Digital video consumes large amounts of storage and transmission capacity. Many computers and computer networks lack the resources to process raw digital video. For this reason, engineers use compression (also called coding or encoding) to reduce the bit rate of digital video. Compression decreases the cost of storing and transmitting video by converting the video into a lower bit rate form. Decompression (also called decoding) reconstructs a version of the original video from the compressed form. A “codec” is an encoder/decoder system.
In general, video compression techniques include “intra-picture” compression and “inter-picture” compression. Intra-picture compression techniques compress an individual picture, and inter-picture compression techniques compress a picture with reference to a preceding and/or following picture (often called a reference or anchor picture) or pictures.
I. Intra and Inter Compression.
The encoder quantizes (120) the transform coefficients (115), resulting in an 8×8 block of quantized transform coefficients (125). With quantization, the encoder essentially trades off quality and bit rate. More specifically, quantization can affect the fidelity with which the transform coefficients are encoded, which in turn can affect bit rate. Coarser quantization tends to decrease fidelity to the original transform coefficients as the coefficients are more coarsely approximated. Bit rate also decreases, however, when decreased complexity can be exploited with lossless compression. Conversely, finer quantization tends to preserve fidelity and quality but result in higher bit rates. Different encoders use different parameters for quantization. In most encoders, a step size of quantization is set for a block, picture, or other unit of video. Some encoders quantize coefficients differently within a given block, so as to apply relatively coarser quantization to perceptually less important coefficients, and a quantization matrix can be used to indicate the relative quantization weights. Or, apart from the rules used to reconstruct quantized values, some encoders define the thresholds according to which values are quantized so as to quantize values more aggressively.
Returning to
In corresponding decoding, a decoder produces a reconstructed version of the original 8×8 block. The decoder entropy decodes the quantized transform coefficients, scanning the quantized coefficients into a two-dimensional block, and performing AC prediction and/or DC prediction as needed. The decoder inverse quantizes the quantized transform coefficients of the block and applies an inverse frequency transform (such as an inverse DCT (“IDCT”)) to the de-quantized transform coefficients, producing the reconstructed version of the original 8×8 block. (If the encoder subtracted 128 from the 8-bit sample values before the frequency transform, 128 is now added back to the sample values.) When a picture is used as a reference picture in subsequent motion compensation (see below), an encoder also reconstructs the picture.
Inter-picture compression techniques often use motion estimation and motion compensation to reduce bit rate by exploiting temporal redundancy in a video sequence. Motion estimation is a process for estimating motion between pictures. In general, motion compensation is a process of reconstructing pictures from reference picture(s) using motion data, producing motion-compensated predictions.
Whereas the example encoder divides an intra-coded picture into non-overlapping 8×8 blocks, the encoder more generally divides an inter-coded picture into rectangular, non-overlapping blocks of N×M samples, where N and M can be 4 or 8, so block size is 4×4, 4×8, 8×4 or 8×8. For a current unit (e.g., 8×8 block) being encoded, the encoder computes the sample-by-sample difference between the current unit and its motion-compensated prediction to determine a residual (also called error signal). The residual is frequency transformed, quantized, and entropy encoded.
If a predicted picture is used as a reference picture for subsequent motion compensation, the encoder reconstructs the predicted picture. When reconstructing residuals, the encoder reconstructs transform coefficients that were quantized and performs an inverse frequency transform. The encoder performs motion compensation to compute the motion-compensated predictors, and combines the predictors with the residuals. During decoding, a decoder typically entropy decodes information and performs analogous operations to reconstruct residuals, perform motion compensation, and combine the predictors with the reconstructed residuals.
II. Lossy Compression and Quantization.
Lossless compression reduces the bit rate of information by removing redundancy from the information without any reduction in fidelity. Lossless compression techniques reduce bit rate at no cost to quality, but can only reduce bit rate up to a certain point. Decreases in bit rate are limited by the inherent amount of variability in the statistical characterization of the input data, which is referred to as the source entropy.
In contrast, with lossy compression, quality suffers somewhat but the achievable decrease in bit rate is more dramatic. Lossy compression techniques can be used to reduce bit rate more than lossless compression techniques, but some of the reduction in bit rate is achieved by reducing quality, and the lost quality cannot be completely recovered. Lossy compression is often used in conjunction with lossless compression, in a system design in which the lossy compression establishes an approximation of the information and lossless compression techniques are applied to represent the approximation.
In general, an encoder varies quantization to trade off quality and bit rate. A basic goal of lossy compression is to provide good rate-distortion performance. So, for a particular bit rate, an encoder attempts to provide the highest quality of video. Or, for a particular level of quality/fidelity to the original video, an encoder attempts to provide the lowest bit rate encoded video. In practice, considerations such as encoding time, encoding complexity, encoding resources, decoding time, decoding complexity, decoding resources, overall delay, and/or smoothness in quality/bit rate changes also affect decisions made in codec design as well as decisions made during actual encoding.
According to one possible definition, quantization is a term used for an approximating non-reversible mapping function commonly used for lossy compression, in which there is a specified set of possible output values, and each member of the set of possible output values has an associated set of input values that result in the selection of that particular output value. A variety of quantization techniques have been developed, including scalar or vector, uniform or non-uniform, and adaptive or non-adaptive quantization.
A. Scalar Quantizers.
According to one possible definition, a scalar quantizer is an approximating functional mapping x→Q[x] of an input value x to a quantized value Q[x], sometimes called a reconstructed value.
A scalar quantizer can be decomposed into two distinct stages. The first stage is the classifier stage, in which a classifier function mapping x→A[x] maps an input x to a quantization index A[x], which is often integer-valued. In essence, the classifier segments an input number line or data set.
In the second stage, a reconstructor functional mapping k→β[k] maps each quantization index k to a reconstruction value β[k]. In essence, the reconstructor selects a value for reconstruction of each region determined by the classifier. The reconstructor functional mapping may be implemented, for example, using a lookup table.
Q[x]=β[A[x]] (1).
In common usage, the term “quantization” is often used to describe the classifier stage, which is performed during encoding. The term “inverse quantization” is similarly used to describe the reconstructor stage, whether performed during encoding or decoding.
B. Dead Zone+Uniform Threshold Quantizers.
A non-uniform quantizer has threshold values that are not uniformly spaced for all classifier regions. According to one possible definition, a dead zone plus uniform threshold quantizer (“DZ+UTQ”) is a quantizer with uniformly spaced threshold values for all classifier regions except the one containing the zero input value (which is called the dead zone (“DZ”)). In a general sense, a DZ+UTQ is a non-uniform quantizer, since the DZ size is different than the other classifier regions.
C. Adjusting Quantization.
In many systems, the extent of quantization is parameterized in terms of quantization step size, which is adapted to regulate quality and/or bit rate. Coarser quantization uses larger quantization step sizes. Finer quantization uses smaller quantization step sizes. Often, for purposes of signaling and reconstruction, quantization step sizes are parameterized as multiples of a smallest quantization step size.
Some standards and products also allow specification of a quantization matrix, or scaling matrix, that indicates different weights for different frequency coefficients in quantization. Frequency coefficients are then quantized and inverse quantized using weighted quantization step sizes. For example, a scaling matrix for an intra-coded block uses higher weights for high frequency coefficients and lower weights for low frequency coefficients, which tends to shift distortion that is introduced to high frequency coefficients where it is less apt to cause perceptible quantization artifacts.
Some standards and products support selection between different reconstruction rules. For example, in some systems, a decoder can switch between a “uniform” quantizer reconstruction rule and a “non-uniform” quantizer reconstruction rule. Typically, for a given reconstruction rule, standards and products specify reconstruction values that correspond to midpoint reconstruction for the sake of simplicity. In
Standards and product specifications that focus only on achieving interoperability will often specify reconstruction values without specifying a classification rule. In other words, some specifications may define the functional mapping k→β[k] without defining the functional mapping x→A[x]. This allows a decoder built to comply with the standard/product to reconstruct information correctly. In contrast, encoders are often given the freedom to change the classifier. For classification, the thresholds can be defined so that certain input values will be mapped to more common (and hence, lower bit rate) indices, which makes the reconstruction values closer to optimal for some content. When an encoder defines quantization bin boundaries in a static way, this allows the encoder to adjust in a predetermined way to expected distributions in values. For example, an encoder may define the DZ threshold to be 1.2*QP for a quantizer (rather than 1*QP as might be expected given midpoint reconstruction). While changing how quantization thresholds are defined can improve performance, it does not support content-adaptive behavior during quantization.
The preceding adaptive quantization mechanisms help improve performance in many scenarios. In some configurations, however, they fail to provide fine-grained control over quantization that is sufficiently adaptive.
In summary, the detailed description presents techniques and tools for improving quantization by adapting deadzone (“DZ”) size. For example, a video encoder adjusts DZ size for blocks of frequency coefficients being encoded, which gives the encoder finer grained control over how distortion is introduced during quantization. By adjusting DZ size depending on the texture of a block, the encoder is able to introduce more distortion where it is less perceptible (such as in highly textured areas) and introduce less distortion in other areas (such as smooth areas).
