The present invention relates to machines for making and dispensing frozen beverage products, and in particular to an adaptive defrost control for a frozen product dispenser.
Frozen beverage product machines, such as frozen carbonated beverage (FCB) machines, traditionally utilize a time based defrost control that is periodically implemented due to build-up of ice particles in the beverage product within a freeze barrel. A defrost schedule may be manually programmed in the machine, with defrost cycles occurring either automatically according to predetermined time periods, or manually as ice particles are viewed in the dispensed beverage product and defrosting is deemed necessary. Typically, defrost cycles occur at fixed intervals, usually every 3 to 4 hours, but this approach does not take into consideration whether defrosting is actually necessary, and during defrost the machine is “down” and frozen beverage is not available for service to customers. Since “up time”, during which frozen beverage product is available for service from the machine, is very important to the user, it would be desirable to have a defrost control that puts the machine into a defrost cycle only as often as is necessary and only on an as-needed basis, thereby to increase the uptime of the machine and the amount of frozen beverage product that may be served, and also to enhance value and energy savings.
An object of the present invention is to provide an adaptive defrost control for a frozen beverage dispenser, which adaptively adjusts the time between defrost cycles in a manner such that defrost occurs only on an as-needed basis.
Another object is to provide such an adaptive defrost control that monitors one or more parameters of the frozen beverage dispenser and initiates a defrost cycle based upon the values of such one or more parameters.
In accordance with the present invention, a frozen product dispenser, comprises a freeze barrel; means for delivering liquid product to the freeze barrel; a refrigeration system operable in a chilling cycle to freeze product in the freeze barrel; means for defrosting product in the barrel; and means responsive to at least one operating parameter of the frozen product dispenser for adaptively controlling and adjusting the times between operations of the means for defrosting.
In one embodiment, the refrigeration system is operable in a defrost cycle to defrost product in the freeze barrel, and the means for defrosting comprises means for operating the refrigeration system in defrost cycles. In another embodiment, the means for defrosting comprises an electric heater that is operable to defrost product in the freeze barrel, and the means for defrosting comprises means for operating the electric heater.
Among the operating parameters to which the means for adaptively controlling is responsive is product throughput per unit time through the frozen beverage machine.
The invention also contemplates a method of operating a frozen product dispenser, the method comprising the steps of delivering liquid product to a freeze barrel; operating a refrigeration system in a chilling cycle to freeze product in the freeze barrel; sensing the value at least one operating parameter of the frozen product dispenser; defrosting product in the freeze barrel; and adaptively controlling and adjusting the times between performance of the defrosting step in accordance with the sensed value of the at least one operating parameter of the frozen product dispenser.
According to one aspect of the method, the refrigeration system is also operable in a defrost cycle to defrost product in the freeze barrel, and the defrosting step is performed by operating the refrigeration system in a defrost cycle. According to another aspect, the defrosting step is performed by energizing an electric heater to heat the freeze barrel.
Among the values of the operating parameters sensed is product throughput per unit time through the frozen product dispenser.
The invention provides a novel adaptive defrost control for a frozen product dispenser or machine, such that the refrigeration system of the dispenser is operated to defrost product in a freeze barrel of the dispenser only on an as-needed basis. As compared to the conventional technique of running the dispenser through defrost cycles that are programmed to occur at set intervals, during which time the freeze barrel of the dispenser does not produce frozen product, the defrost control of the invention decreases the downtime and increases the uptime of the dispenser, thereby increasing the total output of frozen product available from the dispenser. While an adaptive defrost control as taught by the invention may advantageously be used in various diverse applications, a presently contemplated use for such a control is in providing cooling for a frozen carbonated beverage (FCB) dispenser, and the invention will therefore be described in terms of that environment.
