I. Field
The present invention relates generally to electronics, and more specifically to techniques for mitigating the deleterious effects of a transmit (TX) leakage signal in a wireless full-duplex communication system.
II. Background
A wireless device in a wireless full-duplex communication system can simultaneously transmit and receive data for two-way communication. One such full-duplex system is a Code Division Multiple Access (CDMA) system. On the transmit path, a transmitter within the wireless device (1) modulates data onto a radio frequency (RF) carrier signal to generate an RF modulated signal and (2) amplifies the RF modulated signal to obtain a transmit signal having the proper signal level. The transmit signal is routed via a duplexer and transmitted from an antenna to one or more base stations. On the receive path, a receiver within the wireless device (1) obtains a received signal via the antenna and duplexer and (2) amplifies, filters, and frequency downconverts the received signal to obtain baseband signals, which are further processed to recover data transmitted by the base station(s).
For a full-duplex wireless device, the RF circuitry in the receiver is often subjected to interference from the transmitter. For example, a portion of the transmit signal typically leaks from the duplexer to the receiver, and the leaked signal (which is commonly referred to as a “TX leakage” signal or a “TX feed-through” signal) may cause interference to a desired signal within the received signal. Since the transmit signal and the desired signal typically reside in two different frequency bands, the TX leakage signal can normally be filtered out and does not pose a problem in itself. However, the TX leakage signal may interact with a “jammer” (which is a large amplitude undesired signal close in frequency to the desired signal) to generate “cross modulation” distortion components on both sides of the jammer, as described below. Distortion components that fall within the signal band of the desired signal and which are not filtered out act as additional noise that may degrade performance.
A surface acoustic wave (SAW) filter is often used to filter out the TX leakage signal and mitigate its deleterious effects. The use of a SAW filter for TX leakage rejection is undesirable for several reasons. First, the SAW filter is normally a discrete component that is not fabricated on an RF integrated circuit (RFIC) and thus occupies space on a circuit board. Second, the SAW filter typically requires other discrete components for input and output impedance matching. Third, the SAW filter and its impedance matching circuitry increase the cost of the wireless device.
There is therefore a need in the art for techniques to mitigate the deleterious effects of a TX leakage signal without using a SAW filter.
Adaptive filters that can attenuate a TX leakage signal in wireless full-duplex communication systems (e.g., a CDMA system) are described herein. An adaptive filter may be fabricated on an RFIC, along with other circuit blocks for a receiver such as a low noise amplifier (LNA) for amplification, a mixer for frequency downconversion, and so on. The adaptive filters can avoid the disadvantages described above for SAW filters.
In an embodiment, an adaptive filter suitable for use for TX leakage rejection includes a summer and an adaptive estimator. The summer receives an input signal having TX leakage signal and an estimator signal having an estimate of the TX leakage signal, subtracts the estimator signal from the input signal, and provides an output signal having the TX leakage signal attenuated. The adaptive estimator receives the output signal and a reference signal having a portion or version of the signal being transmitted, estimates the TX leakage signal in the input signal based on the output signal and the reference signal, and provides the estimator signal having the TX leakage signal estimate.
The adaptive estimator may utilize a least mean squared (LMS) algorithm to minimize a mean square error (MSE) between the TX leakage signal in the input signal and the TX leakage signal estimate in the estimator signal. In this case, the adaptive estimator may include (1) a first multiplier that multiplies the output signal with an in-phase reference signal and provides a first in-phase signal, (2) a first integrator that integrates the first in-phase signal and provides a second in-phase signal, (3) a second multiplier that multiplies the second in-phase signal with either the in-phase reference signal or a quadrature reference signal and provides a third in-phase signal, (4) a third multiplier that multiplies the output signal with the quadrature reference signal and provides a first quadrature signal, (5) a second integrator that integrates the first quadrature signal and provides a second quadrature signal, and (6) a fourth multiplier that multiplies the second quadrature signal with either the in-phase or quadrature reference signal and provides a third quadrature signal, and (7) a summer that sums the third in-phase signal and the third quadrature signal and provides the estimator signal. The multipliers may be implemented with mixers. The adaptive estimator may further include other circuit blocks/elements for improved performance, as described below. A quadrature splitter receives the reference signal and provides the in-phase and quadrature reference signals for the adaptive estimator.