In some embodiments, a tool such as a video encoder gets a texture measurement for image or video information. When multiple quantizers are available, the tool selects one of the quantizers to use in quantization. The tool adjusts DZ size of the quantizer based at least in part on the texture measurement, and the tool quantizes the information (e.g., frequency coefficients for a block of such information) using the quantizer with the adjusted DZ size. For example, the tool computes an adjustment factor using the texture measurement and adjusts an initial DZ size for the quantizer with the adjustment factor. The way the tool adjusts DZ size can depend on the quantizer used as well as whether the content is intra-coded or inter-coded.
In other embodiments, a tool such as a video encoder performs a frequency transform on values for image or video information, producing frequency coefficients. For at least one of the frequency coefficients (e.g., an AC coefficient), the tool adjusts DZ size of a quantizer based at least in part on frequency of the coefficient and quantizes the coefficient using the quantizer with the adjusted DZ size. For example, the tool adds a weighted DZ size offset to an initial DZ size for the quantizer. The frequency-dependent DZ resizing can be used in combination with texture-dependent DZ resizing.
The foregoing and other objects, features, and advantages will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures. This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
The present application relates to techniques and tools for improving quantization by adapting deadzone (“DZ”) size depending on texture level and/or frequency.
Quantization can produce visible artifacts that tend to be more artificial-looking and visually distracting than simple loss of fine detail. For example, smooth, untextured content is susceptible to contouring artifacts—artifacts that appear between regions of two different quantization output values—because the human visual system is sensitive to subtle variations (particularly luma differences) in smooth content. While the same amount of distortion may not create noticeable artifacts in textured areas due to masking effects of surrounding detail, in smooth regions it can create a visible line or step in the reconstructed image.
In some embodiments, when a video encoder quantizes the AC coefficients of a block, the video encoder adapts the DZ size of the quantizer depending on the texture level of the block and the frequency of the AC coefficient being quantized. When the block has little or no texture, the encoder decreases the DZ size. As the texture of the block becomes more dominant, the encoder increases the DZ size. The encoder also increases DZ size for higher frequency AC coefficients in the block, compared to lower frequency AC coefficients in the block. In this way, when the encoder introduces distortion to regulate bit rate, it tends to introduce more distortion where it is expected to be less perceptible (e.g., textured areas) and introduce less distortion where it would likely be more perceptible (e.g., smooth areas).
Various alternatives to the implementations described herein are possible. Certain techniques described with reference to flowchart diagrams can be altered by changing the ordering of stages shown in the flowcharts, by repeating or omitting certain stages, etc. For example, initial stages of texture analysis (e.g., obtaining texture information for a picture, macroblock(s) or block(s)) can be completed before later stages begin, or operations for the different stages can be interleaved on a block-by-block, macroblock-by-macroblock, or other region-by-region basis.
The various techniques and tools described herein can be used in combination or independently. Different embodiments implement one or more of the described techniques and tools. Aside from uses in video compression, the adaptive quantization techniques and tools can be used in image compression, other compression, or other areas. For example, while many examples described herein involve quantization of AC coefficients for blocks by a video encoder, alternatively the techniques and tools described herein are applied to quantization of AC coefficients for blocks in an image encoder.
Some of the techniques and tools described herein address one or more of the problems noted in the background. Typically, a given technique/tool does not solve all such problems. Rather, in view of constraints and tradeoffs in encoding time, resources, and/or quality, the given technique/tool improves encoding performance for a particular implementation or scenario.
I. Computing Environment.
With reference to
A computing environment may have additional features. For example, the computing environment (600) includes storage (640), one or more input devices (650), one or more output devices (660), and one or more communication connections (670). An interconnection mechanism (not shown) such as a bus, controller, or network interconnects the components of the computing environment (600). Typically, operating system software (not shown) provides an operating environment for other software executing in the computing environment (600), and coordinates activities of the components of the computing environment (600).
The storage (640) may be removable or non-removable, and includes magnetic disks, magnetic tapes or cassettes, CD-ROMs, DVDs, or any other medium which can be used to store information and which can be accessed within the computing environment (600). The storage (640) stores instructions for the software (680) implementing the video encoder.
The input device(s) (650) may be a touch input device such as a keyboard, mouse, pen, or trackball, a voice input device, a scanning device, or another device that provides input to the computing environment (600). For audio or video encoding, the input device(s) (650) may be a sound card, video card, TV tuner card, or similar device that accepts audio or video input in analog or digital form, or a CD-ROM or CD-RW that reads audio or video samples into the computing environment (600). The output device(s) (660) may be a display, printer, speaker, CD-writer, or another device that provides output from the computing environment (600).
The communication connection(s) (670) enable communication over a communication medium to another computing entity. The communication medium conveys information such as computer-executable instructions, audio or video input or output, or other data in a modulated data signal. A modulated data signal is a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media include wired or wireless techniques implemented with an electrical, optical, RF, infrared, acoustic, or other carrier.
The techniques and tools can be described in the general context of computer-readable media. Computer-readable media are any available media that can be accessed within a computing environment. By way of example, and not limitation, with the computing environment (600), computer-readable media include memory (620), storage (640), communication media, and combinations of any of the above.
The techniques and tools can be described in the general context of computer-executable instructions, such as those included in program modules, being executed in a computing environment on a target real or virtual processor. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, etc. that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Computer-executable instructions for program modules may be executed within a local or distributed computing environment.
For the sake of presentation, the detailed description uses terms like “measure” and “adjust” to describe computer operations in a computing environment. These terms are high-level abstractions for operations performed by a computer, and should not be confused with acts performed by a human being. The actual computer operations corresponding to these terms vary depending on implementation.
II. Generalized Video Encoder.
The encoder (700) processes video pictures. The term picture generally refers to source, coded or reconstructed image data. For progressive video, a picture is a progressive video frame. For interlaced video, a picture may refer to an interlaced video frame, the top field of the frame, or the bottom field of the frame, depending on the context. The encoder (700) is block-based and uses a 4:2:0 macroblock format for frames, with each macroblock including four 8×8 luminance blocks (at times treated as one 16×16 macroblock) and two 8×8 chrominance blocks. For fields, the same or a different macroblock organization and format may be used. The 8×8 blocks may be further sub-divided at different stages, e.g., at the frequency transform and entropy encoding stages. The encoder (700) can perform operations on sets of samples of different size or configuration than 8×8 blocks and 16×16 macroblocks. Alternatively, the encoder (700) is object-based or uses a different macroblock or block format.
Returning to
A predicted picture (e.g., progressive P-frame or B-frame, interlaced P-field or B-field, or interlaced P-frame or B-frame) is represented in terms of prediction from one or more other pictures (which are typically referred to as reference pictures or anchors). A prediction residual is the difference between predicted information and corresponding original information. In contrast, a key picture (e.g., progressive I-frame, interlaced I-field, or interlaced I-frame) is compressed without reference to other pictures.
If the current picture (705) is a predicted picture, a motion estimator (710) estimates motion of macroblocks or other sets of samples of the current picture (705) with respect to one or more reference pictures. The picture store (720) buffers a reconstructed previous picture (725) for use as a reference picture. When multiple reference pictures are used, the multiple reference pictures can be from different temporal directions or the same temporal direction. The motion estimator (710) outputs as side information motion information (715) such as differential motion vector information.
The motion compensator (730) applies reconstructed motion vectors to the reconstructed (reference) picture(s) (725) when forming a motion-compensated current picture (735). The difference (if any) between a block of the motion-compensated current picture (735) and corresponding block of the original current picture (705) is the prediction residual (745) for the block. During later reconstruction of the current picture, reconstructed prediction residuals are added to the motion compensated current picture (735) to obtain a reconstructed picture that is closer to the original current picture (705). In lossy compression, however, some information is still lost from the original current picture (705). Alternatively, a motion estimator and motion compensator apply another type of motion estimation/compensation.
A frequency transformer (760) converts spatial domain video information into frequency domain (i.e., spectral, transform) data. For block-based video pictures, the frequency transformer (760) applies a DCT, variant of DCT, or other forward block transform to blocks of the samples or prediction residual data, producing blocks of frequency transform coefficients. Alternatively, the frequency transformer (760) applies another conventional frequency transform such as a Fourier transform or uses wavelet or sub-band analysis. The frequency transformer (760) may apply an 8×8, 8×4, 4×8, 4×4 or other size frequency transform.
A quantizer (770) then quantizes the blocks of transform coefficients. The quantizer (770) applies non-uniform, scalar quantization to the spectral data with a step size that varies on a picture-by-picture basis or other basis. The quantizer (770) can also apply another type of quantization to the spectral data coefficients, for example, a uniform or adaptive quantization for at least some of the coefficients, or directly quantizes spatial domain data in an encoder system that does not use frequency transformations. In described embodiments, the quantizer (770) adapts quantization of AC coefficients by changing DZ size depending on texture and/or frequency.
When a reconstructed current picture is needed for subsequent motion estimation/ compensation, an inverse quantizer (776) performs inverse quantization on the quantized spectral data coefficients. An inverse frequency transformer (766) performs an inverse frequency transform, producing blocks of reconstructed prediction residuals (for a predicted picture) or samples (for a key picture). If the current picture (705) was a key picture, the reconstructed key picture is taken as the reconstructed current picture (not shown). If the current picture (705) was a predicted picture, the reconstructed prediction residuals are added to the motion-compensated predictors (735) to form the reconstructed current picture. One or both of the picture stores (720, 722) buffers the reconstructed current picture for use in subsequent motion-compensated prediction.
