This application claims priority to and the benefit of Chinese Patent Application No. 201911180319.6, filed on Nov. 27, 2019, which is incorporated herein by reference in its entirety.
The present invention relates generally to electronic circuits, and more particularly but not exclusively to a dimming circuit for light-emitting devices and a method thereof.
Light-emitting devices, especially light-emitting diodes (LED), are widely adopted by the today's electronic products, e.g., architectural lighting, vehicle lights, backlighting of mobile phone and computer screen. To meet the different brightness requirements of different applications, light-emitting device dimming is necessary. Different dimming methods are used according to the characteristic of the light-emitting device. For LED, the brightness of the LED depends on an average current flowing through the LED. That is to say, LED dimming could be realized by regulating the average current flowing through the LED.
In a backlighting system, LEDs are arranged in multiple paralleled strings, and the multiple paralleled LED strings are powered by a LED driver.
The currents flowing through the LED strings are regulated by a dimming circuit. The LED driver and the dimming circuit constitute a LED driving system. However, the forward voltage of each LED is slightly different due to the difference caused by the LED manufacturing process. When the LEDs are arranged in a string, the difference is superimposed, resulting in inconsistent forward voltages of the multiple LED strings.
Therefore, a system providing smart dimming and proper driving voltage is necessary, to improve both the LED efficiency and the LED driver efficiency.
It is an object of the present invention to provide a light-emitting device driving system, which could provide a proper driving voltage and smart dimming to the multiple light-emitting device strings, and further has high efficiency.
In accomplishing the above and other objects, there has been provided, in accordance with an embodiment of the present invention, a dimming module comprising: a plurality of calculating circuits, wherein each calculating circuit is configured to receive a preset current duty cycle reference signal, a preset current magnitude reference signal and a feedback voltage of an associated light-emitting device string of a plurality of light-emitting device strings, and wherein based on the preset current duty cycle reference signal, the preset current magnitude reference signal and the feedback voltage of the associated light-emitting device string, the calculating circuit provides a current duty cycle reference signal and a current magnitude reference signal for controlling the associated light-emitting device string; and a plurality of current regulating circuits, wherein each current regulating circuit is configured to receive the feedback voltage of the associated light-emitting device string, the current duty cycle reference signal and the current magnitude reference signal for the associated light-emitting device string, and wherein based on the current duty cycle reference signal, the current regulating circuit controls a duty cycle of a current flowing through the associated light-emitting device string, and wherein based on the feedback voltage and the current magnitude reference signal, the current regulating circuit controls a magnitude of the current flowing through the associated light-emitting device string; wherein the current magnitude reference signal provided to the light-emitting device string with a minimum feedback voltage is lower than the preset current magnitude reference signal, while the current magnitude reference signal provided to each other light-emitting device string is higher than the preset current magnitude reference signal.
In accomplishing the above and other objects, there has been provided, in accordance with an embodiment of the present invention, a light-emitting device driving system for driving a plurality of light-emitting device strings, comprising: a dimming circuit having a plurality of dimming modules, wherein each dimming module receives a preset current duty cycle reference signal, a preset current magnitude reference signal and a feedback voltage of an associated light-emitting device string, and wherein based on the preset current duty cycle reference signal, the preset current magnitude reference signal and the feedback voltage, the dimming module provides a current duty cycle reference signal and a current magnitude reference signal, and wherein the current magnitude reference signal provided to the light-emitting device string with a minimum feedback voltage is lower than the preset current magnitude reference signal, while the current magnitude reference signal provided to each other light-emitting device string is higher than the preset current magnitude reference signal; a feedback amplifying circuit, configured to receive a reference signal and the minimum feedback voltage of the feedback voltages of light-emitting device strings, and based on the reference signal and the minimum feedback voltage, the feedback amplifying circuit provides a compensation signal; and a pulse generating circuit, configured to receive the compensation signal, and based on the compensation signal, the pulse generating circuit provides a power controlling signal to control power provided to the light-emitting device strings.