Various aspects and embodiments of the invention are described in further detail below.
The features and nature of the present invention will become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference characters identify correspondingly throughout and wherein:
The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any embodiment or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments or designs.
The adaptive filters described herein may be used for various wireless full-duplex communication systems. These adaptive filters may also be used for various frequency bands such as a cellular band from 824 to 894 MHz, a Personal Communication System (PCS) band from 1850 to 1990 MHz, a Digital Cellular System (DCS) band from 1710 to 1880 MHz, an International Mobile Telecommunications-2000 (IMT-2000) band from 1920 to 2170 MHz, and so on. For clarity, the following description is for the cellular band, which includes (1) an uplink frequency band from 824 to 849 MHz and (2) a downlink frequency band from 869 to 894 MHz. The uplink and downlink frequency bands are transmit (TX) and receive (RX) frequency bands, respectively, for a wireless device.
On the receive path, a received signal containing a desired signal and possibly a jammer is received via antenna 118, routed through duplexer 116, and provided to an LNA 122 within a receiver 120. LNA 122 also receives a TX leakage signal from the transmit path, amplifies the receiver input signal at its input, and provides an amplified RF signal, x(t). A filter 130 receives and filters the amplified RF signal to remove out of band signal components (e.g., the TX leakage signal) and provides a filtered RF signal, y(t). A mixer 132 receives and frequency downconverts the filtered RF signal with a local oscillator (LO) signal and provides a downconverted signal.
LNA 122 couples to SAW filter 330 via an input impedance matching network 310 formed by a resistor 312, inductors 314 and 316, and a capacitor 318. SAW filter 330 couples to mixer 132 via an output impedance matching network 340 formed by capacitors 342, 344, and 346 and inductors 348 and 350. A capacitor 320 provides filtering of the power supply, VCC, for LNA 122.
The use of an RF SAW filter for TX leakage signal filtering has several disadvantages. First, if LNA 122 and mixer 132 are implemented within a single RFIC for reduced cost and improved reliability, then SAW filter 330 is implemented off-chip and requires three IC package pins for interface to the LNA and mixer. Second, SAW filter 330 and the discrete components for matching networks 310 and 340 require extra board space and further add cost to the wireless device. Third, the insertion losses of SAW filter 330 and matching networks 310 and 340 degrade the cascaded gain and noise figure of the receiver.
An adaptive filter may be used to reject the TX leakage signal and avoid the disadvantages described above for the SAW filter. The adaptive filter may be implemented on an RFIC (e.g., the same RFIC used for the LNA and mixer) so that no additional board space is needed for external components and cost is reduced. The adaptive filter may be designed to achieve the desired rejection of the TX leakage signal and consume low power.
On the receive path, a received signal is received via antenna 418, routed through duplexer 416, and provided to an LNA 422 within a receiver 420. LNA 422 also receives the TX leakage signal from the transmit path, amplifies the signal at its input, and provides an amplified RF signal, x(t). Adaptive filter 430 receives and filters the amplified RF signal to attenuate/reject the TX leakage signal and provides a filtered RF signal, y(t). A mixer 432 frequency downconverts the filtered RF signal with an LO signal and provides a downconverted signal.
In general, adaptive filter 430 may be located at any point on the received path prior to mixer 432. For example, adaptive filter 430 may be placed either before or after LNA 422. Improved noise performance can typically be achieved with adaptive filter 430 placed after LNA 422.
For the embodiment shown in
LMS estimator 510a includes an in-phase section 520a, a quadrature section 520b, and a summer 530. Within in-phase section 520a, a multiplier 522a receives and multiplies the i(t) signal with the y(t) signal and provides an mi(t) signal, which is mi(t)=y(t)·i(t). An integrator 524a receives and integrates the mi(t) signal and provides an in-phase integrated signal, wi(t). A multiplier 528a receives and multiplies the i(t) signal with the wi(t) signal and provides a zi(t) signal, which is zi(t)=wi(t)·i(t). Similarly, within quadrature section 520b, a multiplier 522b receives and multiplies the q(t) signal with the y(t) signal and provides an mq(t) signal, which is mq(t)=y(t)·q(t). An integrator 524b receives and integrates the mq(t) signal and provides a quadrature integrated signal, wq(t). A multiplier 528b receives and multiplies the q(t) signal with the wq(t) signal and provides a zq(t) signal, which is zq(t)=wq(t)·q(t). Multipliers 522a, 522b, 528a, and 528b are four-quadrant multipliers. Summer 530 receives and sums the zi(t) and zq(t) signals and provides an estimator signal, e(t), which contains the TX leakage signal estimate obtained based on the LMS algorithm. The wi(t) and wq(t) signals are effectively weights used for estimating the TX leakage signal.