Referring to
The refrigeration system 20 has two defrost circuits, a first one of which is for defrosting the freeze barrel 44 and includes a solenoid operated refrigerant valve 60 having an inlet coupled directly to hot refrigerant at the outlet from the compressor 22 through a refrigerant line 62 and an outlet coupled to the inlet to the freeze barrel evaporator 42 through a refrigerant line 64. A second defrost circuit is for defrosting the freeze barrel 48 and includes a solenoid operated refrigerant valve 66 having an inlet coupled directly to hot refrigerant at the outlet from the compressor 22 through a refrigerant line 68 and an outlet coupled to the inlet to the freeze barrel evaporator 46 through a refrigerant line 70. The defrost circuits are operated to heat the evaporators 42 and 46 to defrost the beverage product barrels 44 and 48 in defrost cycles of the refrigeration system. When the refrigeration system is operating to chill the product freeze barrel 44, the refrigerant valve 60 is closed and the expansion valve 36 is open to meter refrigerant to the evaporator 42, and when the refrigeration system is being operated in a defrost mode to defrost product in the freeze barrel 44, the refrigerant valve 60 is open and the expansion valve 36 is closed. Similarly, when the refrigeration system is operating to chill the product freeze barrel 48, the refrigerant valve 66 is closed and the expansion valve 38 is open to meter refrigerant to the evaporator 46, and when the refrigeration system is being operated in a defrost mode to defrost product in the freeze barrel 48, the refrigerant valve 66 is open and the expansion valve 38 is closed.
The refrigeration system 20 is adapted for use with an FCB dispenser that has a pre-chiller 52. To provide chilling for an FCB dispenser that does not have a pre-chiller, a refrigeration system of a type shown in
It is to be understood that while each of the refrigeration systems 20 and 72 are structured to provide chilling for two product freeze barrels, since that enables two different flavors of frozen beverages to be prepared by a frozen beverage product machine, the teachings of the invention may also be used with a refrigeration system that chills only a single product freeze barrel, or with one that chills more than two product freeze barrels.
The adaptive defrost control of the invention may be embodied in an FCB dispenser having either type of refrigeration system 20 or 72, or for that manner in an FCB dispenser having generally any type of refrigeration system, without there being significant differences in the manners in which the adaptive defrost control determines when the refrigeration system is to be operated in defrost cycles. For convenience, however, the invention will be described in terms of its use in controlling the occurrence of defrost cycles of the refrigeration system 20.
One embodiment of FCB dispenser that may utilize the refrigeration system 20 and with which the adaptive defrost control of the invention may advantageously be used is shown in
To carbonate water in the carbonator tank 100, an externally regulated supply of CO2 is coupled through a temperature compensated pressure regulator 110 and a check valve 112 to the carbonator, the regulator 110 including a capillary sensor 114 for detecting the temperature of incoming water. A sensor 116 detects a CO2-out condition, and the supply of CO2 is also coupled to inlets to each of two CO2 pressure regulators of a manifold 118. An outlet from a first one of the manifold pressure regulators is coupled through a solenoid shut-off valve 119, a CO2 flow control valve 120 and a CO2 check valve 121 to an inlet to the freeze barrel 44. In addition, CO2 at an outlet from a second one of the manifold pressure regulators is coupled to an upper opening to an expansion tank 122, a lower opening to which is coupled to the water and syrup mixture line between the pre-chiller and freeze barrel. The flow control valve 120 accommodates adjustment of the carbonation level in the barrel 44 by enabling the introduction of CO2 into the barrel for a brief period before a mixture of water and syrup is delivered into the barrel. A pressure transducer 124 monitors the pressure of the water and syrup mixture in the barrel 44 and serves as a pressure cut-in/cut-out sensor to control filling and refilling of the barrel with liquid beverage product to be frozen in the barrel. As is understood by those skilled in the art, when the pressure transducer 124 detects a lower limit cut-in pressure in the barrel, for example 23 psi, the pair of brixing valves 102, 84 is opened for flow of a water and syrup mixture to and into the barrel to refill the barrel, until the pressure transducer detects an upper limit cut-out pressure, for example 29 psi, whereupon the pair of brixing valves is closed. During flow of the water and syrup mixture to the barrel, the mixture is cooled as it flows through an associated circuit in the pre-chiller 52. As the beverage mixture is frozen in the barrel 44 it expands, and the expansion chamber 122 accommodates such expansion.
As mentioned, the dispenser 80 includes the freeze barrel 48 and, therefore, includes further structure (not shown) that is generally duplicative of that to the right of the pair of brixing valves 102, 84 and that accommodates delivery of a water and syrup mixture from the pair of brixing valves 104, 87 to the barrel 48, except that the beverage mixture does not flow through a separate pre-chiller, but instead flows through an associated circuit of the pre-chiller 52. In addition, a line 126 delivers CO2 to an upper opening to an expansion chamber, a lower opening from which expansion chamber couples to an inlet to the barrel 48, and to accommodate addition of CO2 to the barrel 48, the outlet from the manifold first CO2 pressure regulator is also coupled through a solenoid shut-off valve 128, a CO2 flow control valve 130 and a CO2 check valve 132 to the inlet to the barrel.
