The described embodiments relate generally to wireless communications and more particularly to adaptive filtering of cell measurements.
Wireless communication devices operating on a cellular network, such as a Long Term Evolution (LTE) network, are generally configured to report cell measurements for a current serving cell and/or for one or more neighbor cells to support possible handovers. For example, in an LTE network a wireless communication device can be required to report reference signal received power (RSRP) and reference signal received quality (RSRQ) measurements for defined events. In many networks, a wireless communication device is configured to report a filtered measurement calculated in accordance with a network configured filter coefficient from a set of instantaneous measurement samples that can be captured over a measurement period that can be defined by the network.
The filtered measurements that are used for event evaluation and reporting can lag behind the instantaneous measurement samples. In this regard, in fast fading channel conditions, a measurement filtered using the network configured filter coefficient can weight samples captured earlier in the measurement period such that the filtered average of the measurement samples can mask fast fading channel conditions reflected by instantaneous measurement samples captured later in the measurement period. This lag can lead to a delay in the triggering of reporting events, and thus a delay in device handover. In some instances, this delay can result in call drops.
Some example embodiments disclosed herein provide for adaptive filtering of cell measurements. In this regard, a wireless communication device in accordance with some example embodiments can be configured to modify a network configured filter coefficient and to use the resulting modified filter coefficient for calculating a filtered cell measurement in fading channel conditions. The filtered measurement calculated based on the modified filter coefficient may be more reflective of a more current instantaneous measurement sample so that event reporting and handover can be triggered more quickly in fast fading channel conditions. Users may accordingly benefit from reduced call drop frequency in fast fading channel conditions.
In a first embodiment, a method for adaptive filtering of cell measurements is provided. The method of the first embodiment can include a wireless communication device calculating a first filtered measurement of a cell based on a network configured filter coefficient. The first filtered measurement can be indicative of a channel condition of the cell over a first measurement period. The method of the first embodiment can further include the wireless communication device determining based at least in part on a plurality of instantaneous measurement samples of the cell captured over a second measurement period that a fading condition of the cell over the second measurement period exceeds a first threshold. The method of the first embodiment can additionally include the wireless communication device modifying the network configured filter coefficient to derive a modified filter coefficient in response to the fading condition of the cell exceeding the first threshold over the second measurement period. The method of the first embodiment can also include the wireless communication device filtering the plurality of instantaneous measurement samples based on the modified filter coefficient to calculate a second filtered measurement of the cell. The method of the first embodiment can further include the wireless communication device comparing the first filtered measurement and the second filtered measurement. In an instance in which a difference between the second filtered measurement and the first filtered measurement exceeds a second threshold, the method of the first embodiment can also include the wireless communication device clipping the second filtered measurement to derive a clipped value; and calculating an adjusted measurement value for the cell based at least in part on the clipped value. In an instance in which the difference between the second filtered measurement and the first filtered measurement does not exceed the second threshold, the method of the first embodiment can instead include the wireless communication device calculating the adjusted measurement value directly from the second filtered measurement value. The method of the first embodiment can additionally include the wireless communication device using the adjusted measurement value for event evaluation and reporting.
In a second embodiment, another method for adaptive filtering of cell measurements is provided. The method of the second embodiment can include a wireless communication device determining based at least in part on a plurality of instantaneous measurement samples of a cell captured over a measurement period that a fading condition of the cell over the measurement period exceeds a threshold. The method of the second embodiment can further include the wireless communication device modifying a network configured filter coefficient to derive a modified filter coefficient in response to the fading condition of the cell exceeding the threshold over the measurement period. The method of the second embodiment can additionally include the wireless communication device filtering the plurality of instantaneous measurement samples based on the modified filter coefficient to calculate a filtered measurement of the cell. The method of the second embodiment can also include the wireless communication device calculating an adjusted measurement value for the cell based at least in part on the filtered measurement. The method of the second embodiment can further include the wireless communication device using the adjusted measurement value for event evaluation and reporting.