Summer 540 receives the estimator signal, e(t), from LMS estimator 510a and the filter input signal, x(t), which contains the received signal as well as the TX leakage signal. Summer 540 subtracts the estimator signal from the filter input signal and provides the filter output signal, y(t).
For the LMS algorithm, the estimator signal from LMS estimator 510a may be expressed as:
where μ is the unity-gain angular frequency of LMS estimator 510a, which is the angular frequency at which the overall gain from the output of summer 540 to the inverting input of summer 540 is equal to one. The parameter μ includes the gains of all circuit blocks in the feedback loop from the output to the inverting input of summer 540 and is given in units of rad/sec/V2. Equation (1) assumes that the integrators are ideal with a single pole at DC.
The filter output signal from adaptive 430a may be expressed as:
The filter output signal, y(t), is often referred to as an error signal. For simplicity, the following analysis assumes that the x(t) signal contains only the TX leakage signal. The TX leakage signal and the in-phase and quadrature reference signals may also be assumed to be sinusoids with the following form:
x(t)=A·sin(ωt+φ), i(t)=B·sin(ωt), and q(t)=B·cos(ωt), Eq (3)
where A is the amplitude of the TX leakage signal;
Equation (4) may be solved using Laplace transform, as follows:
s2·Y(s)−s·y(0)−y′(0)+μ·B2[s·Y(s)−y(0)]+ω2·Y(s)=0, Eq (5)
where y(0) and y′(0) are initial conditions for y(t) and d y(t)/dt, respectively. If no reference signal is applied for t≦0 (i.e., i(t)=0 and q(t)=0 for t≦0), then y(t)=x(t) for t≦0, and the initial conditions may be expressed as:
y(0)=x(0)=A·sin(φ), and
y′(0)=x′(0)=A·ω·cos(φ). Eq (6)
With the initial conditions as shown in equation (6), the Laplace transform of the adaptive filter output, y(t), may be expressed as:
where ζ is a damping factor, which is ζ=μ·B2/(2ω). The Laplace transform of the adaptive filter input, x(t), may be expressed as:
The transfer function of adaptive 430a may then be expressed as:
where s=jωx and ωx is a variable for angular frequency.
The inverse Laplace transform of Y(s) in equation (7) may be expressed as:
The exponential term e−ζωt controls the settling time and thus the convergence speed of the LMS algorithm. Since the damping factor ζ needs to be much smaller than one (i.e., ζ<<1) to reduce filter distortion and attenuation, as shown in
y(t)≅x(t)·e−ζωt. Eq (11)
Equation (11) indicates that the filter output signal is simply an exponentially decaying version of the filter input signal. For 30 dBc of TX leakage rejection, e−ζωt=10−30/20, and the settling time may be expressed as:
Adaptive 430a generates cross modulation distortion even if all of the circuit blocks of the adaptive filter are perfectly linear. The cross modulation distortion is generated by the frequency mixing function of multipliers 522 and 528, as illustrated in
The cross modulation distortion generated by adaptive 430a may be analyzed by a triple beat distortion. For the analysis, the transmit signal (and thus the reference signal) contains two closely spaced tones at frequencies of fTX±Δf/2. The filter input signal contains (1) the TX leakage signal with the two transmit tones and (2) an inband single-tone jammer at a frequency of fJ. If the adaptive filter completely rejects the TX leakage signal such that the filter output signal, y(t), contains only the jammer, then its triple beat distortion, d(t), may be derived as:
where i(t)=B·[sin((ω−Δω/2)·t)+sin((ω+Δω/2)·t)];
q(t)=B·[cos((ω−Δω/2)·t)+cos((ω+Δω/2)·t)]; and
y(t)=C·cos(ωJt), where C is the amplitude of the jammer.
