This invention relates generally to audio noise reduction and more particularly concerns reducing AC hum picked up by audio signals.
Audio hum at the AC power line frequency is commonly caused by power line hum and is a sound associated with alternating current at the frequency of the mains electricity. The fundamental frequency is at the power line frequency of 50 Hz or 60 Hz. AC electromagnetic fields are generated by AC transformers built into most equipment and appliances that connect to the AC power source. Stray AC electromagnetic fields are also generated by the high current power lines typically run within the walls or floors of most buildings. It is easily picked up by low level audio signals and is a common problem with musical instruments, especially instruments with pickups like guitars, bass guitars and pedal steel guitars. It can also be induced by poor shielding of audio cables including microphone cables and instrument cables. It has been an enemy of performing musicians, professional studio recording, broadcast sound and live sound for decades. The resulting sound, known as “hum” or “buzz,” often has strong harmonic content above the fundamental 50 or 60 Hz. The spectrum of the harmonics can extend well above 1 KHz and has been impossible to remove without degradation of the audio signal.
Since 1934, instruments have long used hum-bucking pickups to alleviate this problem but many musicians choose to live with the problem because they prefer the tonal responses of single coil pickups which produce a desirable spectral balance of the instrument with more pronounced high-mid and high frequencies.
Thereafter came the adaptation of fixed-notch filters used in radio applications and also in professional recording studios. The fixed-notch filter adaptation afforded limited improvement by removing the fundamental frequency and multiple harmonics of the fundamental frequency. While this can remove hum components, it also removes portions of the spectrum of the audio signal, a less than desirable audible side effect. For example, fixed notches at the fundamental and first 3 harmonics of 60 Hz, 120 Hz, 180 Hz and 240 Hz, when used on a bass guitar, will greatly reduce the fullness and rich bass tonal quality of the instrument. Higher frequency notches will greatly change the spectral balance of guitars and other instruments with more full-spectrum frequencies.
In the late 1980s and early 1990s, the advent of digital electronics made the use of fixed-notch filters more cost-effective. A time delayed signal, phase inverted and summed with the original signal creates a comb filter response causing a series of notches in the resulting audio output signal, creating the audio effect known as “flanging.” By modulating the time delayed signal, the frequency of the comb filter notches will change, producing the common “flanging” effect used in both recording and live performance.
Around 2007, a hum-attenuator became commercially available using a fixed time delay to create a series of notches at precisely the exact frequency of the hum components including all of the harmonics. While this could remove audible hum, the changes in the spectral balance of the audio output makes the effectiveness less than desirable. The audio output signal has an audible change in both the time and frequency domains due to adding the time delayed signal to the original audio signal. As a result, most musicians and sound engineers have opted to use noise gates and low level expanders, which are effective to attenuate the hum component when no audio is present. A low level downward expander can be set to attenuate the signal path when the audio signal is very low and will allow unity gain or no attenuation when the signal is loud or above a preset threshold. Low level expanders and noise gates can be very effective when the audio signal provides adequate masking of the actual hum components. For example, an electric guitar connected to a high gain distortion circuit will typically mask the audible hum components while playing but will produce even worse audible hum when the musician stops playing due to the increased gain of the distortion circuit. By setting a proper threshold to attenuate the signal just at the lower signal level where the hum becomes audible, the musician can effectively eliminate the intrusion of the hum components while playing, due to the masking effect combined with the low level attenuation of the downward expander.
A larger problem exists when the audio signal provides little or no masking of the hum components as is the case with lower gain guitar preamplifier, clean guitar preamplifier and/or bass guitar signals with little or no gain applied. Improvements have been made providing low level downward expanders with adaptive aspects making it possible to track the envelope of the audio signal. U.S. Pat. Nos. 7,532,730 and 8,842,852 disclose more recent improvements in the dynamic release response of low level downward expanders to provide the most transparent masking when transitioning between unity gain and expansion. By providing an adaptive response which tracks the envelope of the audio signal to produce a detector control signal variable between both a fast release when playing fast staccato notes and a slow smooth response with longer sustained notes, these inventions have helped provide greatly improved low level downward expander performance.