In a third embodiment, a wireless communication device is provided. The wireless communication device of the third embodiment can include a transceiver and processing circuitry coupled to the transceiver. The transceiver can be configured to transmit data to and receive data from a cellular network. The processing circuitry can be configured to control the wireless communication device to at least determine based at least in part on a plurality of instantaneous measurement samples of a cell captured over a measurement period that a fading condition of the cell over the measurement period exceeds a threshold; modify a network configured filter coefficient to derive a modified filter coefficient in response to the fading condition of the cell exceeding the threshold over the measurement period; filter the plurality of instantaneous measurement samples based on the modified filter coefficient to calculate a filtered measurement of the cell; calculate an adjusted measurement value for the cell based at least in part on the filtered measurement; and use the adjusted measurement value for event evaluation and reporting.
In a fourth embodiment, a computer program product for adaptive filtering of cell measurements is provided. The computer program product of the fourth embodiment can include at least one non-transitory computer readable storage medium having program code stored thereon. The program code of the fourth embodiment can include program code for determining based at least in part on a plurality of instantaneous measurement samples of a cell captured over a measurement period that a fading condition of the cell over the measurement period exceeds a threshold; program code for modifying a network configured filter coefficient to derive a modified filter coefficient in response to the fading condition of the cell exceeding the threshold over the measurement period; program code for filtering the plurality of instantaneous measurement samples based on the modified filter coefficient to calculate a filtered measurement of the cell; program code for calculating an adjusted measurement value for the cell based at least in part on the filtered measurement; and program code for using the adjusted measurement value for event evaluation and reporting.
In a fifth embodiment, an apparatus for adaptive filtering of cell measurements is provided. The apparatus of the fifth embodiment can include means for determining based at least in part on a plurality of instantaneous measurement samples of a cell captured over a measurement period that a fading condition of the cell over the measurement period exceeds a threshold; means for modifying a network configured filter coefficient to derive a modified filter coefficient in response to the fading condition of the cell exceeding the threshold over the measurement period; means for filtering the plurality of instantaneous measurement samples based on the modified filter coefficient to calculate a filtered measurement of the cell; means for calculating an adjusted measurement value for the cell based at least in part on the filtered measurement; and means for using the adjusted measurement value for event evaluation and reporting.
The above summary is provided merely for purposes of summarizing some example embodiments of the invention so as to provide a basic understanding of some aspects of the invention. Accordingly, it will be appreciated that the above described example embodiments are merely examples and should not be construed to narrow the scope or spirit of the invention in any way. Other embodiments, aspects, and advantages of the invention will become apparent from the following detailed description taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the described embodiments.
The described embodiments and the advantages thereof may best be understood by reference to the following description taken in conjunction with the accompanying drawings. These drawings are not necessarily drawn to scale, and in no way limit any changes in form and detail that may be made to the described embodiments by one skilled in the art without departing from the spirit and scope of the described embodiments.
Representative applications of methods and apparatus according to the present specification are described in this section. These examples are being provided solely to add context and aid in the understanding of the described embodiments. It will thus be apparent to one skilled in the art that the described embodiments may be practiced without some or all of these specific details. In other instances, well known process steps have not been described in detail in order to avoid unnecessarily obscuring the described embodiments. Other applications are possible, such that the following examples should not be taken as limiting.
In the following detailed description, references are made to the accompanying drawings, which form a part of the description and in which are shown, by way of illustration, specific embodiments in accordance with the described embodiments. Although these embodiments are described in sufficient detail to enable one skilled in the art to practice the described embodiments, it is understood that these examples are not limiting; such that other embodiments may be used, and changes may be made without departing from the spirit and scope of the described embodiments.
In typical cellular network deployments, a wireless communication device can be configured to perform measurements for a current serving cell and/or for one or more neighbor cells to support potential handovers. For example, in LTE networks, a wireless communication device can be configured by a serving evolved Node B (eNB) to report RSRP and RSRQ measurements for events, such as A3 and A2, as defined in the Third Generation Partnership Project (3GPP) TS 36.331 specification. The wireless communication device can be configured to take measurements at least once in a measurement period that can be defined by the network and the wireless communication device can be configured to filter the measurements according to a network configured filter coefficient. The network configured filter coefficient can be signaled to the wireless communication device by the serving base station in radio resource control (RRC) reconfiguration signaling.