The entropy coder (780) compresses the output of the quantizer (770) as well as certain side information (e.g., motion information (715), quantization step size). Typical entropy coding techniques include arithmetic coding, differential coding, Huffman coding, run length coding, LZ coding, dictionary coding, and combinations of the above. The entropy coder (780) typically uses different coding techniques for different kinds of information, and can choose from among multiple code tables within a particular coding technique.
The entropy coder (780) provides compressed video information (795) to the multiplexer (“MUX”) (790). The MUX (790) may include a buffer, and a buffer level indicator may be fed back to a controller. Before or after the MUX (790), the compressed video information (795) can be channel coded for transmission over the network.
A controller (not shown) receives inputs from various modules such as the motion estimator (710), frequency transformer (760), quantizer (770), inverse quantizer (776), entropy coder (780), and buffer (790). The controller evaluates intermediate results during encoding, for example, setting quantization step sizes and performing rate-distortion analysis. The controller works with modules such as the motion estimator (710), frequency transformer (760), quantizer (770), and entropy coder (780) to set and change coding parameters during encoding. When an encoder evaluates different coding parameter choices during encoding, the encoder may iteratively perform certain stages (e.g., quantization and inverse quantization) to evaluate different parameter settings. The encoder may set parameters at one stage before proceeding to the next stage. Or, the encoder may jointly evaluate different coding parameters. The tree of coding parameter decisions to be evaluated, and the timing of corresponding encoding, depends on implementation.
The relationships shown between modules within the encoder (700) indicate general flows of information in the encoder; other relationships are not shown for the sake of simplicity. In particular,
Particular embodiments of video encoders typically use a variation or supplemented version of the generalized encoder (700). Depending on implementation and the type of compression desired, modules of the encoder can be added, omitted, split into multiple modules, combined with other modules, and/or replaced with like modules. For example, the controller can be split into multiple controller modules associated with different modules of the encoder. In alternative embodiments, encoders with different modules and/or other configurations of modules perform one or more of the described techniques.
III. Adaptive Adjustment of DZ Size for Quantization.
This section describes techniques and tools for adaptively adjusting the DZ size of a quantizer depending on texture and/or frequency. For example, a video encoder measures texture for a block of samples or residual values, then adjusts the size of the DZ (the center quantization bin where values are quantized to a level of zero) using the measured texture. The encoder can further adjust DZ size to account for differences in perceptual importance of different frequencies of coefficients. This helps the video encoder improve the perceptual quality of the encoded video.
Perceptual sensitivity to quantization artifacts is related to texture level in both the spatial and temporal domain. High texture levels often result in masking effects that can hide quality degradation and quantization artifacts. On the other hand, in regions with lower texture levels (e.g., smooth regions), degradation and quantization artifacts are more visible. Previous encoders have made quantization adjustments for some parts of video pictures (e.g., picture edges). Another approach adjusts quantization step size (e.g., QP) in reaction to changes in texture. Adapting DZ size, by itself or in combination with other adaptive quantization techniques, provides another mechanism to regulate rate-distortion performance.
A. Explanation.
Quantization typically reduces the number of bits required to code information such as transform coefficients, but also introduces distortion. In general, the human visual system is sensitive to distortion in low-detail regions of an image, compared to regions with more texture. A goal of the adaptive DZ resizing techniques and tools described herein is to introduce distortion where it is less perceptible when distortion is introduced during encoding.
1. Example Reconstruction Rules for AC Coefficients.
In some embodiments, the decoder (or encoder during encoder-side reconstruction) uses either of two different quantizer rules when reconstructing AC coefficients for an N×M block. The reconstruction rules are also called inverse quantization modes. The decoder or encoder uses a “uniform” quantizer reconstruction rule or a “non-uniform” quantizer reconstruction rule.
In some implementations, the inverse quantization mode is specified for a picture. All blocks in the picture use the same inverse quantization mode. The value of the parameter QP controls the amount of quantization that is applied to the coefficients, and QP can vary within a picture for some encoding settings. The value of QP can take any integer value between 1 and 31 inclusive. The value is multiplied by a factor of 2 before being used in inverse quantization. (The quantization factor can also be modified by a “halfQP” step, but for the sake of simplicity this halfQP step quantization is not addressed in the following discussion.)
According to the “uniform” quantizer reconstruction rule, the decoder or encoder reconstructs AC coefficients as follows:
C=2×QP×L (2),
where C is the reconstructed, inverse quantized AC coefficient, and L is the quantized level for the coefficient. Reconstruction points appear as circles at the locations shown in
According to the “non-uniform” quantizer reconstruction rule, the decoder or encoder reconstructs non-zero AC coefficients as follows:
C=(2×L+1)×QP (3).
Zero value levels are reconstructed as zero-value AC coefficients. The quantization bin that includes the zero-value reconstruction point (the DZ) is wider than the others. Reconstruction points (and notional quantization bin boundaries) appear at the locations shown in
Alternatively, the decoder/encoder uses more or fewer rules and/or different rules during reconstruction. Moreover, the parameterization and signaling used for quantization parameters can vary from implementation to implementation.
2. Simple Corresponding Quantization Rules.
The quantization rules used to convert the AC coefficients to quantized levels L are not specified or implied by the reconstruction rules (2) and (3). Rather, quantization rules, including placement of the quantization bin boundaries, are defined by the encoder.
Suppose the distribution of AC coefficient values was uniform. For the “uniform” quantizer reconstruction rule, the corresponding quantization rule that would produce minimum distortion would be:
L=sign(C)×((abs(C)+QP)//(2×QP)) (4),
where sign(C)=−1 for C<0, and sign(C)=1 for C>=0. The // operation indicates integer division with rounding towards zero, and abs(C) indicates the absolute value of C. For this quantization rule, the notional quantization bin boundaries shown in
For the “non-uniform” quantizer reconstruction rule, the corresponding quantization rule that would produce minimum distortion would be:
L=sign(C)×(abs(C)//(2×QP)) (5).
For this quantization rule, the notional quantization bin boundaries shown in
For many typical encoding scenarios, however, the quantization rules shown in (4) and (5) do not provide optimal rate-distortion performance. The distribution of values within quantization bins is typically not normal. Moreover, the quantization rules do not account for differences in the perceptibility of distortion in different situations.
Quantization of AC coefficients introduces distortion, which can be measured in objective terms as the difference between original sample values and reconstructed sample values. Such measures do not account for human perception, however. One aspect of the human visual system is that the same amount of distortion may be perceived differently depending on factors such as visual texture. For example, if distortion in a smooth region introduces relatively perceptible artifacts, that same amount of may be is much less noticeable in a highly textured region. For this reason, encoders may adaptively quantize a picture based on the local texture so that relatively fewer bits are expended (and hence more distortion is introduced) in high texture regions and relatively more bits are expended (hence less distortion is introduced) in low texture regions.
In some codec systems, the encoder varies a quantization step size parameter (such as QP) depending on texture. This allows the encoder to increase QP when doing so will not dramatically increase perceptibility of the distortion and decrease QP in other situations. While this improves rate-distortion performance in many circumstances, finer grained control over quantization performance is desired.
B. Texture-Adaptive Adjustment of DZ Size.
In some embodiments, an encoder uses texture-adaptive adjustment of DZ size. The texture-adaptive adjustment can be used with frequency-adaptive adjustment of DZ size (see section C) or by itself.
1. Generalized Technique for Texture-adaptive DZ Resizing.
With reference to
The encoder sets (920) a DZ size adjustment factor depending on the texture and adjusts (930) the DZ size using the texture-dependent adjustment factor. For example, the encoder uses a texture measurement to determine a DZ size offset using an approach explained in the next section, then adds the offset to an initial DZ size. The initial DZ size can be a pre-defined size proportion implemented as part of a given quantization rule. Alternatively, the encoder sets the DZ size adjustment factor in some other way and/or uses a DZ scale factor rather than an offset.
The encoder performs (940) quantization using the quantizer with the adjusted DZ size and checks (950) whether to continue with the next unit of content. If so, the encoder continues by getting (910) a texture measurement for the next unit to be quantized.
2. Example Texture-adaptive Adjustments to DZ Size.
In some implementations, an encoder performs texture-adaptive adjustment of DZ size as follows. The encoder computes a DZ size offset d for a block that depends on a texture measurement for the block. The encoder then adjusts DZ size and performs quantization of the AC coefficients for the block. The exact quantization rules depend on the type of content (intra or inter) as well as the quantizer reconstruction rule that the decoder will use (uniform or non-uniform).
For an inter-coded block (e.g., for a prediction residual) and uniform quantizer reconstruction rule, the encoder applies the following quantization rule:
L=sign(C)×((abs(2×C)+QP−d)//(4×QP)) (6).
For an inter-coded block and non-uniform quantizer reconstruction rule, the encoder applies the following quantization rule:
L=sign(C)×((abs(2×C)−QP−d)//(4×QP)) (7).
The initial or default DZ size is built into the quantization rules (6) and (7). For example, for rule (6), the “+QP//(4×QP)” term reflects the initial DZ size. For rule (7), the “−QP//(4×QP)” term reflects the initial DZ size.
In general, increasing DZ size makes more input values get quantized to the zero level. Another effect is that more input values are quantized towards a lower reconstruction point (as opposed to being quantized towards the closest reconstruction point). While distortion increases as these effects increase, the distortion is expected to be masked in the increased texture detail.