However, even with the improvements disclosed in the above mentioned patents, low level downward expanders simply cannot remove the audible hum present when the audio signal does not provide any masking of the hum components while the audio is present. In this situation using a noise gate or low level expander can actually modulate the hum, making the hum even more noticeable.
And so, while minor improvements have been made in reducing objectionable hum component noise, the longstanding need in the audio community for a system that can both eliminate this noise and provide an output signal devoid of the above discussed destructive side effects still remains.
It is therefore an object of the invention to provide an adaptive dynamic hum extractor and process which can effectively remove the audible hum associated with lower gain and clean signal levels that cannot be masked by the audio signal. It is a further object of the invention to provide an adaptive dynamic hum extractor and process that can remove the audible hum components without causing the audible degradation associated with fixed-notch filtering the fundamental frequency as well as the higher order harmonic frequencies. It is a further object of the current invention to provide an adaptive dynamic process by which the depth of the notches will increase adaptively based on the envelope of the decaying audio signal so as to dynamically increase in depth as the signal decays to the point where masking no longer occurs.
In accordance with the invention, a process for adaptively removing audio hum components from an input audio signal involves filtering the input audio signal with one or more notch filters at the fundamental hum frequency, detecting the level of the input audio signal to provide a control signal and dynamically varying the depth of each notch filters in the input audio signal in response to the control signal to provide a maximum notch depth of each notch filter when the input audio signal level is low and a minimum notch depth of each notch filter when the input audio signal level is high.
Filtering can be accomplished by delaying the input audio signal with a time delay equal to the inverse of the fundamental power line frequency, varying the level of the delayed input audio signal in relation to the control signal to produce a dynamically varying delayed signal, inverting the dynamically varied delayed signal and summing the inverted dynamically varied delayed signal with the input audio signal to produce dynamic notch filtering.
The process may further include filtering the input audio signal with one or more notch filters at one or more corresponding additional harmonic multiples that contain hum components to provide a maximum notch depth of each corresponding notch filter when the input audio signal level is low and a minimum notch depth of each corresponding notch filter when the input audio signal level is high.
In one higher performance configuration, the process for adaptively removing audio hum components from an input audio signal involves dividing the spectrum of the input audio signal into a low-band audio signal and a high-band audio signal. The low-band audio signal is filtered with one or more notch filters at the fundamental hum frequency. The level of the low-band audio signal is detected to provide a low-band control signal. The depth of each notch filter in the low-band audio signal is dynamically varied in response to the low-band control signal to provide a maximum notch depth of each notch filter when the input audio signal level is low and a minimum notch depth of the each notch filter when the input audio signal level is high. To produce the hum-extracted output signal, the high-band audio signal is combined with the dynamically varying low-band signal.
In another higher performance configuration, the process for adaptively removing audio hum components from an input audio signal involves dividing a spectrum of the input audio signal into a low-band audio signal, a band-pass audio signal and a high-band audio signal. The low-band audio signal is filtered with one or more notch filters at the fundamental hum frequency and the band-pass audio signal is filtered with one or more notch filters at an interval of the fundamental hum frequency. The level of the low-band audio signal is detected to provide a low-band control signal and the level of the band-pass audio signal is detected to provide a band-pass control signal. The depth of the notch filters in the low-band audio signal is dynamically varyied in response to the low-band control signal to provide a maximum notch depth of the notch filters when the low-band audio signal level is low and a minimum notch depth of the notch filters when the low-band audio signal level is high. The depth of the notch filters in the band-pass audio signal is dynamically varied in response to the band-pass control signal to provide a maximum notch depth of the notch filters in the band-pass audio signal when the band-pass audio signal level is low and a minimum notch depth of the notch filters in the band-pass audio signal when the band-pass audio signal level is high. To produce the hum-extracted output signal, the high-band audio signal is combined with the dynamically varying low-band signal.