Equation (13) indicates that two triple beat distortion terms are generated at frequencies of fJ±Δf, as described above for
A triple beat rejection ratio (TBRR) is defined as the ratio of the jammer amplitude to the amplitude of the cross modulation distortion. The TBRR may be obtained by performing simple trigonometric manipulations on equation (13) and taking the ratio of the jammer amplitude to the triple beat distortion amplitude. The TBRR may be expressed as:
where ζ=μ·B2/(2ωTX) is the damping factor. Equation (14) indicates that a TBRR of 68 dBc may be obtained with a damping factor of ζ≦8.1×10−6 for fTX=849 MHz and fJ=894 MHz. The settling time is 81 μsec with this damping factor.
Adaptive filter 430b includes an LMS adaptive estimator 510b and summer 540. LMS estimator 510b includes all of the circuit blocks for LMS estimator 510a in
An ideal adaptive filter provides infinite rejection of the TX leakage signal so that the filter output signal contains no TX leakage signal. However, various imperfections in a practical/realizable adaptive filter limit the amount of TX leakage rejection that may be achieved. Such imperfections may include, for example, finite gain for the integrators and non-zero DC offsets for the circuit blocks of the LMS estimator.
A TX leakage rejection ratio (TXRR) is the ratio of the TX leakage signal power at the adaptive filter output to the TX leakage signal power at the adaptive filter input. The TXRR requirement for adaptive filter 430 is dependent on various factors such as, for example, (1) the maximum TX leakage signal power expected at the output of LNA 422 and (2) the maximum acceptable TX leakage signal power at the input of mixer 432. It can be shown that an adaptive filter with a TXRR of approximately 30 dB can provide performance comparable to that achieved by a receiver with an RF SAW filter (e.g., the receiver shown in
Adaptive filters 430a and 430b have similar TXRR performance. The actual TXRR achieved by adaptive 430a is dependent on various factors such as, for example, (1) the overall gain of the integrators and multipliers and (2) the DC offsets of the multipliers and integrators. An inadequate overall gain limits the TXRR that can be achieved by the adaptive filter. The overall gain is thus selected such that the required TXRR can be achieved and is appropriately distributed among the integrator and multipliers.
DC offsets can also adversely affect the TXRR performance of adaptive filter 430a. Multipliers 522a, 522b, 528a, and 528b typically have DC responses due to imbalances on the two inputs. Integrator 524a and 524b have systematic as well as random input DC offsets. The DC offsets introduce an error that reduces the amount of TX leakage rejection by the filter. Also, due to their large DC gains, the integrators may be saturated initially by the combined DC offsets. Once saturated, the integrators have very low gains that result in a long settling time for the adaptive filter. To prevent saturation due to DC offsets, the output of each integrator may be reset (e.g., by shorting together the differential output of each integrator) prior to enabling the adaptive filter and then released thereafter.
Various techniques may be used to achieve low combined DC offsets for the in-phase and quadrature paths. The combined DC offsets may be reduced by:
The multiplier gain may be increased by converting multipliers 522a and 522b into mixers and using the in-phase and quadrature reference signals as strong LO signals. The high gain of the mixers (e.g., approximately 50 dB for an exemplary mixer design) can significantly reduce the DC offset contribution of the integrators. The output DC offset of the mixers is low due to the inherent chopping action of the mixers.
Chopper stabilization techniques may be able to achieve low input DC offset voltages (e.g., below 10 μV). Auto-zeroing techniques, such as correlated double sampling techniques, typically increase the noise floor, which may then contaminate the RX frequency band. The auto-zeroing techniques should thus be used with care.
Adaptive filter 430 inherently introduces additional noise that degrades the noise figure of the receiver. Adaptive filter 430 may be designed to minimize noise contribution by using various circuit design techniques known in the art. This way, system requirements can be met even with the additional noise contribution from adaptive filter 430.
Adaptive filter 430 is a feedback system and is unstable if the total phase delay along the feedback loop is 180° and the loop gain is greater than one. For an ideal adaptive filter, the only delay along the feedback loop is 90° introduced by the integrators. For a practical adaptive filter, a delay is introduced by each circuit block within the adaptive filter.