In accomplishing the above and other objects, there has been provided, in accordance with an embodiment of the present invention, a dimming control method for controlling a plurality of light-emitting device strings, comprising: receiving a preset current magnitude reference signal and a preset current duty cycle reference signal; detecting a minimum feedback voltage from feedback voltages of the light-emitting device strings; clamping the minimum feedback voltage to a lower threshold by regulating a current flowing through the associated light-emitting device string; decreasing the current magnitude reference signal of the light-emitting device string with the minimum feedback voltage from the preset current magnitude reference signal; increasing the current magnitude reference signal of the light-emitting device string without the minimum feedback voltage from the preset current magnitude reference signal; and adjusting a current duty cycle reference signal according to the current magnitude reference signal to maintain the current flowing through the associated light-emitting device string being a preset value; wherein the preset value of the current flowing through the light-emitting device string is proportional to a product of the preset current magnitude reference signal and the preset current duty cycle reference signal.
The use of the same reference label in different drawings indicates the same or like components.
In the present invention, numerous specific details are provided, such as examples of circuits, components, and methods, to provide a thorough understanding of embodiments of the invention. Persons of ordinary skill in the art would recognize, however, that the invention can be practiced without one or more of the specific details. In other instances, well-known details are not shown or described to avoid obscuring aspects of the invention.
The embodiments in the present invention use specific implementation circuits and application as examples to illustrate the dimming circuits and dimming methods, so that persons skilled in the art can better understand the present invention. However, persons skilled in the art should understand that these descriptions are only exemplary and not intended to limit the scope of the present invention.
The present invention uses LED driving as an example to illustrate the structure and working principle of a light-emitting device driving system. It should be understood that the driving system described in the present invention is also applicable to driving other light-emitting devices except LEDs.
In the example of
The preset current magnitude reference signal Iref_pre and the preset current duty cycle reference signal PWM_pre may be set by off-chip signals, or by an upper-level system. In one embodiment of the present invention, the current duty cycle reference signal PWM, the current magnitude reference signal Iref, the preset current duty cycle reference signal PWM_pre and the preset current magnitude reference signal Iref_pre have a relationship of !ref X PWM=Iref_pre×PWM_pre.
In one embodiment of the present invention, the calculating circuit 1022 comprises a storage unit, e.g., registers, lookup tables. The storage unit may comprise several different values for the current magnitude reference signal Iref. In one embodiment of the present invention, the values in the storage unit are arranged to have a step of 5mA between two adjacent values, and have an upper limit Iref_max and a lower limit Iref_min. Persons of ordinary skill in the art could set the step between two adjacent values, the upper limit Iref_max and the lower limit Irefmin of the said values according to the application. In one embodiment of the present invention, the current duty cycle reference signal PWM could be obtained by an equation PWM=Iref_pre X PWM_pre/Iref. In one embodiment of the present invention, the storage unit of the calculating circuit 1022 contains a plurality of values for the current duty cycle reference signal PWM. After calculating the value of the current duty cycle reference signal PWM by the equation PWM=Iref_pre×PWM_pre/Iref, the final value of the current duty cycle reference signal PWM will be the value in the storage unit which is mostly close to calculated value.
In one embodiment of the present invention, the current duty cycle reference signal PWM has an upper limit PWM_max and a lower limit PWM_min. When the current magnitude reference signal Iref of an associated LED string increases, the current duty cycle reference signal PWM of the associated LED string decreases, to maintain an equivalent average current flowing through the associated LED string constant. When the current duty cycle reference signal PWM decreases to the lower limit PWM_min, the current magnitude reference signal Iref stops regulation. When the current magnitude reference signal Iref decreases, the current duty cycle reference signal PWM increases, to maintain the equivalent average current flowing through the LED string constant. When the current duty cycle reference signal PWM increases to the upper limit PWM_max, the current magnitude reference signal Iref stops regulation.
In one embodiment of the present invention, the current magnitude reference signal Iref has the upper limit Iref_max and the lower limit Iref_min, and meanwhile, the current duty cycle reference signal PWM has the upper limit PWM_max and the lower limit PWM_min. To maintain the equivalent average current flowing through the LED string being constant, the current duty cycle reference signal PWM increases as the associated current magnitude reference signal Iref decreases, and decreases as the associated current magnitude reference signal Iref increases. Once the current duty cycle reference signal PWM reaches the upper limit PWM_max or the lower limit PWM_min, the regulations to the current duty cycle reference signal PWM and the associated current magnitude reference signal Iref stop. Similarly, once the current magnitude reference signal Iref reaches the upper limit Iref_max or the lower limit Iref_min, the regulations to the current magnitude reference signal Iref and the associated current duty cycle reference signal PWM stop too.