In yet another higher performance configuration, the process for adaptively removing audio hum components from an input audio signal involves altering the input audio signal to provide a processed audio signal and dividing the spectrum of the input audio signal into a band-pass audio signal and a low-band audio signal. The level of the low-band audio signal is detected to provide a low-band control signal and the level of the band-pass audio signal is detected to provide a band-pass control signal. The spectrum of the processed audio signal is divided into low-band, band-pass and high-pass audio signal paths. The output of the processed low-band audio signal path is filtered with one or more notch filters at the fundamental line frequency. The depth of the notch filters in the low-band audio signal path is dynamically varied in response to the low-band control signal to provide a maximum notch depth of the notch filters in the low-band audio signal when the low-band audio signal level is low and a minimum notch depth of the notch filters in the low-band audio signal when the low-band audio signal level is high. The output of the processed band-pass audio signal path is filtered with one or more other notch filters at an interval of the fundamental line frequency. The depth of the other notch filters in the band-pass audio signal is dynamically varied in response to the band-pass control signal to provide a maximum notch depth of the other notch filters in the band-pass audio signal path when the band-pass audio signal level is low and a minimum notch depth of the other notch filters in the band-pass audio signal path when the band-pass audio signal level is high. To produce the hum-extracted output signal, the high-band audio signal is combined with the dynamically varying low-band signal.
For optimal performance, the process for adaptively removing audio hum components from an input audio signal involves filtering the input audio signal with multiple independent notch filters at the fundamental hum frequency and each additional harmonic frequency at which hum components are audible and dividing the input audio signal into multiple frequency bands with a center of each frequency band being at the fundamental hum frequency or a harmonic frequency of the fundamental hum frequency at which hum components are audible. The level of each of the multiple frequency bands at which hum components are audible is detected to provide corresponding multiple control signals. The depth of each independent notch filter in the input audio signal is dynamically varied in response to the control signal corresponding to the same frequency as the notch filter to provide a maximum notch depth of each notch filter when the input audio signal level in each corresponding frequency band is low and a minimum notch depth of each notch filter when the input audio signal level is high.
Other objects and advantages of the invention will become apparent upon reading the following detailed description and upon reference to the drawings in which:
While the invention will be described in connection with preferred configurations thereof, it will be understood that it is not intended to limit the invention to those configurations or to the details of the construction or arrangement of parts illustrated in the accompanying drawings.
In the following detailed description similar element numbers designate corresponding structural parts or functional blocks and similar alpha symbols designate corresponding signals.
The plot of
As shown, the output spectrum of a guitar picks up typical 60 Hz hum and higher order harmonics, producing very undesirable audible hum at the fundamental power line frequency of 60 Hz. If the instrument was not picking up the 60 Hz power line frequency and associated harmonics, the actual noise floor would be greater than −60 db.
The fundamental power line frequency of 60 Hz and each harmonic component occurring at each increasing 60 Hz interval is present. The highest amplitude component is at 180 Hz. Each harmonic above 180 Hz decreases in amplitude. Simply reducing the fundamental line frequency hum component at 60 Hz would have little impact on the audible hum output of the signal because the 180 Hz, 240 Hz and 300 Hz harmonics are the highest amplitude components. The measured hum components and the balance of the harmonics in relation to the fundamental frequency will change with different environments. The requirement to remove the hum components remains the same even though the amplitude relationship of the fundamental power line frequency and harmonic components will change.
Turning to
This method of producing the required notches N at the required frequencies works well for its purpose, but does introduce a negative side effect. The subtle delay plus the additive aspect at the frequencies where no notch occurs adds to the undesirable sonic performance of a static system. The audible spectral change due to the notches combined with the additive delay become destructive to the original audio signal. The end result, therefore, is a final output signal that is perhaps more undesirable than was the original signal with the audible hum components.