In operation of the FCB machine 80, liquid beverage components are introduced through the pre-chiller and into the freeze barrels 44 and 48 by their respective pairs of brixing valves 84, 102 and 87, 104. The refrigeration system 20 provides chilling for the pre-chiller 52 via the heat transfer coupled evaporator 50, so that the liquid beverage components delivered into the freeze barrels 44 and 48 are chilled. The refrigeration system also provides chilling for the freeze barrels 44 and 48 via the respective heat transfer coupled evaporators 42 and 46, to freeze the liquid beverage components in the barrels while the components are agitated by a beater/scraper bar (not shown), all in a manner well understood by those skilled in the art. Frozen beverage product prepared within the freeze barrels is dispensed for service to customers, such a by the dispense valve 82 coupled to the freeze barrel 44.
Frozen beverage product machines typically have a time based defrost cycle that is implemented at fixed intervals due to build-up of beverage product ice particles in the freeze barrel(s). The defrost cycles normally occur automatically, according to a predetermined fixed frequency or time period, although means may be provided to manually initiate a defrost cycle. Typically, defrost cycles are programmed to automatically occur about every 3 to 4 hours, but this approach does not take into account whether a defrost cycle is actually needed at the end of the period, and during defrost the frozen beverage machine is “down” and frozen beverage product is not available for service to customers. Since machine “up time” is very important, it is best not to enter a defrost cycle unless defrost is actually necessary. The invention therefore provides an adaptive defrost control that puts the machine into a defrost cycle only if and as necessary, and only on an as-needed basis, to thereby decrease machine downtime, increase machine uptime, increase the amount of frozen beverage product that may be served from the machine, and enhance value and energy savings.
The present invention overcomes the deficiencies of the prior art approach of controlling defrost cycles of an FCB machine to occur at predetermined fixed intervals. In so improving, the invention provides an adaptive defrost control for a frozen product machine, which adaptively adjusts the time intervals between product defrost cycles of a refrigeration system of the machine, in such a manner as to defrost the machine only as necessary and only on an as-needed basis, thereby to increase machine uptime and frozen product output. The adaptive defrost control is implemented by monitoring various parameters of the FCB machine, which parameters are indicative of a need to defrost a freeze barrel, and by initiating a defrost cycle based upon a concurrence or correlation of the values of a selected one or more of the parameters, rather than simply based upon a fixed time interval.
The invention is predicated upon a recognition that there are a number of factors involved in operation of a frozen beverage product machine that have a direct influence upon a need to defrost product in the freeze barrels, and that an actual need to enter a defrost cycle does not necessarily occur at set intervals. The variable that is controlled in implementation of the adaptive defrost control of the invention is a time tD between defrost cycles, i.e., the time interval or duration from the end of one defrost cycle until the beginning of the next defrost cycle, and there are several variable parameters that in operation of the FCB machine determine a need for defrost and, therefore, influence the value of tD. These variable parameters are listed in the table below; along with the manner in which each influences the time tD between defrost cycles. The primary parameter that influences the value of tD is beverage product throughput or usage, since if a significant amount of beverage product is drawn through the machine on a unit time basis, the need for defrost becomes non-existent. This factor, along with other factors that influence a need for execution of a defrost cycle, are as follows:
The primary factor affecting the time interval tD between defrost cycles, i.e., the factor that changes the value of tD the most, is product throughput, which is proportional to the number of times the brix valves are activated to deliver beverage product to a freeze barrel 44 or 48, multiplied by the average on-time of the brix valves per activation. In other words, the total mass flow of beverage product to a freeze barrel is determined by:
Product throughput=# brix valve activations×average on-time per activation.
Total beverage product throughput to an individual one of the freeze barrels 44 and 48 is tallied by counting the number of times the brix valves are activated to deliver beverage product to that freeze barrel, and by accumulating the on-time associated with those activations over a window of time, such as over a 1-hour time history. The average on-time of a pair of brix valves may increase or decrease over the window of time, and the time tD between defrosts is adjusted accordingly, i.e., as average on-time increases, tD is increased, and as average on-time decreases, tD is decreased. It is desirable to monitor average on-time, following a defrost cycle, based upon a 1-hour rolling average, such for example as is shown in
Another technique for monitoring beverage product throughput is shown in
Product throughput being the primary factor or variable parameter that is used to adjust the value of the time tD until the next defrost cycle, the other variable parameters that affect the value of tD to a lesser extent are used to “fine tune” the value. In this connection, the viscosity of beverage product in a freeze barrel, the brix settings that determine the water/syrup ratio of beverage product delivered to a freeze barrel, product type, ambient temperature, power supply frequency, etc., may be and advantageously are used to add to or subtract from the time tD between defrost cycles, but to a lesser extent than does product throughput. The significance of each to the need for, or the lack of a need for, a defrost cycle is weighted appropriately, so that when the collective result is used to determine the time tD between defrost cycles, the time interval is correctly calculated based upon empirical test experience.