The calculation circuit 1022 could be implemented by digital circuit based on hardware description language, e.g., Verilog, VHDL.
In the example of
The current duty cycle reference signal PWM is a square wave signal or a pulse signal. In one embodiment of the present invention, the amplifier Al is enabled when current duty cycle reference signal PWM is high. The amplifier Al has a non-inverting input terminal configured to receive the current magnitude reference signal Iref, an inverting input terminal configured to receive the feedback voltage Vfb, and based on the amplifying result of the current magnitude reference signal Iref and the feedback voltage Vfb, the amplifier Al provides the dimming control signal GS1 at an output terminal. The amplifier Al clamps the feedback voltage Vfb to the current magnitude reference signal Iref, makes the current flowing through the resistor R1, i.e., the current ILED flowing through the LED string, be ILED=Iref/R1.
In the example of
In the example of
The LED string with the minimum feedback voltage Vfb_min is processed differently from the other LED strings. When the minimum feedback voltage indicating signal U/D indicates that the associated LED string has the minimum feedback voltage Vfb_min, the current magnitude reference signal Iref provided by the current setting circuit 10238 decreases step by step from the preset current magnitude reference signal Iref_pre, and the current duty cycle reference signal PWM increases accordingly, until the current magnitude reference signal Iref reaches the lower limit Iref min. When the minimum feedback voltage indicating signal U/D indicates that the associated LED string has the feedback voltage higher than the minimum feedback voltage Vfb_min, the current magnitude reference signal Iref provided by the current setting circuit 10238 increases step by step from the preset current magnitude reference signal Iref_pre, and the current duty cycle reference signal PWM decreases accordingly, until the current magnitude reference signal Iref reaches the upper limit Iref max, or the feedback voltage Vfb reaches a lower threshold Vmin. In the embodiments both the current magnitude reference signal Iref and the current duty cycle reference signal PWM have upper limits and lower limits, the regulation stops when any limit is reached. In some embodiments of the present invention, the current duty cycle reference signal PWM has the upper limit PWM_max and the lower limit PWM_min, or the feedback voltage Vfb has the lower threshold Vmin, while no limit for the current magnitude reference signal Iref. Based on the same principle, the regulations to the current duty cycle reference signal PWM, the current magnitude reference Iref stop when any limit to the current duty cycle reference signal PWM or the feedback voltage Vfb is reached.
The values of the upper limit Iref_max, the lower limit Iref_min for the current magnitude reference signal Iref, the values of the upper limit PWM_max, the lower limit PWM_min for the current duty cycle reference signal PWM, and the value of the lower threshold Vmin for the feedback voltage Vfb are set by the current setting circuit 1023B according to the application requirements. In one embodiment of the present invention, the upper limit Iref_max for the current magnitude reference Iref is set to be 20% higher than the preset current magnitude reference Iref_pre, and the lower limit Iref_min is set to be 20% lower than the preset current magnitude reference Iref_pre, i.e., Iref_max=lref_pre×(1+20%), and Iref_min=lref_pre×(1-20%). Similarly, the upper limit PWM_max and the lower limit PWM_min of the current duty cycle reference PWM could be respectively set to be 20% higher than the preset current duty cycle reference signal PWM_pre and 20% lower than the preset current duty cycle reference signal PWM_pre. The lower threshold Vmin of the feedback voltage Vfb could be set to be slightly higher than or equal to the minimum feedback voltage Vfb_min during the steady working state of the LED driving system. For example, the lower threshold Vmin could be 0.21V or 0.2V when the minimum feedback voltage Vfb_min is 0.2V in the steady working state of the LED driving system.
In the embodiment of
When the LED driving system starts up, the startup enable signal EN resets all the minimum feedback voltage indicating signals U/D. When the startup period is over, the minimum feedback voltage indicating signal U/D of the LED string with the minimum feedback voltage Vfb_min flips. Then the current setting circuit 1023D regulates the current magnitude reference signal Iref and the current duty cycle reference signal PWM based on the minimum feedback voltage indicating signals U/D.