The adjustment factor d in equations (6) and (7) is a function of the block texture t as follows:
So, for an inter-coded block, d is zero until t exceeds 1024. At that point, d increases, approaching 2QP, as t increases.
For an intra-coded block and uniform quantizer reconstruction rule, the encoder applies the following quantization rule and function mapping t to d:
L=sign(C)×((abs(C)+QP−d)//(2×QP)) (9),
where:
So, for an intra-coded block and uniform quantizer reconstruction rule, d increases until t is 1024. From that point until t is 4096, d stays the same. Then d increases, approaching QP, as t increases.
For an intra-coded block and non-uniform quantizer reconstruction rule, the encoder applies the following quantization rule and function mapping t to d:
L=sign(C)×((abs(C)−d)//(2×QP)) (11),
where:
So, for an intra-coded block and non-uniform quantizer reconstruction rule, d is zero until t is 4096 Then d increases, approaching QP, as t increases.
The quantization rules for intra-coded content provide less aggressive expansion of DZ size, compared to the rules for inter-coded content. In many encoding scenarios, allocating relatively more bits to intra-coded pictures can also improve the quality of inter-coded content that uses motion-compensated prediction from the intra-coded pictures. Another reason to more aggressively quantize inter-coded content is that distortion introduced in inter-coded content is less apt to be perpetuated to other content.
Alternatively, an encoder uses other and/or additional quantization rules. For example, the encoder uses a quantization rule that more aggressively increases DZ size as texture increases. Or, the encoder uses a quantization rule that less aggressively increases DZ size as texture increases. Moreover, although the encoder can use different rules for inter-coded content and intra-coded content, alternatively the encoder uses the same rule(s) for inter-coded content and intra-coded content.
The preceding functions mapping t to d are configured for an 8×8 block. For a different size block, the thresholds between different formulas for determining d vary accordingly. Alternatively, an encoder uses different functions or an entirely different texture metric.
3. Example Texture Metrics.
The texture of a block or other unit of image or video information generally corresponds to amount of detail in the block/unit. It can also relate to the amount of energy in different frequency coefficients for the block/unit. A relatively smooth block has little or no texture, and most of the energy for the block is in the lower frequency coefficients. A block with complex, intricate detail has high texture, and the higher frequency AC coefficients may represent much of the energy for the block.
For texture-adaptive adjustment of DZ size, an encoder measures texture for a block or other unit of image or video information according to a perceptual model. The encoder can compute the measure by processing each of the values for the block or other unit, or the encoder can sub-sample the available values to compute the measure, or the encoder can estimate the texture measure even more heuristically. The encoder can generate a texture map for a current picture, indicating the texture levels of the different parts of the picture. For example, the texture map can be used to store texture measurements or to otherwise identify smooth regions and textured regions in the picture. Alternatively, an encoder uses texture information without first creating a texture map.
In some implementations, the texture measure for an N×M block of samples or residual values is computed as follows:
where xi,j is the value of the sample at position i,j in the block, and
In other implementations, texture is measured using an intensity variance metric. For example, the encoder computes intensity variance within a block of samples as the sum of differences between a sample and its adjacent samples (e.g., above, left, right, below or diagonal) for each of some or all of the samples in the block. The intensity value of a given sample in the block is compared to the samples for four locations near it, and the encoder computes an average sum of the difference between the given sample and the samples for its surrounding locations. As an indicator of intensity variance, these intensity difference measures can be used directly as a texture metric in DZ resizing, or the encoder can compute the average intensity difference for use as a texture metric in DZ resizing. Alternatively, the encoder evaluates a histogram of the intensity difference measures and identifies the prevalent texture for the block, or computes the mean intensity difference or median intensity difference as indicative of the texture level for the block.
The texture measurement t for a block can be computed using all of the sample values in the block or a sub-sampling of the values in the block. In other implementations, texture is measured using other texture metrics and/or for different units of information. In general, the texture metric addresses texture (a) within a unit such as a block; (b) in other areas of a picture or part of a picture to exploit spatial masking effects; and/or (c) from picture-to-picture to exploit temporal masking effects.
C. Frequency-adaptive Adjustment of DZ Size.
Instead of using the same DZ size for all AC coefficients of a block or other unit of content, an encoder can change DZ size depending on frequency. For example, the encoder uses a wider DZ for higher frequency coefficients, since those higher frequency coefficients usually represent activity in the sample domain in which encoding artifacts are less noticeable. This observation is especially valid for intra-coded content.
Therefore, in some embodiments, an encoder uses frequency-adaptive adjustment of DZ size. The frequency-adaptive adjustment can be used with texture-adaptive adjustment of DZ size (see section B) or by itself.
1. Generalized Technique for Frequency-adaptive DZ Resizing.
With reference to
The encoder performs (1340) quantization for one or more coefficients using the quantizer with the adjusted DZ size and checks (1350) whether to continue with the next coefficient(s) having a different frequency-dependent adjustment factor. If so, the encoder continues by setting (1310) the frequency-dependent adjustment factor for the next coefficient(s).
2. Example Frequency-adaptive Adjustments to DZ Size.
In some implementations, an encoder performs frequency-adaptive adjustment of DZ size as follows. The encoder looks up a frequency-dependent weight for a coefficient in an array of weights Am×n such as shown in
For example, the encoder adjusts DZ size for the coefficient at position m, n as follows:
DZm,n=DZdefault+Am×n(m,n)×ΔDZ (15),
where DZdefault indicates the default DZ size and ΔDZ indicates a delta DZ size offset. If the frequency-dependent adaptation of DZ size is used together with texture-dependent adaptation of DZ size, ΔDZ reflects a texture-dependent offset. In practice, the DZ size adjustment can be implemented as part of the quantization rule itself, as in the previous section. Alternatively, the encoder implements frequency-adaptive adjustment of DZ size using a different rule for computing the adjustment and/or performing quantization.
The numbers, sizes and weights of scaling matrices depend on implementation.
Different scaling matrices can also be used to apply different strengths of frequency-dependent DZ resizing.
Having described and illustrated the principles of our invention with reference to various embodiments, it will be recognized that the various embodiments can be modified in arrangement and detail without departing from such principles. It should be understood that the programs, processes, or methods described herein are not related or limited to any particular type of computing environment, unless indicated otherwise. Various types of general purpose or specialized computing environments may be used with or perform operations in accordance with the teachings described herein. Elements of embodiments shown in software may be implemented in hardware and vice versa.
In view of the many possible embodiments to which the principles of our invention may be applied, we claim as our invention all such embodiments as may come within the scope and spirit of the following claims and equivalents thereto.