The sampling rate at which a wireless communication device captures instantaneous measurement samples can be left up to the device, and can vary by implementation. As an example, a wireless communication device operating on an LTE network can capture RSRP and/or RSRQ measurement samples every 40 milliseconds (ms) and can filter measurement samples over a measurement period, such as a 200 ms measurement period. While the network configured filter coefficient can provide stability in measurements and avoid unnecessarily triggering a handover due to a single instantaneous measurement sample that may be an aberration, a filtered measurement can lag behind instantaneous measurements in fast fading channel conditions to an extent to which event reporting and handover may be delayed to the detriment of an ongoing call, which may be dropped as a result of the delay.
Fast fading channel conditions can occur in a variety of scenarios. One such scenario is mobility of a device toward an edge of a serving cell, as illustrated in
As an example,
Some example embodiments address the problem illustrated in
The wireless communication device 302 can be within signaling range of a cell 304, and can take measurements of the cell 304. The cell 304 can be a serving cell for the wireless communication device 302, or can be a neighboring cell of the device's serving cell. The cell 304 can be a cell of a network using any present or future developed cellular network technology. By way of non-limiting example, the cell 304 can be a cell of a network using an LTE technology, such as LTE, LTE-Advanced (LTE-A), or other present or future developed LTE technology. It will be appreciated, however, that embodiments described with respect to LTE networks and standards are provided by way of example, and not by way of limitation. In this regard, in some example embodiments, the cell 304 can be a cell of a non-LTE network, including, for example, a third generation (3G) network, such as a Wideband Code Division Multiple Access (WCDMA) or other Universal Mobile Telecommunications System (UMTS) network, such as a Time Division Synchronous Code Division Multiple Access (TD-SCDMA) network; a CDMA2000 network; 1xRTT network, or the like. As another example, cell 304 can be a cell of a second generation (2G) network such as a Global System for Mobile Communications (GSM) network.
In some example embodiments, the apparatus 400 can include processing circuitry 410 that is configurable to perform actions in accordance with one or more example embodiments disclosed herein. In this regard, the processing circuitry 410 can be configured to perform and/or control performance of one or more functionalities of the apparatus 400 in accordance with various example embodiments, and thus can provide means for performing functionalities of the apparatus 400 in accordance with various example embodiments. The processing circuitry 410 can be configured to perform data processing, application execution and/or other processing and management services according to one or more example embodiments.
In some embodiments, the apparatus 400 or a portion(s) or component(s) thereof, such as the processing circuitry 410, can include one or more chipsets, which can each include one or more chips. The processing circuitry 410 and/or one or more further components of the apparatus 400 can therefore, in some instances, be configured to implement an embodiment on a chipset(s). In some example embodiments in which one or more components of the apparatus 400 are embodied as a chipset, the chipset can be capable of enabling a computing device to operate in the system 300 when implemented on or otherwise operably coupled to the computing device. Thus, for example, one or more components of the apparatus 400 can provide a cellular baseband chipset, which can enable a computing device to operate within a cellular network.
In some example embodiments, the processing circuitry 410 can include a processor 412 and, in some embodiments, such as that illustrated in
The processor 412 can be embodied in a variety of forms. For example, the processor 412 can be embodied as various hardware-based processing means such as a microprocessor, a coprocessor, a controller or various other computing or processing devices including integrated circuits such as, for example, an ASIC (application specific integrated circuit), an FPGA (field programmable gate array), some combination thereof, or the like. Although illustrated as a single processor, it will be appreciated that the processor 412 can comprise a plurality of processors. The plurality of processors can be in operative communication with each other and can be collectively configured to perform one or more functionalities of the apparatus 400 as described herein. In some example embodiments, the processor 412 can be configured to execute instructions that can be stored in the memory 414 or that can be otherwise accessible to the processor 412. As such, whether configured by hardware or by a combination of hardware and software, the processor 412 can be capable of performing operations according to various embodiments while configured accordingly.