It is also possible to generate fixed notches at each required frequency with individual, high-Q notch filters. The sonic performance may increase with the fixed-notch high-Q filter approach, but at a very sizable increase in complexity and required processing power when implemented as a digital signal processing (DSP) algorithm. By bandwidth limiting the high frequency notches N to only that shown in
Moving on to
As seen in
The delay 40 is set for a time delay equal to T=1/fh, where fh is the hum frequency to be removed. The output of the delay 40 is a delayed signal SD with a gain of 1 which is then fed to the input of a variable multiplier 60. In an analog embodiment of the invention, the variable multiplier 60 is a voltage controlled amplifier with a variable gain between 0 and 1. The variable multiplier 60 is dynamically controlled by the detector 50.
The detector 50 is described in detail in previously issued patents including the above-mentioned U.S. Pat. Nos. 7,532,730 and 8,842,852 and, therefore, is not now described in detail. The detector 50 receives the full spectrum signal SID to produce an adaptive precision level detected output control signal SC. The signal SC has a very fast release response when the audio input signal SI decays quickly and an adaptively slower response when the audio input signal SI decays slowly. The amount of ripple in the control signal SC is reduced to provide extremely low modulation of the variable multiplier 60 under the control of the detector 50 to provide the multiplier output signal SX. The detector 50 also provides a threshold control signal STH to a user-adjustable threshold control 51.
Looking again at both
When no signal with energy above the user-set threshold is present at the input to the analog-to-digital converter ADC 10, the gain of the variable multiplier 60 will be 1. Maximum notch depth D will occur in the output of the summer 70 providing notches N at the fundamental power line frequency PLF and all higher order harmonics HHF as multiples of the fundamental hum frequency PLF. As the input signal SI increases above threshold, the depth D of the notches N will decrease, producing a decreasing amount of attenuation at the notch frequencies. With higher level input signals SI, the notches N completely disappear from the audio signal path. As the input signal SI decays, the notches N will dynamically increase based on the release response of detector 50. The notches N will adaptively change in depth D based in part on the actual envelope or time-averaged level of the audio input signal SI, providing a fast response with staccato notes and a slow smooth response with longer sustained notes. With instruments like guitar and bass, this provides enhanced transparency due to the adaptive dynamic operation of the detector 50.
The output signal SHX of summer 70 is fed to the input of the digital-to-analog converter DAC 90 which provides the final processor output signal SF. This most simplified embodiment of the hum extractor provides excellent hum extraction when no audio is present and is also useful with very moderate amounts of background hum if the audio signal SI is capable of effectively masking the hum components HPLF+HHF when audio is present.
Turning now to
Looking at
The filters 20 and 30 are typically 4th order Linkwitz Riley high-pass and low-pass filters with a 24 decibel per octave response and a typical corner frequency of 2.4 KHz. The 2.4 KHz frequency is selected to provide hum cancellation up to the typical highest frequency harmonic of line hum. Other filter types can be used without major changes in the system performance but the Linkwitz Riley filter provides more accurate summation of the two frequency bands due to complementary phase shifts of the two bands in this type of filter. Higher order FIR filters with zero phase shift could be used.
The output S20 of the high-pass filter 20 is fed directly to one positive input of a unity gain summer 80. The output signal S30 of the low pass filter 30 is applied to the inputs of a delay 40, a detector 50 with a threshold control 51 and a summer 70 as seen and described above in relation to the adaptive dynamic single frequency band hum extractor 100 of
The output signal SLHX of the summer 70 feeds another positive input of the unity gain summer 80. The summer 80 feeds the combined adaptive dynamic low band signal SLHX and the unaltered high frequency band signal 52 as a composite output signal SHX at the input of the digital-to-analog converter DAC 90. The hum components having been removed, the output signal SF of the digital-to-analog converter DAC 90 is the final output signal of the hum extractor 200.
