 | McAlister | May 2010 | A1 |
20110057058 | McAlister | Mar 2011 | A1 |
20110146619 | McAlister | Jun 2011 | A1 |
20120112620 | Lykowski et al. | May 2012 | A1 |
20120180743 | Burrows et al. | Jul 2012 | A1 |
20120199088 | Burrows et al. | Aug 2012 | A1 |
20120210968 | Burrows et al. | Aug 2012 | A1 |
20130149621 | McAlister | Jun 2013 | A1 |
20140041631 | McAlister | Feb 2014 | A1 |
Number | Date | Country |
---|---|---|
1411535 | Apr 2003 | CN |
3443022 | May 1986 | DE |
19629171 | Jan 1998 | DE |
19731329 | Jun 1998 | DE |
10356133 | Jul 2005 | DE |
EP 1559888 | Aug 2005 | DE |
102005060139 | Jun 2007 | DE |
102006021192 | Nov 2007 | DE |
0 392 650 | Oct 1990 | EP |
671555 | Sep 1995 | EP |
1559888 | Aug 2005 | EP |
1038490 | Aug 1966 | GB |
02-259268 | Oct 1990 | JP |
08-049623 | Feb 1996 | JP |
2004-324613 | Nov 2004 | JP |
2009-287549 | Dec 2009 | JP |
10-2008-0030131 | Apr 2008 | KR |
WO-2004083623 | Sep 2004 | WO |
WO-2005113975 | Dec 2005 | WO |
Entry |
---|
“P dV's Custom Data Acquisition Systems Capabilities.” PdV Consulting. Accessed: Jun. 28, 2010. Printed: May 16, 2011. <http://www.pdvconsult.com/capabilities%20-%20daqsys.html>. pp. 1-10. |
“Piston Velocity and Acceleration.” EPI, Inc. Accessed: Jun. 28, 2010. Printed: May 16, 2011. <http://www.epi-eng.com/piston—engine—technology/piston—velocity—and—acceleration.htm>. pp. 1-3. |
“SmartPlugs—Aviation.” SmartPlugs.com. Published: Sep. 2000. Accessed: May 31, 2011. <http://www.smartplugs.com/news/aeronews0900.htm>. pp. 1-3. |
Birchenough, Arthur G. “A Sustained-arc Ignition System for Internal Combustion Engines.” Nasa Technical Memorandum (NASA TM-73833). Lewis Research Center. Nov. 1977. pp. 1-15. |
Britt, Robert Roy. “Powerful Solar Storm Could Shut Down U.S. For Months—Science News | Science & Technology | Technology News—FOXNews.com.” FoxNews.com, Published: Jan. 9, 2009. Accessed: May 17, 2011. <http://www.foxnews.com/story/0,2933,478024,00.html>. pp. 1-2. |
Brooks, Michael. “Space Storm Alert: 90 Seconds from Catastrophe.” NewScientist. Mar. 23, 2009. pp. 1-7. |
Doggett, William. “Measuring Internal Combustion Engine In-Cylinder Pressure with LabVIEW.” National Instruments. Accessed: Jun. 28, 2010. Printed: May 16, 2011. <http://sine.ni.com/cs/app/doc/p/id/cs-217>. pp. 1-2. |
Hodgin, Rick. “NASA Studies Solar Flare Dangers to Earth-based Technology.” TG Daily. Published: Jan. 6, 2009. Accessed: May 17, 2011. <http://www.tgdaily.com/trendwatch/40830-nasa-studies-solar-flare-dangers-to-earth-based-technology>. pp. 1-2. |
InfraTec GmbH. “Evaluation Kit for FPI Detectors | Datasheet—Detector Accessory.” 2009. pp. 1-2. |
Lewis Research Center. “Fabry-Perot Fiber-Optic Temperature Sensor.” NASA Tech Briefs. Published: Jan. 1, 2009. Accessed: May 16, 2011. <http://www.techbriefs.com/content/view/2114/32/>. |
Riza et al. “Hybrid Wireless-Wired Optical Sensor for Extreme Temperature Measurement in Next Generation Energy Efficient Gas Turbines.” Journal of Engineering for Gas Turbines and Power, vol. 132, Issue 5. May 2010. pp. 051601-1-51601-11. |
Salib et al. “Role of Parallel Reformable Bonds in the Self-Healing of Cross-Linked Nanogel Particles.” Langmuir, vol. 27, Issue 7. 2011. pp. 3991-4003. |