In some example embodiments, the memory 414 can include one or more memory devices. Memory 414 can include fixed and/or removable memory devices. In some embodiments, the memory 414 can provide a non-transitory computer-readable storage medium that can store computer program instructions that can be executed by the processor 412. In this regard, the memory 414 can be configured to store information, data, applications, instructions and/or the like for enabling the apparatus 400 to carry out various functions in accordance with one or more example embodiments. In some embodiments, the memory 414 can be in communication with one or more of the processor 412, transceiver 416, or adaptive filtering module 418 via a bus(es) for passing information among components of the apparatus 400.
The apparatus 400 can further include transceiver 416. The transceiver 416 can enable the apparatus 400 to send wireless signals to and receive signals from one or more cellular networks. As such, the transceiver 416 can be configured to support any type of cellular technology that can be implemented by the cell 304, and can facilitate measurement of a channel quality of the cell 304.
The apparatus 400 can further include adaptive filtering module 418. The adaptive filtering module 418 can be embodied as various means, such as circuitry, hardware, a computer program product comprising a computer readable medium (for example, the memory 414) storing computer readable program instructions executable by a processing device (for example, the processor 412), or some combination thereof. In some embodiments, the processor 412 (or the processing circuitry 410) can include, or otherwise control the adaptive filtering module 418.
The adaptive filtering module 418 can be configured to perform adaptive filtering of cell measurements in accordance with one or more example embodiments, as described further herein below. In this regard, the adaptive filtering module 418 can be configured to calculate filtered measurements of a cell, such as the cell 304, based on instantaneous measurement samples of the cell. In fast fading channel conditions, the adaptive filtering module 418 can be configured to modify a network configured filter coefficient to derive a modified filter coefficient and use the modified filter coefficient to calculate a filtered measurement. The adaptive filtering module 418 can be further configured to use a filtered measurement as a basis for event evaluation and reporting.
Operation 500 can include the wireless communication device 302 capturing a plurality of instantaneous measurement samples of the cell 304 over a measurement period. The measurement period can be a measurement period defined by the network, such as through RRC signaling. By way of non-limiting example, the measurement period can be 200 ms. The instantaneous measurement samples can be captured in accordance with a sampling rate that can be selected by the wireless communication device 302. For example, in some embodiments, the wireless communication device 302 can use a 40 ms sampling rate, and can capture 5 samples per 200 ms measurement period. The instantaneous measurement samples can be maintained in a buffer. Thus, for example, in some embodiments, if five instantaneous measurement samples are captured in a measurement period, measurement samples x1, x2, x3, x4, and x5 can be maintained in a buffer. Embodiments utilizing a buffer can, for example, implement a rolling buffer having a size that can be defined based at least in part on a sampling rate and measurement period length such that older instantaneous measurement samples can be replaced in the buffer by newly captured instantaneous measurement samples.
Operation 510 can include the wireless communication device 302 determining based at least in part on the instantaneous measurement samples captured during the measurement period that a fading condition of the cell 304 over the measurement period exceeds a threshold. In this regard, operation 510 can include the wireless communication device 302 comparing and/or otherwise evaluating the instantaneous measurement samples to detect whether channel degradation over the measurement period exceeds a threshold level of fading. For example, in some embodiments, operation 510 can include the wireless communication device 302 determining a statistical spread of two or more instantaneous measurements to determine whether the spread exceeds a threshold. In some example embodiments, such as that illustrated and described further with respect to
Operation 520 can include the wireless communication device 302 modifying the network configured filter coefficient to derive a modified filter coefficient in response to the fading condition of the cell 304 exceeding the threshold over the measurement period. In this regard, the network configured filter coefficient can be increased so that a resulting filtered measurement value will be more reflective of current channel conditions. In some example embodiments, the network configured filter coefficient can be increased by a factor, k. In some example embodiments, k can be a static value, such as between 4 and 7. Alternatively, in some example embodiments, k can be selected based at least in part on an extent of the fading condition over the measurement period. In this regard, k can be proportional to an amount of observed fading. For example, a higher k value can be selected for conditions exhibiting faster fading and/or an otherwise greater magnitude in channel degradation than for conditions exhibiting a lesser degree of fading.