The operation of the current setting circuit 1023D is similar to the operation of the current setting circuit 1023B in
In the example of
The operation of the current setting circuit 1023F is similar to the operation of the current setting circuit 1023B in
It should be understood that, any circuit could detect the LED string with the minimum feedback voltage Vfb_min, or any circuit could detect the LED string with the largest forward voltage VLED, is applicable to the present invention. In some embodiments of the present invention, the feedback voltage detecting circuit may have other structures, or may be implemented by digital circuit generated by hard ware description language.
The power circuit 303 comprises Boost converter, Buck-Boost converter, Buck converter, or power converting circuit with other topology. The pulse generating circuit 302 comprises a control circuit for the power circuit 303.
Different from the current regulating circuit 1023 in
Step 501, receiving a preset current magnitude reference signal and a preset current duty cycle reference signal;
Step 502, detecting a minimum feedback voltage from the feedback voltages of the light-emitting device strings, wherein each feedback voltage indicates a current flowing through an associated light-emitting device string;
Step 503, clamping the minimum feedback voltage to a lower threshold by regulating a current flowing through the associated light-emitting device string;
Step 504, decreasing the current magnitude reference signal of the light-emitting device string with the minimum feedback voltage from the preset current magnitude reference signal;
Step 505, increasing the current magnitude reference signal of the light-emitting device string without the minimum feedback voltage from the preset current magnitude reference signal; and
Step 506, adjusting a current duty cycle reference signal according to the current magnitude reference signal to maintain a current flowing through the associated light-emitting device string being a preset value; wherein
The preset value of the current for each light-emitting device string is proportional to the product of the preset current magnitude reference signal and the preset current duty cycle reference signal.
In one embodiment of the present invention, the step 504 further comprises: stopping regulating the current magnitude reference signal when the current magnitude reference signal of the light-emitting device string with the minimum feedback voltage reaches a lower limit.
In one embodiment of the present invention, the step 504 further comprises: stopping regulating the current magnitude reference signal when the current duty cycle reference signal of the light-emitting device string with the minimum feedback voltage reaches an upper limit.
In one embodiment of the present invention, the step 504 further comprises: stopping regulating the current magnitude reference signal of the light-emitting device string with the minimum feedback voltage when any one of the following conditions is met: (1) the current magnitude reference signal of the associated light-emitting device string reaches the lower limit of the current magnitude reference signal; (2) the current duty cycle reference signal of the associated light-emitting device string reaches the upper limit of the current duty cycle reference signal.
In one embodiment of the present invention, the step 505 further comprises: stopping regulating the current magnitude reference signal of the light-emitting device string without the minimum feedback voltage when any one of the following conditions is met: (1) the current magnitude reference signal of the light-emitting device string without the minimum feedback voltage reaches an upper limit of the current magnitude reference signal; (2) the feedback voltage of the light-emitting device string without the minimum feedback voltage reaches the lower threshold.
In one embodiment of the present invention, the step 505 further comprises: stopping regulating the current magnitude reference signal of the associated Light-emitting device string without the minimum feedback voltage when any one of the following conditions is met: (1) the current duty cycle reference signal of the associated light-emitting device string reaches the lower limit of the current duty cycle reference signal; (2) the feedback voltage of the light-emitting device string of the associated Light-emitting device string reaches the lower threshold.
In one embodiment of the present invention, the step 505 further comprises: stopping regulating the current magnitude reference signal of the associated light-emitting device string without the minimum feedback voltage when any one of the following conditions is met: (1) the current magnitude reference signal of the associated light-emitting device string reaches the upper limit of the current magnitude reference signal; (2) the current duty cycle reference signal of the associated light-emitting device string reaches the lower limit of the current duty cycle reference signal; (3) the feedback voltage of the associated light-emitting device string reaches the lower threshold.
Obviously many modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims the invention may be practiced otherwise than as specifically described. It should be understood, of course, the foregoing disclosure relates only to a preferred embodiment (or embodiments) of the invention and that numerous modifications may be made therein without departing from the spirit and the scope of the invention as set forth in the appended claims. Various modifications are contemplated and they obviously would be resorted to by those skilled in the art without departing from the spirit and the scope of the invention as hereinafter defined by the appended claims as only a preferred embodiment(s) thereof has been disclosed.
Number | Date | Country | Kind |
---|---|---|---|
201911180319.6 | Nov 2019 | CN | national |