Erjavec, Jack. “Automotive Technology: a Systems Approach, vol. 2.” Thomson Delmar Learning. Clifton Park, NY. 2005. pp. 845. |
Hollembeak, Barry. “Automotive Fuels & Emissions.” Thomson Delmar Learning. Clifton Park, NY. 2005. p. 298. |
“Ford DIS/EDIS “Waste Spare” Ignition System.” Accessed: Jul. 15, 2010. Printed: Jun. 8, 2011. <http://rockledge.home.comcast.net/˜rockledge/RangerPictureGallery/DIS—EDIS.htm>. pp. 1-6. |
“Piston motion equations.” Wikipedia, the Free Encyclopedia. Published: Jul. 4, 2010. Accessed: Aug. 7, 2010. Printed: Aug. 7, 2010. <http://en.wikipedia.org/wiki/Dopant>. pp. 1-9. |
Pall Corporation, Pall Industrial Hydraulics. Increase Power Output and Reduce Fugitive Emissions by Upgrading Hydrogen Seal Oil System Filtration. 2000. pp. 1-4. |
Riza et al. “All-Silicon Carbide Hybrid Wireless-Wired Optics Temperature Sensor Network Basic Design Engineering for Power Plant Gas Turbines.” International Journal of Optomechatronics, vol. 4, Issue 1. Jan. 2010. pp. 1-9. |
International Search Report and Written Opinion for Application No. PCT/US2010/054364; Applicant: McAlister Technologies, LLC.; Date of Mailing: Aug. 22, 2011, 8 pages. |
Supplementary European Search Report for Application No. EP 10846264.9; Applicant McAlister Technologies, LLC.; Date of Mailin Oct. 2, 2013, 5 pages. |
Supplementary European Search Report for Application No. EP 10836377.1; Applicant McAlister Technologies, LLC.; Date of Mailing Jun. 24, 2014 6 pages. |
English Translation of the Korean Intellectual Property Office Office Action, Korean Patent Application No. 10-2013-7016813, dated Apr. 10, 2015 (9 pages). |
Number | Date | Country | |
---|---|---|---|
20150107549 A1 | Apr 2015 | US |
Number | Date | Country | |
---|---|---|---|
61304403 | Feb 2010 | US | |
61312100 | Mar 2010 | US | |
61237425 | Aug 2009 | US | |
61237466 | Aug 2009 | US | |
61237479 | Aug 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12006774 | Jan 2008 | US |
Child | 12581825 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12913749 | Oct 2010 | US |
Child | 14284046 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12841170 | Jul 2010 | US |
Child | 12913749 | US | |
Parent | 12581825 | Oct 2009 | US |
Child | 12841170 | US | |
Parent | 12653085 | Dec 2009 | US |
Child | 12841170 | US | |
Parent | 12006774 | US | |
Child | 12653085 | US | |
Parent | PCT/US2009/067044 | Dec 2009 | US |
Child | 12841170 | US | |
Parent | 12841146 | Jul 2010 | US |
Child | 12913749 | US | |
Parent | 12581825 | US | |
Child | 12841146 | US | |
Parent | 12653085 | US | |
Child | 12581825 | US | |
Parent | PCT/US2009/067044 | US | |
Child | 12653085 | US | |
Parent | 12804508 | Jul 2010 | US |
Child | PCT/US2009/067044 | US | |
Parent | 12804510 | Jul 2010 | US |
Child | 12804508 | US | |
Parent | 12841149 | Jul 2010 | US |
Child | 12804510 | US | |
Parent | 12653085 | US | |
Child | 12841149 | US | |
Parent | 12581825 | US | |
Child | 12653085 | US | |
Parent | 12841135 | Jul 2010 | US |
Child | 12913749 | US | |
Parent | 12804509 | Jul 2010 | US |
Child | 12841135 | US |