Operation 530 can include the wireless communication device 302 filtering the plurality of instantaneous measurement samples based on the modified filter coefficient to calculate a filtered measurement of the cell 304. Operation 304 can include the wireless communication device 302 calculating an adjusted measurement value for the cell 304 based at least in part on the filtered measurement. In this regard, the adjusted measurement value can reflect an adjustment that can result from usage of the modified filter coefficient such that the adjusted measurement value can be more reflective of current channel conditions than a measurement value calculated based on the network configured filter coefficient.
In some instances, the adjusted measurement value can be equivalent to the filtered measurement calculated in operation 530. However, in other instances, one or more further measurement values can be calculated directly from the filtered measurement value and/or from a modified version of the filtered measurement value, such as a clipped version of the filtered measurement value, as discussed with respect to
Operation 550 can include the wireless communication device 302 using the adjusted measurement value for event evaluation and reporting. For example, in LTE networks, the adjusted measurement value can be used for evaluation and reporting of events such as A2 and A3 events.
In instances in which the fading condition of the cell 304 over a measurement period did not exceed the threshold, then the network configured filter coefficient can be used to calculate the filtered measurement for use in reporting and evaluation in lieu of performance of operations 520-550.
Referring now to
Operation 600 can include the wireless communication device 302 calculating a variance of the instantaneous measurement samples captured over a measurement period. For example, given n measurement samples, the variance can be calculated as follows in some example embodiments:
Operation 610 can include comparing the variance calculated in operation 600 to a threshold variance to determine if the calculated variance exceeds the threshold variance. In an instance in which it is determined at operation 610 that the calculated variance exceeds the threshold variance, the method can proceed to operation 620, which can include determining that the facing condition of the cell 304 over the measurement period exceeds the threshold. Operations 520-550, as illustrated in and described with respect to
In some example embodiments, a second threshold can be applied in instances in which a fading condition of the cell 304 exceeds a threshold over a measurement period and a modified filter coefficient is used. In this regard, a filtered measurement value calculated using a modified filter coefficient can be clipped if a difference between a filtered measurement value calculated in a previous measurement period and the filtered measurement value calculated using the modified filter coefficient exceeds a second threshold, the filtered measurement value calculated based on the modified filter coefficient can be clipped, such as by a constant, ε, to reduce an amount of fluctuation between filtered measurement values.
With reference to
Operation 720 can include the wireless communication device 302 modifying the network configured filter coefficient to derive a modified filter coefficient in response to the fading condition of the cell exceeding the first threshold over the second measurement period. Operation 720 can correspond to operation 520. Operation 730 can, in turn include the wireless communication device 302 filtering the plurality of instantaneous measurement samples captured over the second measurement period based on the modified filter coefficient to calculate a second filtered measurement of the cell (F2). In this regard, operation 730 can correspond to operation 530.
Operation 740 can include the wireless communication device 302 comparing F1 and F2 to determine if the difference between F2 and F1 exceeds the second threshold. In an instance in which it is determined at operation 740 that the difference between the filtered measurements does not exceed the second threshold, the method can proceed to operation 750, which can include calculating an adjusted measurement value directly from F2. If, however, it is determined at operation 740 that the difference between the filtered measurements does exceed the second threshold, the method can proceed to operations 760 and 770 in lieu of operation 750. Operation 760 can include the wireless communication device 302 clipping F2 by ε to derive a clipped value, F2+/−ε. Operation 770 can include the wireless communication device 302 calculating the adjusted measurement value from the clipped value.
The method can proceed to operation 780 after performance of either operation 750 or operation 770. Operation 780 can include the wireless communication device 302 using the adjusted measurement value for event evaluation and reporting. In this regard, operation 780 can correspond to operation 550.
In some example embodiments instantaneous measurement samples can be monitored by the wireless communication device 302 on a rolling basis. Thus, if the wireless communication device 302 determines for a measurement period subsequent to using a modified filter coefficient that a fading condition of the cell for that measurement period does not exceed a threshold, then the wireless communication device 302 can return to using the network configured filter coefficient for filtered measurement calculation.