Number | Name | Date | Kind |
---|---|---|---|
762026 | Connstein | Jun 1904 | A |
4583114 | Catros | Apr 1986 | A |
4679079 | Catros et al. | Jul 1987 | A |
4774574 | Daly et al. | Sep 1988 | A |
4821119 | Gharavi | Apr 1989 | A |
4862264 | Wells et al. | Aug 1989 | A |
4965830 | Barham et al. | Oct 1990 | A |
4992889 | Yamagami et al. | Feb 1991 | A |
5072295 | Murakami et al. | Dec 1991 | A |
5128758 | Azadegan et al. | Jul 1992 | A |
5136377 | Johnston et al. | Aug 1992 | A |
5144426 | Tanaka et al. | Sep 1992 | A |
5146324 | Miller et al. | Sep 1992 | A |
5179442 | Azadegan et al. | Jan 1993 | A |
5237410 | Inoue | Aug 1993 | A |
5241395 | Chen | Aug 1993 | A |
5253058 | Gharavi | Oct 1993 | A |
5263088 | Hazu et al. | Nov 1993 | A |
5301242 | Gonzales et al. | Apr 1994 | A |
5303058 | Fukuda et al. | Apr 1994 | A |
5317396 | Fujinami | May 1994 | A |
5317672 | Crossman et al. | May 1994 | A |
5333212 | Ligtenberg | Jul 1994 | A |
5351310 | Califano et al. | Sep 1994 | A |
5374958 | Yanagihara | Dec 1994 | A |
5412429 | Glover | May 1995 | A |
5452104 | Lee | Sep 1995 | A |
5461421 | Moon | Oct 1995 | A |
5473377 | Kim | Dec 1995 | A |
5481553 | Suzuki et al. | Jan 1996 | A |
5506916 | Nishihara et al. | Apr 1996 | A |
5510785 | Segawa et al. | Apr 1996 | A |
5537440 | Eyuboglu et al. | Jul 1996 | A |
5537493 | Wilkinson | Jul 1996 | A |
5539469 | Jung | Jul 1996 | A |
5559557 | Kato | Sep 1996 | A |
5565920 | Lee et al. | Oct 1996 | A |
5587708 | Chiu | Dec 1996 | A |
5590139 | Suzuki et al. | Dec 1996 | A |
5606371 | Gunnewick et al. | Feb 1997 | A |
5623424 | Azadegan et al. | Apr 1997 | A |
5629779 | Jeon | May 1997 | A |
5631644 | Katata et al. | May 1997 | A |
5654760 | Ohtsuki | Aug 1997 | A |
5657087 | Jeong et al. | Aug 1997 | A |
5663763 | Yagasaki et al. | Sep 1997 | A |
5724097 | Hibi et al. | Mar 1998 | A |
5724456 | Boyack et al. | Mar 1998 | A |
5731836 | Lee | Mar 1998 | A |
5731837 | Hurst, Jr. | Mar 1998 | A |
5739861 | Music | Apr 1998 | A |
5751358 | Suzuki et al. | May 1998 | A |
5751379 | Markandey et al. | May 1998 | A |
5761088 | Hulyalkar et al. | Jun 1998 | A |
5764803 | Jacquin et al. | Jun 1998 | A |
5781788 | Woo et al. | Jul 1998 | A |
5786856 | Hall et al. | Jul 1998 | A |
5802213 | Gardos | Sep 1998 | A |
5809178 | Anderson et al. | Sep 1998 | A |
5815097 | Schwartz et al. | Sep 1998 | A |
5819035 | Devaney et al. | Oct 1998 | A |
5825310 | Tsutsui | Oct 1998 | A |
5835145 | Ouyang et al. | Nov 1998 | A |
5835237 | Ebrahimi | Nov 1998 | A |
5844613 | Chaddha | Dec 1998 | A |
5850482 | Meany et al. | Dec 1998 | A |
5867167 | Deering | Feb 1999 | A |
5870435 | Choi et al. | Feb 1999 | A |
5877813 | Lee et al. | Mar 1999 | A |
5878166 | Legall | Mar 1999 | A |
5880775 | Ross | Mar 1999 | A |
5883672 | Suzuki et al. | Mar 1999 | A |
5926791 | Ogata et al. | Jul 1999 | A |
5969764 | Sun et al. | Oct 1999 | A |
5970173 | Lee et al. | Oct 1999 | A |
5990957 | Ryoo | Nov 1999 | A |
6044115 | Horiike et al. | Mar 2000 | A |
6049630 | Wang et al. | Apr 2000 | A |
6058362 | Malvar | May 2000 | A |
6072831 | Chen | Jun 2000 | A |
6084636 | Fujiwara | Jul 2000 | A |
6088392 | Rosenberg | Jul 2000 | A |
6091777 | Guetz et al. | Jul 2000 | A |
6104751 | Artieri | Aug 2000 | A |
6118817 | Wang | Sep 2000 | A |
6118903 | Liu | Sep 2000 | A |
6125140 | Wilkinson | Sep 2000 | A |
6148107 | Ducloux et al. | Nov 2000 | A |
6148109 | Boon et al. | Nov 2000 | A |
6160846 | Chiang et al. | Dec 2000 | A |
6167091 | Okada et al. | Dec 2000 | A |
6182034 | Malvar | Jan 2001 | B1 |
6212232 | Reed et al. | Apr 2001 | B1 |
6215905 | Lee et al. | Apr 2001 | B1 |
6223162 | Chen et al. | Apr 2001 | B1 |
6240135 | Kim | May 2001 | B1 |
6240380 | Malvar | May 2001 | B1 |
6243497 | Chiang et al. | Jun 2001 | B1 |
6249614 | Bocharova et al. | Jun 2001 | B1 |
6256422 | Mitchell et al. | Jul 2001 | B1 |
6256423 | Krishnamurthy | Jul 2001 | B1 |
6263022 | Chen et al. | Jul 2001 | B1 |
6263024 | Matsumoto | Jul 2001 | B1 |
6275614 | Krishnamurthy et al. | Aug 2001 | B1 |
6278735 | Mohsenian | Aug 2001 | B1 |
6292588 | Shen et al. | Sep 2001 | B1 |
6314208 | Konstantinides et al. | Nov 2001 | B1 |
6337881 | Chaddha | Jan 2002 | B1 |
6347116 | Haskell et al. | Feb 2002 | B1 |
6348945 | Hayakawa | Feb 2002 | B1 |
6356709 | Abe et al. | Mar 2002 | B1 |
6359928 | Wang et al. | Mar 2002 | B1 |
6360017 | Chiu et al. | Mar 2002 | B1 |
6370502 | Wu et al. | Apr 2002 | B1 |
6373894 | Florencio et al. | Apr 2002 | B1 |
6385343 | Kuroda et al. | May 2002 | B1 |
6389171 | Washington | May 2002 | B1 |
6393155 | Bright et al. | May 2002 | B1 |
6408026 | Tao | Jun 2002 | B1 |
6418166 | Wu et al. | Jul 2002 | B1 |
6438167 | Shimizu et al. | Aug 2002 | B1 |
6456744 | Lafe | Sep 2002 | B1 |
6463100 | Cho et al. | Oct 2002 | B1 |
6466620 | Lee | Oct 2002 | B1 |
6473534 | Merhav et al. | Oct 2002 | B1 |
6490319 | Yang | Dec 2002 | B1 |
6493385 | Sekiguchi et al. | Dec 2002 | B1 |
6519284 | Pesquet-Popescu et al. | Feb 2003 | B1 |
6526096 | Lainema et al. | Feb 2003 | B2 |
6546049 | Lee | Apr 2003 | B1 |
6571019 | Kim et al. | May 2003 | B1 |
6593925 | Hakura et al. | Jul 2003 | B1 |
6600836 | Thyagarajan et al. | Jul 2003 | B1 |
6647152 | Willis et al. | Nov 2003 | B2 |
6654417 | Hui | Nov 2003 | B1 |
6678422 | Sharma et al. | Jan 2004 | B1 |
6687294 | Yan et al. | Feb 2004 | B2 |
6693645 | Bourges-Sevenier | Feb 2004 | B2 |
6704718 | Burges et al. | Mar 2004 | B2 |
6721359 | Bist et al. | Apr 2004 | B1 |
6728317 | Demos | Apr 2004 | B1 |
6731811 | Rose | May 2004 | B1 |
6738423 | Lainema et al. | May 2004 | B1 |
6747660 | Olano et al. | Jun 2004 | B1 |
6759999 | Doyen | Jul 2004 | B1 |
6760482 | Taubman | Jul 2004 | B1 |
6765962 | Lee et al. | Jul 2004 | B1 |
6771830 | Goldstein et al. | Aug 2004 | B2 |
6785331 | Jozawa et al. | Aug 2004 | B1 |
6788740 | van der Schaar et al. | Sep 2004 | B1 |
6792157 | Koshi et al. | Sep 2004 | B1 |
6795584 | Karczewicz et al. | Sep 2004 | B2 |
6801572 | Yamada et al. | Oct 2004 | B2 |
6807317 | Mathew et al. | Oct 2004 | B2 |
6810083 | Chen et al. | Oct 2004 | B2 |
6831947 | Ribas Corbera | Dec 2004 | B2 |
6862320 | Isu et al. | Mar 2005 | B1 |
6865291 | Zador | Mar 2005 | B1 |
6873654 | Rackett | Mar 2005 | B1 |
6876703 | Ismaeil et al. | Apr 2005 | B2 |
6882753 | Chen et al. | Apr 2005 | B2 |
6907142 | Kalevo et al. | Jun 2005 | B2 |
6909745 | Puri et al. | Jun 2005 | B1 |
6947045 | Ostermann et al. | Sep 2005 | B1 |
6975680 | Demos | Dec 2005 | B2 |
6977659 | Dumitras et al. | Dec 2005 | B2 |
6983018 | Lin et al. | Jan 2006 | B1 |
6990242 | Malvar | Jan 2006 | B2 |
7016546 | Fukuhara et al. | Mar 2006 | B2 |
7020204 | Auvray et al. | Mar 2006 | B2 |
7027506 | Lee et al. | Apr 2006 | B2 |
7027507 | Wu | Apr 2006 | B2 |
7035473 | Zeng et al. | Apr 2006 | B1 |
7042941 | Laksono et al. | May 2006 | B1 |
7058127 | Lu et al. | Jun 2006 | B2 |
7099389 | Yu et al. | Aug 2006 | B1 |
7099515 | Lin et al. | Aug 2006 | B2 |
7110455 | Wu et al. | Sep 2006 | B2 |
7162096 | Horowitz | Jan 2007 | B1 |
7200277 | Joshi et al. | Apr 2007 | B2 |
7280700 | Tourapis et al. | Oct 2007 | B2 |
7289154 | Gindele | Oct 2007 | B2 |
7295609 | Sato et al. | Nov 2007 | B2 |
7301999 | Filippini et al. | Nov 2007 | B2 |
7307639 | Dumitras et al. | Dec 2007 | B1 |
7356085 | Gavrilescu et al. | Apr 2008 | B2 |
7463780 | Fukuhara et al. | Dec 2008 | B2 |
7471830 | Lim et al. | Dec 2008 | B2 |
7580584 | Holcomb et al. | Aug 2009 | B2 |