The single dynamic band hum extractor 200 shown in
For higher levels of hum even more effective operation can be realized by increasing the number of dynamic bands. Considering
One configuration of a multi-band adaptive dynamic hum extractor 300 is seen in
The internal processor P1 can be any signal processing operation that alters the audio input signal SID including, but not limited to, an instrument preamplifier with gain and or distortion, compression and/or equalization. Detecting the direct, unaltered input signal SI is more desirable since use of the direct input signal before other processing will provide better dynamic range and better tracking for the detectors 50BP and 50LP.
The processor P1 could be omitted, allowing the unaltered output signal from the analog-to-digital converter ADC 10 to directly feed the high-pass filter 20, the band-pass filter 22 and the low-pass filter 30.
Continuing to look at
Continuing with reference to
The internal processor P1 feeds the input of the filters in the audio path including a high-pass filter 20, a band-pass filter 26 and a low-pass filter 32. These filters 20, 26 and 32 are again designed with Linkwitz Riley response and 24 db per octave slopes as described above.
The output of the high pass filter 20 is un-processed and is fed directly to a positive input of the summing block 80. The output of the band-pass filter 26 is fed to the band-pass delay 40B. The delay time of delay 40B is designed so that T=1/fh where fh is equal to the frequency of the hum, typically the power line frequency.
The output of the band-pass delay 40B feeds the input of the variable multiplier 60B. The multiplier 60B is controlled by the band-pass detector 50BP and provides variable gain between 0 and 1 based on the output of the detector 50BP. The output of variable multiplier 60B feeds an inverting input of the summing block 70B which then feeds the second positive input of the summing block 80.
The output of the low-pass filter 32 is fed to the input of a low-pass delay 40L. The delay time of delay block 40L is also designed so that T=1/fh where fh is equal to the power line frequency of the AC line. The output of the band-pass delay block 40L feeds the input of the variable multiplier 60L. The multiplier 60L is controlled by the band-pass detector 50L and provides variable gain between 0 and 1 based on the output of the detector 50B. The output of variable multiplier 60L feeds an inverting input of a summing block 70L which then feeds a positive input of the summing block 81. The second positive input of the summing block 81 is fed from the output of the summing block 80. The output signal SHX of summing block 81 is a summation of all three bands with the hum components removed and feeds the input of the digital-to-analog converter DAC 90. The output of the digital-to-analog converter DAC 90 is the final audio output signal SF of the system.
In operation, the audio input source signal with hum components SI is fed to the input of the analog-to-digital converter ADC 10. The output signal SID feeds the input of the process block P1, the band-pass filter 22 and the low-pass filter 30. The user adjusts the threshold 51 of the system so as to eliminate any audible hum in the output signal. The audio input signal is split into three bands. The high frequency band is fed directly to the audio output since this band contains no appreciable amount of hum. The mid-frequencies are dynamically processed separately from the low frequencies to improve the subjective masking abilities of the system.
The crossover frequency between the mid-frequencies at the output of the band-pass filter 26 and low-frequencies at the output of the low-pass filter 32 allow the two dynamic bands to provide excellent masking. For example, when a high frequency note is played on an electric guitar with a fundamental frequency above the 350 Hz crossover point, the low-band detector 50LP will see very little signal level such that the low-frequency band signal path will provide excellent rejection of the low-band hum. The depth D of the low frequency notches N will remain extremely deep, since there is little or no energy detected by the detector 50L required to change the gain of the variable multiplier 60L. The mid-band signal will contain adequate spectral energy due to the harmonic content of the instrument so as to mask the high frequency hum components with higher level input signals. By reducing the high-frequency notches N and allowing the masking of the high frequency hum harmonic components by the actual audio signal while also attenuating the low frequency hum components with very deep notches N in the low-frequency signal path, the resulting audio output signal retains all of the proper spectral information without alteration. As the note decays, the depth D of the high frequency notches N will dynamically increase so as to attenuate the high frequency hum harmonic components as they become audible.
