The present invention relates to the issuance of warnings that alert a driver to a potentially hazardous driving situation, and more particularly to an adaptive warning issuance methodology that minimizes nuisance warnings.
Since many vehicle accidents occur due to driver inattention and distraction, an increasing number of vehicles are being equipped with sensor systems for detecting objects that pose a potential hazard and various driver warning mechanisms for alerting the driver. For example, a forward collision warning can be issued if the closing distance between the host vehicle and a detected object in the forward path exceeds a threshold; and a lane departure warning can be issued if an overtaking vehicle is detected in a lane adjacent to the host vehicle. Driver warnings can also be issued when a maneuver characteristic of driver inattention or distraction is detected, such as when the host vehicle gradually drifts into an adjacent lane.
Unfortunately the above-mentioned warnings are often unnecessary, and can annoy an alert driver who, for example, already sees the object in the forward path, has no intention of changing lanes, or intends to change lanes gradually. For this reason, the U.S. Pat. No. 6,859,144 to Newman et al., incorporated by reference herein, discloses driver warning methodology in which the eye gaze direction of the driver is also taken into account. When a potentially hazardous driving condition is detected, Newman et al. consider the driver eye gaze. Different actions are taken depending on whether the driver eye gaze indicates a high or low probability of driver desire that a warning be given. For example, an eye gaze toward a side mirror indicates that the driver intends to change lanes, and a forward eye gaze indicates that the driver is aware of objects in the forward path. However, the driver eye gaze can vary from moment to moment, and gaze direction at the moment that a potentially hazardous driving condition is detected may not provide a reliable indication of driver attention or inattention. Therefore, what is needed is an adaptive driver warning methodology that more effectively infers driver state and issues driver warnings accordingly.
The present invention is directed to an adaptive driver warning methodology in which the warning action taken depends on the driver gaze during a steady-state interval following a precipitating event that will potentially lead to the issuance of a driver warning. The elapsed steady-state time following the precipitating event is compared with the duration of continuous non-forward driver gaze following the precipitating event. If the duration of continuous non-forward driver gaze is less than the elapsed steady-state time, the driver is considered to be aware of the event, and the warning parameters are established in a manner to de-sensitize or de-emphasize the driver warning. As a result, one or more momentary driver glances away from the forward direction during the steady-state interval will result in a de-sensitized or de-emphasized driver warning when a warning criterion is satisfied. On the other hand, the warning parameters are established in a manner to sensitize or emphasize the driver warning if the duration of continuous non-forward driver gaze is at least as great as the elapsed steady-state time.
Referring to the
In general, driver warning systems monitor a specified driving situation, and issue a warning when a prescribed alert threshold is violated. For example, the prescribed alert threshold in the case of a forward collision warning could be a calibrated closing distance and/or rate between the host vehicle and a detected object in the forward travel path; and the prescribed alert threshold in the case of a lane departure warning could be a calibrated distance between the host vehicle and an identified lane marker. But the present invention recognizes that for any such alert threshold, there is a related precipitating event that is not hazardous in itself, and that the driver state during the interval between the precipitating event and violation of the alert threshold provides information that is relevant to determining whether and how a driver warning should be issued. For example, the precipitating event for a forward collision warning can be defined as a detected increase in the forward object deceleration, an abrupt change in its range rate, or even the initial detection of a forward object. And the precipitating event for a lane departure warning can be defined as a detected increase in lateral velocity or lateral acceleration of the host vehicle. In any case, the time interval between the precipitating event and an eventual violation of the alert threshold is referred to herein as the steady-state interval.
According to the present invention, the adaptive warning controller 18 keeps track of the elapsed steady-state interval and the duration of continuous non-forward driver gaze during the steady-state interval. The elapsed steady-state time is compared to the continuous non-forward gaze time to infer whether the driver is aware of the subject situation. So long as the non-forward gaze time is less than the elapsed steady-state time, the adaptive warning controller 18 sets the warning parameters in a manner to de-sensitize or de-emphasize the associated driver warning. For example, the warning can be de-sensitized by adaptively adjusting the alert threshold in a direction to delay its violation, or de-emphasized by reducing the intensity of the warning or even disabling the warning. On the other hand, if the non-forward gaze time is at least as great as the elapsed steady-state time, the adaptive warning controller 18 sets the warning parameters in a manner to sensitize or emphasize the associated driver warning. For example, the warning can be sensitized by adaptively adjusting the alert threshold in a direction to hasten its violation, or emphasized by increasing the intensity of the warning.
In view of the above, it will be understood that under the method of the present invention, the driver state at the moment the alert threshold is violated is not determinative, but rather the driver state in the steady-state interval following the precipitating event. Graphs A-C of
In the scenario depicted by Graph B, the driver's eye gaze changes from forward (F) to non-forward (NF) at time t2, and is still non-forward when the alert threshold 22 is violated at time t3. During the entire steady-state interval, the non-forward gaze time is less than the elapsed steady-state time, and the adaptive warning controller 18 sets the warning parameters in a manner to de-sensitize or de-emphasize the forward collision warning that will occur when the threshold 22 is violated. De-sensitizing the forward collision warning can involve lowering the alert threshold 22, for example, so that the alert threshold 22 is violated later than would otherwise occur.
In the scenario depicted by Graph C, the driver's eye gaze changes from forward (F) to non-forward (NF) at time to, prior to the precipitating event, and is remains non-forward. In this case, non-forward gaze time is at least as great as the elapsed steady-state time during the entire steady-state interval, and the adaptive warning controller 18 sets the warning parameters in a manner to sensitize or emphasize the forward collision warning that will occur when the threshold 22 is violated. Sensitizing the forward collision warning can involve raising the alert threshold 22, for example, so that the alert threshold 22 is violated earlier than would otherwise occur.
The flow chart of
Block 38 then compares ATTENTION_AWAY_TIME with STEADY_STATE_TIME. If ATTENTION_AWAY_TIME is equal to or greater than STEADY_STATE_TIME, block 40 is executed to sensitize the alert threshold and/or emphasize the scheduled intensity of the forward collision warning. This is the default condition; it occurs in a scenario such as depicted in Graph C of
In summary, the method of the present invention provides an effective yet easily implemented way of tailoring the issuance of a driver warning to the driver state during the steady-state interval following a precipitating event for the warning so that the warning action more nearly conforms to the desired intent, and nuisance warnings are reduced. While the present invention has been described with respect to the illustrated embodiment, it is recognized that numerous modifications and variations in addition to those mentioned herein will occur to those skilled in the art. For example, the sensor systems depicted in