7738554 | Lin et al. | Jun 2010 | B2 |
7778476 | Alvarez et al. | Aug 2010 | B2 |
7801383 | Sullivan | Sep 2010 | B2 |
7869517 | Ghanbari | Jan 2011 | B2 |
7889790 | Sun | Feb 2011 | B2 |
7995649 | Zuo et al. | Aug 2011 | B2 |
20010048718 | Bruls et al. | Dec 2001 | A1 |
20020021756 | Jayant et al. | Feb 2002 | A1 |
20020024999 | Yamaguchi et al. | Feb 2002 | A1 |
20020044602 | Ohki | Apr 2002 | A1 |
20020118748 | Inomata et al. | Aug 2002 | A1 |
20020118884 | Cho et al. | Aug 2002 | A1 |
20020136297 | Shimada et al. | Sep 2002 | A1 |
20020136308 | Le Maguet et al. | Sep 2002 | A1 |
20020154693 | Demos et al. | Oct 2002 | A1 |
20020186890 | Lee et al. | Dec 2002 | A1 |
20030021482 | Lan et al. | Jan 2003 | A1 |
20030053702 | Hu | Mar 2003 | A1 |
20030095599 | Lee et al. | May 2003 | A1 |
20030103677 | Tastl et al. | Jun 2003 | A1 |
20030108100 | Sekiguchi et al. | Jun 2003 | A1 |
20030113026 | Srinivasan et al. | Jun 2003 | A1 |
20030128754 | Akimoto et al. | Jul 2003 | A1 |
20030128756 | Oktem | Jul 2003 | A1 |
20030138150 | Srinivasan | Jul 2003 | A1 |
20030185420 | Sefcik et al. | Oct 2003 | A1 |
20030194010 | Srinivasan et al. | Oct 2003 | A1 |
20030206582 | Srinivasan et al. | Nov 2003 | A1 |
20030215011 | Wang et al. | Nov 2003 | A1 |
20030219073 | Lee et al. | Nov 2003 | A1 |
20030223493 | Ye et al. | Dec 2003 | A1 |
20030235247 | Wu et al. | Dec 2003 | A1 |
20040008901 | Avinash | Jan 2004 | A1 |
20040022316 | Ueda et al. | Feb 2004 | A1 |
20040036692 | Alcorn et al. | Feb 2004 | A1 |
20040090397 | Doyen et al. | May 2004 | A1 |
20040091168 | Jones et al. | May 2004 | A1 |
20040151243 | Bhaskaran et al. | Aug 2004 | A1 |
20040158719 | Lee et al. | Aug 2004 | A1 |
20040190610 | Song et al. | Sep 2004 | A1 |
20040202376 | Schwartz et al. | Oct 2004 | A1 |
20040228406 | Song | Nov 2004 | A1 |
20040264568 | Florencio | Dec 2004 | A1 |
20040264580 | Chiang Wei Yin et al. | Dec 2004 | A1 |
20050002575 | Joshi et al. | Jan 2005 | A1 |
20050008075 | Chang | Jan 2005 | A1 |
20050013365 | Mukerjee et al. | Jan 2005 | A1 |
20050013497 | Hsu et al. | Jan 2005 | A1 |
20050013498 | Srinivasan et al. | Jan 2005 | A1 |
20050013500 | Lee et al. | Jan 2005 | A1 |
20050015246 | Thumpudi et al. | Jan 2005 | A1 |
20050015259 | Thumpudi et al. | Jan 2005 | A1 |
20050024487 | Chen | Feb 2005 | A1 |
20050031034 | Kamaci et al. | Feb 2005 | A1 |
20050036698 | Beom | Feb 2005 | A1 |
20050036699 | Holcomb et al. | Feb 2005 | A1 |
20050041738 | Lin et al. | Feb 2005 | A1 |
20050052294 | Liang et al. | Mar 2005 | A1 |
20050053151 | Lin et al. | Mar 2005 | A1 |
20050053158 | Regunathan et al. | Mar 2005 | A1 |
20050084009 | Furukawa et al. | Apr 2005 | A1 |
20050084013 | Wang et al. | Apr 2005 | A1 |
20050094731 | Xu et al. | May 2005 | A1 |
20050105612 | Sung et al. | May 2005 | A1 |
20050105622 | Gokhale | May 2005 | A1 |
20050123274 | Crinon et al. | Jun 2005 | A1 |
20050135484 | Lee et al. | Jun 2005 | A1 |
20050147163 | Li et al. | Jul 2005 | A1 |
20050152451 | Byun | Jul 2005 | A1 |
20050180500 | Chiang et al. | Aug 2005 | A1 |
20050180502 | Puri | Aug 2005 | A1 |
20050190836 | Lu et al. | Sep 2005 | A1 |
20050207492 | Pao | Sep 2005 | A1 |
20050232501 | Mukerjee | Oct 2005 | A1 |
20050238096 | Holcomb et al. | Oct 2005 | A1 |
20050254719 | Sullivan | Nov 2005 | A1 |
20050259729 | Sun | Nov 2005 | A1 |
20050276493 | Xin et al. | Dec 2005 | A1 |
20060013307 | Olivier et al. | Jan 2006 | A1 |
20060013309 | Ha et al. | Jan 2006 | A1 |
20060018552 | Malayath et al. | Jan 2006 | A1 |
20060034368 | Klivington | Feb 2006 | A1 |
20060038826 | Daly | Feb 2006 | A1 |
20060056508 | Lafon et al. | Mar 2006 | A1 |
20060071825 | Demos | Apr 2006 | A1 |
20060083308 | Schwarz et al. | Apr 2006 | A1 |
20060088098 | Vehvilainen | Apr 2006 | A1 |
20060098733 | Matsumura et al. | May 2006 | A1 |
20060104350 | Liu | May 2006 | A1 |
20060104527 | Koto et al. | May 2006 | A1 |
20060126724 | Cote et al. | Jun 2006 | A1 |
20060126728 | Yu et al. | Jun 2006 | A1 |
20060133478 | Wen | Jun 2006 | A1 |
20060133479 | Chen et al. | Jun 2006 | A1 |
20060140267 | He et al. | Jun 2006 | A1 |
20060165176 | Raveendran et al. | Jul 2006 | A1 |
20060188014 | Civanlar et al. | Aug 2006 | A1 |
20060197777 | Cha et al. | Sep 2006 | A1 |
20060227868 | Chen et al. | Oct 2006 | A1 |
20060238444 | Wang et al. | Oct 2006 | A1 |
20060239576 | Mukherjee | Oct 2006 | A1 |
20060245506 | Lin et al. | Nov 2006 | A1 |
20060256851 | Wang et al. | Nov 2006 | A1 |
20060256867 | Turaga et al. | Nov 2006 | A1 |
20060257037 | Samadani | Nov 2006 | A1 |
20060268990 | Lin et al. | Nov 2006 | A1 |
20060268991 | Segall et al. | Nov 2006 | A1 |
20070002946 | Bouton et al. | Jan 2007 | A1 |
20070009039 | Ryu | Jan 2007 | A1 |
20070009042 | Craig et al. | Jan 2007 | A1 |
20070053603 | Monro | Mar 2007 | A1 |
20070081586 | Raveendran et al. | Apr 2007 | A1 |
20070081588 | Raveendran et al. | Apr 2007 | A1 |
20070140333 | Chono et al. | Jun 2007 | A1 |
20070147497 | Bao et al. | Jun 2007 | A1 |
20070160138 | Wedi et al. | Jul 2007 | A1 |
20070160151 | Bolton et al. | Jul 2007 | A1 |
20070189626 | Tanizawa et al. | Aug 2007 | A1 |
20070201553 | Shindo | Aug 2007 | A1 |
20070230565 | Tourapis et al. | Oct 2007 | A1 |
20070237221 | Hsu et al. | Oct 2007 | A1 |
20070237222 | Xia et al. | Oct 2007 | A1 |
20070237236 | Chang et al. | Oct 2007 | A1 |
20070237237 | Chang et al. | Oct 2007 | A1 |
20070248163 | Zuo et al. | Oct 2007 | A1 |
20070248164 | Zuo et al. | Oct 2007 | A1 |
20070258518 | Tu et al. | Nov 2007 | A1 |
20070258519 | Srinivasan | Nov 2007 | A1 |
20080008394 | Segall | Jan 2008 | A1 |
20080031346 | Segall | Feb 2008 | A1 |
20080068446 | Barkley et al. | Mar 2008 | A1 |
20080080615 | Tourapis et al. | Apr 2008 | A1 |
20080089410 | Lu et al. | Apr 2008 | A1 |
20080101465 | Chono et al. | May 2008 | A1 |
20080144951 | Zhang | Jun 2008 | A1 |
20080187042 | Jasinschi | Aug 2008 | A1 |
20080192822 | Chang et al. | Aug 2008 | A1 |
20080240235 | Holcomb et al. | Oct 2008 | A1 |
20080240250 | Lin et al. | Oct 2008 | A1 |
20080240257 | Chang et al. | Oct 2008 | A1 |
20080260278 | Zuo et al. | Oct 2008 | A1 |
20080304562 | Chang et al. | Dec 2008 | A1 |
20090207919 | Yin et al. | Aug 2009 | A1 |
20090213930 | Ye et al. | Aug 2009 | A1 |
20090245587 | Holcomb et al. | Oct 2009 | A1 |
20090290635 | Kim et al. | Nov 2009 | A1 |
20090296808 | Regunathan et al. | Dec 2009 | A1 |
20100177826 | Bhaumik et al. | Jul 2010 | A1 |
Number | Date | Country |
---|---|---|
1327074 | Feb 1994 | CA |
0932306 | Jul 1999 | EP |
1465349 | Oct 2004 | EP |
1871113 | Dec 2007 | EP |
897363 | May 1962 | GB |
05-227525 | Sep 1993 | JP |
07-222145 | Aug 1995 | JP |
07-250327 | Sep 1995 | JP |
08-336139 | Dec 1996 | JP |
10-336656 | Dec 1998 | JP |
11-041610 | Feb 1999 | JP |
2001-358948 | Dec 2001 | JP |
2002-058029 | Feb 2002 | JP |
2003061090 | Feb 2003 | JP |
2003-230142 | Aug 2003 | JP |
2004-023288 | Jan 2004 | JP |
2004-247889 | Sep 2004 | JP |
6-296275 | Oct 2004 | JP |
2005-260467 | Sep 2005 | JP |
2007-281949 | Oct 2007 | JP |
132895 | Oct 1998 | KR |
2119269 | Sep 1998 | RU |
2119727 | Sep 1998 | RU |
2127962 | Mar 1999 | RU |
WO 9309636 | May 1993 | WO |
WO 9721302 | Jun 1997 | WO |
WO 9925121 | May 1999 | WO |
WO 9948300 | Sep 1999 | WO |
WO 0021207 | Apr 2000 | WO |
WO 0072599 | Nov 2000 | WO |
WO 0207438 | Jan 2002 | WO |
WO 02080575 | Oct 2002 | WO |
WO 2004100554 | Nov 2004 | WO |