Three of the variable parameters, product type, ambient temperature and power supply frequency, normally either remain fixed or change only insignificantly once a frozen beverage product machine is installed at a particular location. These particular parameters are therefore entered as fixed values as part of commissioning a machine for service when the machine is first installed. The remaining parameters (other than product throughput) have values that can and do change in accordance with new information gathered at each defrost, and these may be considered “dynamic modifiers”.
Product throughput, which has the greatest influence on and can charge the value of tD the most, is determined for a freeze barrel by the total time of actuation or total on-time, during a one hour period, of a pair of brix valves that deliver product to that freeze barrel. The total opportunity for delivery of product to the freeze barrel, i.e., the maximum amount of on-time of the pair of brix valves during the one hour period, is 3600 seconds. Above some threshold of on-time, product throughput is sufficiently great that no defrost cycles are required. However, as the on-time of the brix valves decreases, defrost cycles will be required more and more frequently, and when the on-time of the valves approaches 1% of the maximum possible on-time, defrost cycles will be required at least every three hours.
As product throughput exceeds the minimum requirement, the time between defrost cycles is extended. As the on-time of the brix valves exceeds a higher threshold, say 3% of the maximum opportunity time of 3600 seconds, then the time between defrost can be extended to once per day, or once every 24 hours, and advantageously can be scheduled to occur only after the machine comes out of the “sleep” mode and is prepared for startup, so that the defrost cycle occurs at a time when service of beverages to customers will not be interrupted.
An adaptive defrost algorithm, as implemented by a CPU (
To initialize operation of a frozen beverage machine, preliminary information based upon then known operating conditions is entered into the CPU of the machine at the time the unit is commissioned, to automatically set the default time Td for the time between defrost cycles. The particular parameters that are then known and entered are:
Once the frozen beverage product machine is commissioned, the adaptive defrost control algorithm becomes determinative of the time tD between defrost cycles and the primary parameter in arriving at that time then becomes product throughput. However, for the algorithm to be effective, initial conditions when the machine is started at the end of sleep mode must be such that a beverage product freezing cycle begins with a beater assembly and freeze barrel of the machine being free of ice. If they are not, the adaptive defrost algorithm will fail to work as intended, since in arriving at a value of tD, an assumption made is that the freeze barrel and beater assembly are initially in an ice free state. A programmed defrost is therefore made to occur for a minimum of two minutes when the machine leaves the sleep mode, to ensure that there is not a partial ice buildup in the freeze barrel and on the beater assembly that would preclude successful operation of the algorithm in deriving the time delay tD until occurrence of a defrost cycle.
The adaptive defrost control algorithm may be expressed generally as follows:
NDt=LDt+tD
where:
NDt=the time of day of the next defrost period;
LDt=the time of day of the last defrost period; and
tD=Dt+A·(7.25−tT1)+B·(Tmax−Y)+C·(4−VISC)+D·(BRIX−13)=the time between defrost cycles
and where:
tT1=time to reach the freeze barrel evaporator outlet temperature in last defrost;
Tmax=maximum evaporator outlet temperature achieved in last defrost;
Y=ending temperature control limit, e.g. 42° F.;
VISC=viscosity set point for the barrel, adjustable from 1 to 9;
BRIX=Brix set point for the barrel, where 13 is typical for sugar-based product;
A, B, C and D are coefficients.
The time in which to complete a defrost cycle is compared to a target time Tt. If the time duration of a defrost cycle reaches the target time Tt, and if at that time the temperature of refrigerant leaving the freeze barrel evaporator 42 or 46 has not risen sufficiently to indicate that defrost has been completed, the defrost may not have been adequate. In that case, the time interval tD until the next defrost cycle is reduced slightly to reduce the amount of ice buildup in the freeze barrel that can occur prior to the beginning of the next defrost cycle. On the other hand, if the time to reach the requisite evaporator outlet temperature in the previous defrost was less than the target time Tt, which may, for example, have a value on the order of about 7.25 minutes, then the time between defrosts tD may be increased.