The subjective results of the multi-band system are excellent and, even with high amounts of hum intrusion in the input source signal, the audible hum at the output is virtually eliminated. Conversely, if a low frequency signal well below 350 Hz is played, the low frequency signal will provide masking of the low frequency hum until the note decays to the point where the notch depth D increases. The high frequency harmonic spectral energy above the fundamental low frequency note will cause the depth of the high band notches N to decrease momentarily so as to not color the high frequency harmonic spectral balance of the high frequency components. As the high frequency energy in the input audio signal decays, the notches N will increase in depth D so as to attenuate any audible intrusion of the high frequency hum harmonic components.
With proper setting of the user adjustable threshold 51 based on the level of hum present in the input audio source signal SI, the net results are excellent. The multiband dynamic configuration disclosed provides excellent attenuation of the hum components while further improving the transparency of the final output signal and avoids coloration of the audio signal due to the dynamic operation of the notches N in the multiband audio path.
Moving on to
Moving the processing to an external configuration requires the addition of another analog-to-digital convertor ADC 11 to convert the analog output signal from the external processer P1 to a digital signal in order to feed the inputs of the high-pass filter 20, the band-pass filter 26 and the low-pass filter 32. With the exception of this change the operation of the embodiment of
This will provide dynamic control of the system based on the direct input signal, not on the output of the external processor P1. The audio output of the external processor P1 then feeds the audio processing path of the adaptive dynamic audio hum extractor processor. As described above, with reference to
In any configuration of the invention including those herein disclosed, even higher performance can be realized by increasing the number of adaptive dynamic frequency bands based on the principals described herein. Higher performance configurations with a higher number of dynamic bands will provide extremely transparent operation allowing use in very professional applications such as professional recording and live broadcast. The ultimate performance can be realized by increasing the number of dynamic frequency bands to the point that each individual notch frequency becomes independently dynamic and each notch frequency is implemented with a separate detector and dynamic variable multiplier.
In any configuration of the invention including those herein disclosed, it is possible to use known methods for audio detection, however incorporation of the advantages of the inventions disclosed in U.S. Pat. Nos. 7,532,730 and 8,842,852 combined with the current invention produce a system which becomes adaptive to the actual envelope and time averaged level of the audio input signal thereby producing further enhanced performance and transparency.
In any configuration of the invention including those herein disclosed, masking effectiveness can be increased by reducing the bandwidth of each individual band. For example, with audio signals where the hum is greater in amplitude, playing a single high frequency note may allow the low frequency hum components to become audible since there are no low frequency audio components present to mask the low frequency hum.
Alternative methods are known for deriving a control signal which can be used with the current invention to produce acceptable results without departing from the scope of the current invention. However, higher performance and transparency is achieved by use of the inventions disclosed in the above-identified patents in combination with the current invention to provide increased adaptive and transparent operation.
Thus, it is apparent that there has been provided, in accordance with the invention, an adaptive dynamic hum extractor and extraction process that fully satisfies the objects, aims and advantages set forth above. While the invention has been described in conjunction with specific configurations thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art in light of the foregoing description. Accordingly, it is intended to embrace all such alternatives, modifications and variations as fall to the spirit of the appended claims.
This application claims the priority of U.S. Provisional Patent Application No. 62/887,243, filed Aug. 15, 2019.
Number | Name | Date | Kind |
---|---|---|---|
4496859 | Crooks | Jan 1985 | A |
5706354 | Stroehlein | Jan 1998 | A |
20030053640 | Curtis et al. | Mar 2003 | A1 |
20040223085 | Kwak | Nov 2004 | A1 |
20160323043 | Julstrom | Nov 2016 | A1 |
20170111737 | Painter et al. | Apr 2017 | A1 |
20180076850 | Zhu | Mar 2018 | A1 |
Number | Date | Country |
---|---|---|
2013063208 | Apr 2013 | JP |
Number | Date | Country | |
---|---|---|---|
20210366504 A1 | Nov 2021 | US |
Number | Date | Country | |
---|---|---|---|
62887243 | Aug 2019 | US |