WO 2004100556 | Nov 2004 | WO |
WO 2005065030 | Jul 2005 | WO |
WO 2005076614 | Aug 2005 | WO |
WO 2006075895 | Jul 2006 | WO |
WO 2006112620 | Oct 2006 | WO |
WO 2007015047 | Feb 2007 | WO |
WO 2007130580 | Nov 2007 | WO |
Entry |
---|
Atzori et al., “Adaptive Anisotropic Filtering (AAF) for Real-Time Visual Enhancement of MPEG-Coded Video Sequences,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 12, No. 5, pp. 285-298 (May 2002). |
Augustine et al., “Region of Interest Editing of MPEG-2 Video Streams in the Compressed Domain,” 2004 IEEE Int'l Conf. on Multimedia and Expo: ICME '04, vol. 1, Issue 27-30, pp. 559-562 (Jun. 2004). |
Bist et al., “Adaptive Quantization for Low Bit Rate Video Coding,” Proc. 1998 Int'l Conf. on Image Processing (ICIP 98), pp. 925-928 (Oct. 1998). |
Chang et al., “Adaptive Wavelet Thresholding for Image Denoising and Compression,” IEEE Trans on Image Processing, vol. 9, No. 9, pp. 1532-1546 (Sep. 2000). |
Chrysafis et al., “Context-based Adaptive Image Coding,” Proc. of the 30th Asilomar Conf. on Signals, Systems, and Computers, 5 pp. (Nov. 1996). |
De Simone, et al., “A comparative study of JPEG 2000, AVC/H.264, and HD Photo,” SPIE Optics and Photonics, Applications of Digital Image Processing XXX, 12 pp. (Aug. 2007). |
Farvardin et al., “Optimum quantizer performance for a class of non-Gaussian memoryless sources,” IEEE Trans. Inform. Theory, vol. IT-30, No. 3, pp. 485-497 (May 1984). |
Flierl et al., “A Video Codec Incorporating Block-Based Multi-Hypothesis Motion-Compensated Prediction,” in Proceedings of the SPIE Conference on Visual Communications and Image Processing, Perth, Australia, vol. 4067, pp. 238-249 (Jun. 2000). |
Flierl et al., “Generalized B Pictures and the Draft H.264/AVC Video Compression Standard,” in IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, No. 7, pp. 587-597 (Jul. 2003). |
Foos et al., “JPEG 2000 compression of medical imagery,” Proc. SPIE, vol. 3980, pp. 85-96 (Feb. 2000). |
Garrigues et al., “Atom position coding in a matching pursuit based video coder,” Lecture Notes in Computer Science, 4 pp. (Sep. 2005). |
Gavrilescu et al., “Embedded Multiple Description Scalar Quantizers,” IEE Electronics Letters, vol. 39, No. 13, 12 pp. (Jun. 2003). |
Gish et al., “Asymptotically efficient quantizing,” IEEE Trans. Inform. Theory, vol. IT-14, No. 5 (Sep. 1968). |
Golner et al., “Region Based Variable Quantization for JPEG Image Compression,” IEEE Symp. on Circuits and Systems, pp. 604-607 (Aug. 2000). |
Golston et al., “Video codecs tutorial: Trade-offs with H.264, VC-1 and other advanced codecs,” Video/Imaging Design Line, 9 pp. (Mar. 2006). |
“H.264 & IPTV Over DSL—Enabling New Telco Revenue Opportunities,” White Paper, 12 pp. (May 15, 2004). |
Hannuksela et al., “Sub-picture: ROI coding and unequal error protection,” Proc. 2002 Int'l Conf. on Image Processing, vol. 3, Issue 24-28, pp. 537-540 (Jun. 2002). |
“ISO/IEC 11172-2 Coding of moving pictures and associated audio for digital storage media at up to about 1.5 Mbit/s,” MPEG (Moving Pictures Expert Group), International Organization for Standardization, MPEG1 Video, 122 pp. (Aug. 1993). |
“ISO/IEC 13818-2. Generic coding of moving pictures and associated audio information,” MPEG (Moving Pictures Expert Group), International Organization for Standardization, MPEG2 Video, 23 pp. (Dec. 2000). |
ISO/IEC, “14496-2: Information Technology—Coding of Audio-Visual Objects—Part 2: Visual,” 724 pp. (Jun. 2004). |
ITU-T, “ITU-T Recommendation H.261: Video Codec for Audiovisual Services at p x 64 kbits,” 28 pp. (Mar. 1993). |
ITU-T, “ITU-T Recommendation H.262: Information Technology—Generic Coding of Moving Pictures and Associated Audio Information: Video,” 218 pp. (Jul. 1995). |
ITU-T, “ITU-T Recommendation H.263: Video Coding for Low Bit Rate Communication,” 167 pp. (Feb. 1998). |
Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG, “Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification (ITU-T Rec. H.264 ISO/IEC 14496-10 AVC,” 253 pp. (May 2003). |
Joshi et al., “Comparison of generalized Gaussian and Laplacian modeling in DCT image coding,” IEEE Signal Proc. Letters, vol. SPL-2, No. 5, pp. 81-82 (May 1995). |
Kim et al., “Still image coding based on vector quantization and fractal approximation,” IEEE Transactions on Image Processing, vol. 5, No. 4, pp. 587-597 (Apr. 1996). |
Kopp, “Lossless Wavelet Based Image Compression with Adaptive 2D Decomposition,” Proc. 4th Int'l Conf. in Central Europe on Computer Graphics and Visualization 96, pp. 141-149 (Feb. 12-16, 1996). |
Lam et al., “A mathematical analysis of the DCT coefficient distributions for images,” IEEE Trans. Image Proc., vol. IP-9, No. 10, pp. 1661-1666 (Oct. 2000). |
LeGall, “MPEG: A Video Compression Standard for Multimedia Application,” Communications of the ACM, vol. 34, No. 4, pp. 47-58 (Apr. 1991). |
LeGall, “The MPEG Video Compression Algorithm,” Signal Processing: Image Communication 4, vol. 4, No. 2, pp. 129-140 (Apr. 1992). |
LeGall et al., “Transmission of HDTV signals under 140 Mbit/s using a subband decomposition and Discrete Cosine Transform coding,” in Signal Processing of HDTV, Elsevier, Amsterdam, pp. 287-293 (Oct. 1988). |
Lei et al., “Rate Adaptation Transcoding for Precoded Video Streams,” 13 pp. (month unknown, 2000). |
Limb, “A Picture-Coding Algorithm for the Merli Scan,” IEEE Transactions on Communications, pp. 300-305 (Apr. 1973). |
Lin et al, “Low-complexity face-assisted coding scheme for low bit rate video telephony,” IEICE Trans. Inf. & Sys., vol. E86-D, No. 1, pp. 101-108 (Jan. 2003). |
Lin et al, “Low-complexity face-assisted video coding,” Proc. 2000 Int 'l Conf. on Image Processing, vol. 2, pp. 207-210 (Sep. 2000). |
Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inform. Theory, vol. IT-28, No. 2, pp. 7-12 (Mar. 1982) (reprint of work originally presented in Jul. 1957). |
Loomis, “Using the Advanced Settings of the Windows Media Video 9 Advanced Profile Codec,” 13 pp. (Document dated Apr. 2006) [Downloaded from the World Wide Web on May 31, 2007]. |
Luo et al., “A Scene Adaptive and Signal Adaptive Quantization for Subband Image and Video Compression Using Wavelets,” IEEE Trans. On Circuits and Systems for Video Tech., vol. 7, No. 2, pp. 343-357 (Apr. 1997). |
Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. And Machine Intell., vol. PAMI-11, No. 7, pp. 674-692 (Jul. 1989). |
Masala et al., “Perceptually Optimized MPEG Compression of Synthetic Video Sequences,” Proc. ICIP, pp. I-601-I-604 (Sep. 2005). |
Max, “Quantizing for minimum distortion,” IEEE Trans. Inform. Theory, vol. IT-6, No. 1, pp. 7-12 (Mar. 1960). |
Microsoft Corporation, “Microsoft Debuts New Windows Media Player 9 Series, Redefining Digital Media on the PC,” 4 pp. (Sep. 4, 2002) [Downloaded from the World Wide Web on May 14, 2004]. |
Mitra et al., “Two-Stage Color Palettization for Error Diffusion,” Proceedings of SPIE, pp. 207-217 (Jun. 2002). |
Mook, “Next-Gen Windows Media Player Leaks to the Web,” BetaNews, 17 pp. (Jul. 19, 2002) [Downloaded from the World Wide Web on Aug. 8, 2003]. |
Muller, “Distribution shape of two-dimensional DCT coefficients of natural images,” IEE Electronics Letters, vol. 29, No. 22 (Oct. 1993). |
Murakami et al., “Comparison between DPCM and Hadamard transform coding in the composite coding of the NTSC color TV signal,” IEEE Trans. On Commun., vol. COM-30, No. 3, pp. 469-479 (Mar. 1982). |