In the above formula for the time tD between defrost cycles, the coefficient “A” is a modifier that determines the weight to be given to the term (7.25−tT1) in the adjustment of tD. If the defrost cycle extends beyond the target time Tt, for failure of the evaporator outlet to reach the requisite temperature by the end of the time Tt, the defrost cycle will be terminated by a default timer set to a greater time, such for example as 8 minutes.
The requisite or expected freeze barrel evaporator outlet temperature that should be achieved by the end of a defrost cycle may be on the order of about 50° F., but can be lower, such as 40° or 42° F. If the evaporator outlet temperature exceeds the requisite value at the target time Tt, then the time tD until the next defrost is increased. However, if the requisite evaporator outlet temperature is not achieved and the timer times out, then the time tD is decreased. In the above formula for the time tD until the next defrost cycle, the coefficient “B” is a modifier that determines the weight to be given to the term (Tmax−Y) in the correction of Tt.
If the VISC set point is greater than 4, then the time tD until the next defrost cycle is shortened slightly. If the VISC set point is less than 4, then time tD is extended slightly. In the above formula for the time tD, the coefficient “C” is a modifier used to determine the weight to be given to the term (4−VISC) in the adjustment of tD.
The final modifier is the BRIX setting, i.e., the setting of a pair of brix valves to determine the water/syrup ratio of the beverage components delivered to the freeze barrel. If set at 13, no adjustment of the time tD is required. However, if set lower, the time between defrost cycles is decreased, and if set higher, the time between defrost cycles is increased. In the above formula for the time tD, the coefficient “D” is a modifier used to determine the weight to be given to the term (BRIX−13) in the adjustment of tD.
The adaptive defrost control of the invention is provided with an auto drive error recovery, which reviews daily trading profiles and black out periods to determine if a freeze barrel should be forced into a defrost cycle following a system error, even though the time tD has not lapsed, followed by an auto drive reset of the adaptive defrost control.
It is to be understood that all values shown in charts or recited in the description of the invention are for illustrative purposes only, and are not necessarily those as may be used or required in implementation of the adaptive defrost control with any particular frozen beverage product machine. Instead, the values are empirically derived for any specific embodiment of frozen beverage product machine, and may and normally do change from one embodiment of machine to another.
The invention thus provides an adaptive defrost control for a frozen beverage product machine, which adjusts the time interval tD between defrost cycles in a manner to defrost a freeze barrel only as necessary and only on an as-needed basis. In determining the extent and direction of the adjustment to be applied to the time tD, the adaptive defrost control monitors a set of parameters of the frozen beverage product machine and adjusts the time tD in accordance with a concurrence or correlation of the values of a selected one or more of the parameters. In this manner, the invention advantageously maximizes uptime of the machine. It is understood, of course, that the invention is applicable for use with other types of frozen product dispensers, such for example as ice cream makers and dispensers.
While the invention has been described in terms of defrosting a freeze barrel by operating a refrigeration system for the freeze barrel in a defrost cycle, the invention also contemplates using a refrigeration system to chill a freeze barrel, but defrosting the freeze barrel by means of an electric heater in heat exchange relationship with the freeze barrel. For this embodiment, the time between operation of the electric heater is variably controlled in accordance with the need for defrost of the freeze barrel.
While embodiments of the invention have been described in detail, various modifications and other embodiments thereof may be devised by one skilled in the art without departing from the spirit and scope of the invention, as defined in the appended claims.
This application claims benefit of provisional patent application Ser. No. 60/877,593, filed Dec. 28, 2006.
Number | Name | Date | Kind |
---|---|---|---|
3653223 | Jones et al. | Apr 1972 | A |
4201558 | Schwitters et al. | May 1980 | A |
4563880 | Cipelletti | Jan 1986 | A |
4680940 | Vaughn | Jul 1987 | A |
4827732 | Suyama et al. | May 1989 | A |
4869072 | Sexton et al. | Sep 1989 | A |
5158506 | Kusano et al. | Oct 1992 | A |
6220047 | Vogel et al. | Apr 2001 | B1 |
6606870 | Holmes et al. | Aug 2003 | B2 |
Number | Date | Country | |
---|---|---|---|
20080223049 A1 | Sep 2008 | US |
Number | Date | Country | |
---|---|---|---|
60877593 | Dec 2006 | US |