A pre-amplifier 718 receives and amplifies the filter input signal, x(t), and provides a differential output signal, y′(t), to an in-phase section 720a and a quadrature section 720b. Within in-phase section 720a, a multiplier 722a receives and multiplies the y′(t) signal with the i′(t) signal and provides a differential mi′(t) signal. An integrator 724a receives and integrates the mi′(t) signal and provides a differential wi′(t) signal. Integrator 724a is implemented with an amplifier and two capacitors coupled between the differential output and the differential input of the amplifier, as shown in
Pre-amplifier 718 has a delay of Δφ1 at the frequency of the TX leakage signal. Multipliers 722a and 722b each has a delay of Δφ2 due to unequal delays of the RF and LO inputs. Multipliers 728a and 728b each has a delay of Δφ3 from the reference signal to the multiplier output at the frequency of the TX leakage signal. The total delay Δφ for adaptive filter 430c may be computed as: Δφ=Δφ1+Δφ2+Δφ3.
A step response for equation (15) may be expressed as:
Vout(t)≈e−(1+G
Equation (16) indicates that the filter output signal is an oscillatory signal having an exponential decay of e−pt due to the integrator pole at p. The presence of the delay Δφ introduces oscillations in the filter output signal. The amplitude of the oscillations can either decay or grow depending on the delay Δφ. It can be shown that the adaptive filter is (1) stable if Δφ is in the range of −90° to +90° and (2) unstable if |Δφ| exceeds 90°. For example, if Δφ1=40°, Δφ2=0°, and Δφ3=60°, then Δφ=100° and the adaptive filter oscillates.
The adaptive filters shown in
The adaptive filters described herein utilize an LMS adaptive estimator to estimate the TX leakage signal. Other types of estimators may also be used to estimate the TX leakage signal, and this is within the scope of the invention. For example, the transmit signal may be stepped across the TX frequency band and weight values wi and wq may be determined for the in-phase and quadrature sections, respectively, and used in place of wi(t) and wq(t) in
The adaptive filters may also be trained in various manners. For example, an adaptive filter may be enabled at the beginning of a training burst (which contains a known training signal) and weight values may be derived based on this burst. The weight values may thereafter be fixed and used for estimating the TX leakage signal during the signaling interval. The weight values may be updated whenever the training bursts are available. To speed up convergence, the conditions for the integrators may be determined and stored prior to tuning away from an RF channel, and the integrators may be initialized with the stored conditions the next time this RF channel is selected.
The adaptive filters described herein may also be used for various systems and applications. For example, the adaptive filters may be used in wireless full-duplex communication systems such as cellular systems, OFDM systems, orthogonal frequency division multiple access (OFDMA) systems, multiple-input multiple-output (MIMO) systems, wireless local area networks (LANs), and so on. The full-duplex cellular systems include CDMA system and some versions of Global System for Mobile Communications (GSM) systems, and the CDMA systems include IS-95, IS-2000, IS-856, and Wideband-CDMA (W-CDMA) systems. The adaptive filters may be used for a wireless device as well as a base station in a wireless full-duplex communication system.
The adaptive filters described herein may be implemented within an integrated circuit (IC), an RF integrated circuit, an application specific integrated circuit (ASIC), or other electronic units designed to perform the functions described herein. The adaptive filters may also be fabricated with various IC process technologies such as complementary metal oxide semiconductor (CMOS), bipolar junction transistor (BJT), bipolar-CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), and so on.
The previous description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
This application claims the benefit of provisional U.S. Application Ser. No. 60/519,561, entitled “Adaptive Filtering of TX Leakage in CDMA Receivers,” filed Nov. 12, 2003.
Number | Name | Date | Kind |
---|---|---|---|
4825459 | Farrow et al. | Apr 1989 | A |
5444864 | Smith | Aug 1995 | A |
5526377 | Uedid et al. | Jun 1996 | A |
5995567 | Cioffi et al. | Nov 1999 | A |
6640111 | Shapira | Oct 2003 | B1 |
7072614 | Kasperkovitz | Jul 2006 | B1 |
20020072344 | Souissi | Jun 2002 | A1 |
20040219884 | Mo et al. | Nov 2004 | A1 |
Number | Date | Country |
---|---|---|
2001-047138 | Jun 2001 | KR |
0154290 | Jul 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20050107051 A1 | May 2005 | US |
Number | Date | Country | |
---|---|---|---|
60519561 | Nov 2003 | US |