Musmann et al., “Advances in Picture Coding,” Proceedings of the IEEE, vol. 73, No. 4, pp. 523-548 (Apr. 1985). |
Park et al., “A post processing method for reducing quantization effects in low bit-rate moving picture coding,” IEEE Trans. Circuits Syst. Video Technology, vol. 9, pp. 161-171 (Feb. 1999). |
Puri et al., “Motion-Compensated Video Coding with Adaptive Perceptual Quantization,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 1, No. 4, pp. 351-361 (Dec. 1991). |
Radha et al., “The MPEG-4 Fine-Grained Scalable Video Coding Method for Multimedia Streaming Over IP,” IEEE Trans. on Multimedia, vol. 3, No. 1, pp. 53-68 (Mar. 2001). |
Reininger et al., “Distribution of two-dimensional DCT coefficients for images,” IEEE Trans. On Commun., vol. COM-31, No. 6, pp. 835-839 (Jun. 1983). |
Ribas Corbera et al., “Rate Control in DCT Video Coding for Low-Delay Communications,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 9, No. 1, pp. 172-185 (Feb. 1999). |
Schallauer et al., “PRESTO—Preservation Technologies for European Broadcast Archives, D5.4—High Quality Compression for Film and Video,” 80 pp. (Sep. 18, 2002). |
Schuster et al., “A Theory for the Optimal Bit Allocation Between Displacement Vector Field and Displaced Frame Difference,” IEEE J. on Selected Areas in Comm., vol. 15, No. 9, pp. 1739-1751 (Dec. 1997). |
Shen et al., “Rate-Distortion Optimization for Fast Hierarchical B-Picture Transcoding,” IEEE, pp. 5279-5282 (May 2006). |
Shoushun et al., “Adaptive-Quantization Digital Image Sensor for Low-Power Image Compression,” in IEEE Transactions on Circuits and Systems—I: Regular Papers, vol. 54, No. 1, pp. 13-25 (Jan. 2007). |
Sony Electronics Inc., “Sony Vizaro DVD Encoder System DVA-V700,” 4 pp. (Apr. 2001). |
Sullivan, “Efficient scalar quantization of exponential and Laplacian random variables,” IEEE Trans. Inform. Theory, vol. IT-42, No. 5, pp. 1365-1374 (Sep. 1996). |
Sullivan et al., “Rate-Distortion Optimization for Video Compression,” IEEE Signal Processing Magazine, pp. 74-90 (Nov. 1998). |
Sullivan et al., “The H.264/AVC Advanced Video Coding Standard: Overview and Introduction to the Fidelity Range Extensions,” 21 pp. (Aug. 2004). |
Tao et al., “Adaptive Model-driven Bit Allocation for MPEG Video Coding,” IEEE Transactions on Circuits and Systems for Video Tech., vol. 10, No. 1, pp. 147-157 (Feb. 2000). |
Tsang et al., “Fuzzy Based Rate Control for Real-Time MPEG Video,” IEEE Transactions on Fuzzy Systems, pp. 504-516 (Nov. 1998). |
Wang, et al., “A Framework for Adaptive Scalable Video Coding Using Wyner-Ziv Techniques,” EURASIP Journal on Applied Signal Processing, pp. 1-18 (month unknown, 2006). |
Watson et al., “Visibility of Wavelet Quantization Noise,” IEEE Trans. on Image Processing, vol. 6, No. 8, pp. 1164-1175 (Aug. 1997). |
Wien, “Variable Block-Size Transforms for Hybrid Video Coding,” Dissertation, 182 pp. (Feb. 2004). |
Wu et al., “Context-Based, Adaptive, Lossless Image Coding,” IEEE Trans. Communications, vol. 45, pp. 437-444 (Apr. 1997). |
Wu et al., “Joint Estimation of Forward and Backward Motion Vectors for Interpolative Prediction of Video,” IEEE Transactions on Image Processing, vol. 3, No. 5, pp. 684-687 (Sep. 1994). |
Xiong et al., “Wavelet Packet Image Coding Using Space-Frequency Quantization,” IEEE Transactions on Image Processing, vol. 7, No. 6, pp. 892-898 (Jun. 1998). |
Yang et al., “Rate Control for Videophone Using Local Perceptual Cues,” IEEE Transactions on Circuits and Systems for Video Tech., vol. 15, No. 4, pp. 496-507 (Apr. 2005). |
Yuen et al., “A survey of hybrid MC/DPCM/DCT video coding distortions,” Signal Processing, vol. 70, pp. 247-278 (Nov. 1998). |
Zaid et al., “Wavelet Image Coding with Adaptive Thresholding,” 4 pp. (Jul. 2002). |
Zhang et al., “Adaptive Field/Frame Selection for High Compression Coding,” SPIE Conf. on Image and Video Communications and Processing, 13 pp. (Jan. 2003). |
Calderbank et al., “Wavelet transforms that map integers to integers,” Mathematics Subject Classification, Aug. 1996, 39 pages. |
Donoho et al., “Data compression and Harmonic Analysis,” IEEE transaction on information theory, vol. 44, No. 6, Oct. 1998, pp. 2435-2476. |
ISO/IEC, “Study text (version 3) of ISO/IEC 14496-10:2005/FPDAM3 Scalable Video Coding (in integrated form with ISO/IEC 14996-10),” ISO/IEC JTC 1/SC 29/WG 11 N8962, pp. 59-103, 175-196, 404-423, 453-470 (Apr. 2007). |
ITU-T, “CCITT Recommendation T.81: Information Technology—Digital Compresion and Coding of Continuous-Tone Still Images—Requirements and Guidelines,” 190 pp. (Sep. 1992). |
ITU-T, “ITU-T Recommendation T.84: Terminals for Telematic Services—Information Technology—Digital Compression and Coding of Continuous-Tone Still Images: Extensions,” 84 pp. (Jul. 1996). |
ITU-T, “ITU-T Recommendation T.801: JPEG 2000 image coding system: Extensions,” 334 pp. (Aug. 2002). |
Man et al., “Three-Dimensional Subband Coding Techniques for Wireless Video Communications,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 12, No. 6, pp. 386-397 (Jun. 2002). |
Marcellin et al., “An overview of quantization in JPEG 2000,” Signal Processing: Image Communication, vol. 17, pp. 73-84 (Jan. 2002). |
Srinivasan et al., “HD Photo: A new image coding technology for digital photography,” Proc. of SPIE, Vo. 6696, 19 pp. (Jan. 2007). |
Tong, “A perceptually adaptive JPEG coder,” Thesis, University of Toronto, 124 pp. (1997). |
Watson, “Perceptual Optimization of DCT Color Quantization Matrices,” IEEE Conf. on Image Processing, pp. 100-104 (Nov. 1994). |
Yoo et al., “Adaptive Quantization of Image Subbands with Efficient Overhead Rate Selection,” IEEE Conf. on Image Processing, pp. 361-364 (Sep. 1996). |
Chai et al., “Face Segmentation Using Skin-Color Map in Videophone Applications,” IEEE Transaction on Circuits and Systems for Video Technology, vol. 9, No. 4, pp. 551-564, Jun. 1999. |
Correia et al., “Classification of Video Segmentation Application Scenarios,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 14, No. 5, pp. 735-741, May 2004. |
Daly et al., “Face-Based Visually-Optimized Image Sequence Coding,” 1998 International Conference on Image Processing, vol. 3, pp. 443-447, Oct. 1998. |
Lee et al., “Spatio-Temporal Model-Assisted Compatible Coding for Law and Very Low Bitrate Videotelephony,” 3rd IEEE International Conference on Image Processing, 4 pages, Sep. 1996. |
Malah, “Time-Domain Algorithms for Harmonic Reduction and Time Scaling of Speech Signals,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-27, No. 2, Apr. 1979, 13 pages. |
Richardson, H.264 and MPEG-4 Video Compression, pp. 50-56 and 187-196 (2003). |
Eleftheriadis et al., “Dynamic Rate Shaping of Compressed Digital Video,” IEEE Transactions on Multimedia, vol. 8, No. 2, Apr. 2006, pp. 297-314. |
LoPresto et al., “Image Coding Based on Mixture Modeling of Wavelet Coefficients and a Fast Estimation-Quantization Framework,” Proc. IEEE Data Compression Conference, (Snowbird, UT), pp. 221-230 (Mar. 1997). |
Neff et al., “Modulus Quantization for Matching Pursuit Video Coding,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 10, No. 6, pp. 895-912 (Sep. 2000). |
Nguyen et al., “Set Theoretic Compression with an Application to Image Coding,” IEEE Transactions on Image Processing, vol. 7, No. 7, pp. 1051-1056 (Jul. 1998). |
Number | Date | Country | |
---|---|---|---|
20080240235 A1 | Oct 2008 | US |