Having now described several example embodiments, example derivations of modified filter coefficients will now be described in accordance with some example embodiments. It will be appreciated that these example techniques for deriving modified filter coefficients can be applied in accordance with various example embodiments described herein. Thus, for example, these techniques for derivation of a modified filter coefficient can be used to facilitate performance of operation 520 and/or operation 720 in accordance with some example embodiments.
Calculation of a filtered measurement value can be defined as follows in accordance with some example embodiments:
y[n]=(1−α)y[n−1]+αx[n], [3]
where:
Taking the Z-transform of equation [3] can yield the filter transfer function H[z], as follows:
A filter can accordingly be designed having a pole at (1−α) based on equation [4]. Comparing the filter with the Z-transform of an exponential decay function with time constant ‘Ts’ can yield:
The measurement period can be defined as Ts, and the wireless communication device 302 can capture measurement samples at a sampling rate of its choice. For purposes of non-limiting example, let Ts=200 ms and Ts′ be the selected sampling rate. It will be appreciated, however, that other measurement periods can be used in accordance with various example embodiments. Given the hypothetical measurement period and sampling rates, it can be inferred from equations [4] and [5] that:
The time constant of the filter that can be defined for use in a network with measurement periodicity Ts and the filter that can be used by the wireless communication device 302 with a different sampling rate can be defined to be equivalent. As such, the filter coefficient α′ can be derived in accordance with equations [7] and [8] as set forth below:
From equation [7], the filter coefficient α′ can be defined as:
However in fading channel conditions and/or other high mobility conditions, the wireless communication device 302 can move between one base station and another, which can lead to a sudden degradation of pilot channel power with a simultaneous increase of neighboring cell pilot channel power. In such conditions, the network specification defined measurement periodicity and time constant can be too long for the filtered values to converge and track the instantaneous measurement samples. The wireless communication device 302 can be configured to temporarily modify the filter coefficient (e.g., for a short period of time) so that the filter converges to the instantaneous measurement samples more quickly when such conditions are encountered.
For example, let {x1, x2, x3, x4, . . . xn} be the last n measured instantaneous values (over a measurement period, such as a 200 ms period). The weighted variance, σ, of the samples can be defined as follows:
wi, as used in equations [9] and [10] denote weights that can be selected by the wireless communication device 302 based at least in part on channel conditions. The wireless communication device 302 can increase α′ by factor ‘m’ depending on σ. Similarly, the wireless communication device 302 can decrease α′ by m if σ is determined to be below a threshold. The resulting filtering equation using the modified filter coefficient can accordingly be defined as:
y[n]=(1−α1/m)y[n−1]+α1/mx[n] [11]
The convergence of a filter in accordance with equation [11] can be implicitly guaranteed by the convergence of the network defined filter. In some example embodiments, if the newly filtered value due to filter coefficient yα′[n] is greater than yα[n−1] by a threshold, then the newly yα′[n] can be set to yα[n].
Table 1 illustrates a comparison of instantaneous measurement samples and filtered measurement values using the static filter defined by equation [3] from a set of test measurements.
As can be seen from Table 1, the filtered values can diverge significantly from the instantaneous measurement samples over time when using the static filter. In contrast, Table 2 illustrates a comparison of instantaneous measurement samples and filtered measurement values when using the adaptive filter defined in equation [11] from the same set of test measurements.
The various aspects, embodiments, implementations or features of the described embodiments can be used separately or in any combination. Various aspects of the described embodiments can be implemented by software, hardware or a combination of hardware and software. The described embodiments can also be embodied as computer readable code on a computer readable medium for controlling manufacturing operations or as computer readable code on a computer readable medium for controlling a manufacturing line. The computer readable medium is any data storage device that can store data which can thereafter be read by a computer system. Examples of the computer readable medium include read-only memory, random-access memory, CD-ROMs, HDDs, DVDs, magnetic tape, and optical data storage devices. The computer readable medium can also be distributed over network-coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the described embodiments. However, it will be apparent to one skilled in the art that the specific details are not required in order to practice the described embodiments. Thus, the foregoing descriptions of specific embodiments are presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the described embodiments to the precise forms disclosed. It will be apparent to one of ordinary skill in the art that many modifications and variations are possible in view of the above teachings.